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Abstract. Two homogenization methods are presented for modeling the overdl dasto-plagtic behavior of
composite materids, the first oneis gpplied to the case where the nonlocal property of the congtituents can
be neglected, and the second one considers this nonlocal effect by idedizing the congtituents as micropolar
materias. The secant moduli method and Ponte Castafieda’ s variationa method are discussed in these two
homogenization methods.

I ntroduction

There are different length scdes involved in the micromechanical modding for heterogeneous materids:
the structural characterigtic Sze L, the sSize of representative volume ement (RVE)|, the characterigtic
length scde of theinhomogenaty A (for example the particle Size, the inter-distance of the particles) and the
characteristic length scale of the matrix |, (grain Sze of a polycrysaline materia for example). For

different length scae conditions, different homogenization techniques should be employed. For example, the
classca micromechanica method applies for the following length scde condition L >>1 >> A>>[ [1,2],

s0 that both the congtituents and the homogenized materias can be idedized as Cauchy materids without
any inner microstructures. However with the emerge of new technologies such as nanotechology, MEMS,
thin films the structure size L is usudly smdl and the length scde condition necessary for the classcd

micromechanics is subjected to an acute scrutiny; on the other hand, with the innovation of new composite
materids, such as metal matrix composites (MMCs), nanocomposites, foam composites, the Sze of the
filler usuly has the same order as the characteristic length scale (1,,,) of the matrix. For these length scale

conditions, different homogenization Strategies have to be proposed [2,3]: for thin films and MEMS,
usudly L » |, a high order continuum mode should be assigned for the homogenized macro-dement; and
for MMCs, nanocomposites, more often A» | ,,, a high order continuum mode may be used to describe
properly the nonloca response of the matrix materid. The different materid models and the corresponding

length scale conditions are summarized in table 1.
Table 1 material models and |ength scale conditions

Constituent model length scale condition homogenized model
Cauchy model A>>|
L>>1>> A Cauchy model
High order continuum A»l,
Cauchy model A>>|
L»I»A High order continuum
High order continuum A» I,
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In this paper, a brief review on the advances of homogenization methods for nonlinear composites will
be presented. Two length scde conditions, L >>1 >> A>>|,, and L >>1>>A»|,,, will be discussed

Separately.

Homogenization of nonlinear composites under the condition L >>1 >> A>>|,

As discussed in the introduction, under this length scde condition both the condituents and the
homogenized materids can be idedized as Cauchy materids, the progress on the nonlinear composites
aong this line can be found in the review paper given by Ponte Castafieda and Suquet[4]. In the following,
we will discuss the secant moduli method based on the second order stress moment [5,6], which is shown
to be equivaent to the method proposed by Ponte Castafiedd 7]. The method chooses a series of linear

comparison composites (characterized by the effective stress potential W or the effective compliance

tensor VS) to describe the nonlinear behavior of the actual composte, these linear comparison
composites have the same microstructure as that in the composite to be analyzed, however the eagtic
compliance M ° of the phase r of the linear comparison composite is set to have the secant compliance of

the nonlinear phaser (characterized by the stress potentia w;, ) of the actual composite, ths means

w
M3:s =——. 1
P = 1)

The siress potentid w; of the nonlinear phase r may have different particular forms according to specific
materids, for an isotropic Von Mises materia with a power type hardening law, it is

0 1 —2
W, =w, + s . 2
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where m, K, are the elagtic shear and bulk moduli of the phase r, s, and n,,H, are respectively the
initial yield stress, and hardening parameters of the phase r, s e = /3 Sy /2,and s is the deviatoric
stress. From equations (2,3), the secant shear and bulk moduli of the phaser are defined by
1
= — —, K =K, . 4

i 1/m+:{(se-syr)/Hr]1’”f/se @

For the phase r in the actud composite, the plagtic strain is usudly not uniform, so its secant moduli are
in fact podtion-dependant. In order to describe this heterogeneous plastic strain more precisely, a more
refined approach can be proposed by dividing the phase r into some sub-regions, and in each of such
region the secant moduli are assumed to be congtant, this usudly makes the problem difficult to be solved
andyticdly. So, for amplicity, we utilize the homogenized secant moduli for each phase by taking

S°=<s2> ,5.=3<s Sy > /2 in equations (34), where <- >, denotes the volume average of
the sad quantity over the phase r. For the linear comparison composte with the rth linear phase
characterized by M 7, its effective compliance M °can be evaluated andyticdly by many micromechanica
methodq 8]. Taking the Mori-Tanaka's method for example, for a two-phase composite with digned
eadic dlipsoidd inclusons, the effective compliance tensor of the linear comparison compoditeis given by

Mo =MS+el My (M) - 1) 2+ o)(1 - S M§. 5)
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where c, is the volume fraction of the inclusion, | is fourth order identity tensor, S is Eshelby tensor, indices
0,1 are referred to quantities related to the matrix and the incluson respectively. For composites with
spherica inclusions, the effective shear and bulk moduli of the linear comparison composite can be written
as

—Ss —S

m _q4 G , K 14 G _ 6)
nﬁ (1' Cl)xl + ”1?/(”1 - mf) Ko (l' Cl)XZ + Ko /(Kl' Ko)
where

_BKorem) 3K,

1 2

53K, +4m) 7 3K, +4ng
For a given gpplied load S , if the corresponding secant shear modulus of the nonlinear phase (here the
matrix) ng is assumed to be known, then the effective compliance tensor M "of the linear comparison
composite can be evaluated by equations (5 or 6), which is considered as the secant effective compliance
of the nonlinear composite at the applied load S , and the composite strain is Smply calculated by
E=M:S. 7
To determine the variation of ngas a function of the gpplied load S, we consder again the linear
comparison composite under the gpplied load S , the micro-macro trangtion principle leads to

<s:M%:s >=S:M :S. (8
Under acongtant gpplied loadS with asmdl variation dM °, it can be shown that
<s:dM*®:s >=S:dM :S. 9)
If we only consider avariation of the shear modulus of the matrix dng, then
2_—s
s_;32:§<si'js.i'j >, = 1 S:(- 3my ﬂSM ):S. (10)
2 1- ¢ my

This eguation can be used to determine the corresponding secant shear modulus ng of the matrix for a

givenload S, the stress and strain relaion of the nonlinear composite can then be constructed according
to the secant moduli method. This version of the secant moduli method can aso be recast into a beautiful
variationa expression proposed by Ponte Castafieda [7] for a composite with N nonlinear phases:

_ _. A o u
Wer ® War © Sp@V(M*,S)- & ¢, apw6 ) - w,(s)]g. (12)
"M*e r=1 "s u

where c, is the volume fraction of the phaser, Wt isthe stress potential of the nonlinear composite. The

first optimization procedure impaoses that the condtituents of the linear comparison meateria have the secant
moduli of the corresponding nonlinear phase, and the second optimization procedure determines the
variation of the secant moduli of the individua phase as afunction of the gpplied load (equation 10).

This method has been widdly used to determine the effective behavior of nonlinear composites, the most
advantage of the method is tha the results obtained for linear composites can be utilized, however this
method fails to describe the particle size-dependence in predicting the nonlinear behavior of the composite,
widely observed in metal matrix composites [9], and this will be discussed in the next section.
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Homogenization of nonlinear composites under the condition L >>1>> Ax»|

When the particle Sze is comparable to the intringc length of the matrix materid, a high order continuum
model has to be assigned for the matrix materia, discussons on the high order theory can be found in
references [10,11]. We[12], Chen and Wang[13] have used high order continuum models to describe the
Sze-dependence of the overal behavior for composite materids. Here in this paper, the matrix materia will
be idedlized as amicropolar materid.

Micropolar elagticity and plagticity

In the micropolar theory, three rotetion angles f ; are introduced in additiona to the macro-displacement
u; of a material point. The kinematic, equilibrium and condtitutive equations for an isotropic micropolar
meateria are (body force and couple are neglected)

}eij =Uuj; - &;f« }S i =0 }S i =Ciu€a * Bk
fkij =f i fm;; +e,5, =0 tm; = B,e, + D, Ky
(12)

It should be noted that the stress and the strain are not symmetric in micropolar theory. my ,k;; arethe

ij?
couple gtress and the torson respectiviey. For a centrosymmetric and isotropic micropolar materid,
Bijk| =0 , and

Ciiu = dijdkl +(m+k)djkdil +(m-k)d,d Dy :adijdkl +(b +g)djkdil +(b - g)dikdjl' (13)

i
where (m,| ) are the classical Lame congdants, (k ,g,b ,a ) are new materid congtants introduced in
micropolar theory, and d;; is the Kronecker delta. With s &ij),s <j>»S (° sj) and e&ij) Eqij> e (° &)
denoting separately the deviaoric symmetric, anti-symmetric and hydrogtatic parts of the stress and the

drain tensors, and smilar notations for the couple-stress and torsion tensors, the well-established dastic
condtitutive relations for alinear isotropic micropolar materia can be rewritten as[14]:

S i) =2, S gj» = Z<e<ij>, s =3Ke; my, = 2bk(ij), m;., =20, m= 3Pk. (14)

where K =1 +2/3r isthe bulk modulus, P =a +2/3b can be regarded as the corresponding stiffness

measure for the torson, and symbols () and < > in the subscript denote the symmetric and anti- symmetric
parts of a second order tensor, respectively.

There are two digtinct sets of moduli: (m,| ,k ) which relate the traditiona stresses and strains and
have the dimension of force per unit area, and (g, b ,a ) which relae the higher-order couple- stresses and
torsgons, with the dimension of force. Due to the dimensiona difference between these two sets of moduli,
a least three intringc characterigtic lengths can be defined for an isotropic eagtic micropolar materid.
These dagtic micropolar length parameters can be defined in different ways; in this paper, they are defined
by [16]:

l, =@ /my'?, l, =(b/mY/2, I3 =@ /mY2. (15)
For amplicity, in thefollowing discusson, welet [; =1, =13 =1,,.

For anonlinear micropolar materia, the generdized equivdent stress may be defined ag11,15,16]:
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The dress potentia for a nonlinear micropolar material may then be written as[16]:

— 1 2 1 2 1 2
W=W,(Se)+—S2 . +—S " +—m". 1
oS ) ok 18K 18P (17

W, (sT ¢) has the same form as in eguation (3) with a new interpretation for the equivaent stress, and
S % =35 ;.S .12,

For the deformation theory in pladticity, the secant moduli of a nonlinear micropolar materid a the
sressstate s  can be defined from equation(17)

! KS=k , KS=K .b*=I2m¥, g°=12n%, P =P. (18)

CUm+3e-s )/H s

Micro-macro trangtion method and effective classcal moduli of the composite
At the length scde condition L >>1 >> A » |, theSze of the RVE is aufficiently small tht it can il be
conddered as a materid point in the structure, the classca boundary condition is applied on the RVE:
U = Egyxj, fi =0 or K =Sgyn;, m;n; =0, where n; isthe unit normal of the boundary of the RVE.
Under the above boundary conditions, it can be shown that
<s:e+m:k>=E¥:CT"EY =5 :M "SI,
(19)

Equation (19) in fact defines the classcd stiffness or compliance tensor Cor M2 of the micropolar
composite, which relates the symmetrical stress and srain. To determine the effective stiffness tensor

CWm, it is necessary to evauate the loca stress and couple stress in the RVE, and then the relation
between <s )y >and <egy >= Ejy(under linear displacement boundary condition) provides the

classca dtiffness tensor of the micropolar composite, or dternatively the relation between <e(;;) >and
<S (ij) >=Sjj) (under uniform traction boundary condition) gives the effective compliance. To compute

the average strain and torsion for different phases, the average equivadent incluson method will be used, a
detaled explanation may be found in referenceq16,17]. For a two-phase particulate composte, the
effective shear and bulk moduli of the composite estimated by Mori-Tanaka's method can adso be
expressed by equation (6), but the constants x,,x, should be replaced by

— 3K,
3K, +4nt

o = 8K ram) 6k,
T 53K, +4mg) 5K, + 1)

whereG(h) =e " (h"2+h 3)lhcoshh - shhh], h=a/h, h?=(m+k,)(@S+bs)/4mk,, and a
denotes the radius of the particle. Here in equation (20), the superscript sis used for the secant notation for

the matrix materid, which will be used as a linear comparison micropolar compodte in the following
discussion.

G(h). x, (20)
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It can be verified that when a/h® ¥ , the classcd micromechanica results can be recovered, as
expected. However when the particle Sze is smdl, the effective shear modulus is larger than thet in the
classcal prediction, and the effective bulk modulus will not depend on the particle Sze.

Secant moduli method for micropolar composites

In order to determine the overdl nonlinear property of a micropolar composite, the same approach asin
the dasscad micromechanics discussed previoudy may be employed. The key point is to evduate the
secant moduli of the nonlinear micropolar matrix as a function of the applied load S ¥™. To this end, we

congder a linear comparison micropolar composite M <" characterized locdly by the compliance tensors
M *,R*. Suppose that the locd materid compliances have the variations dM °, dR®, these will lead to the

variations of the loca stress, couple stress and the macroscopic compliance of the composite ds , dm and
dM <" . Thenfrom equation (19), we have [16,17]

<s:dM®:s +m:dR*:m>=S¥":dM . :S¥", (22)
Now only the following variations dnj,db,,dg; of the matrix are considered, then from eguation (21), the

average equivalent giress of the matrix in the linear comparison micropolar composite defined by equation
(16) can be obtained

S—:Jl ‘ﬂMs JIMT M

S 3”5 ( - 5 ) ST (22)
1- C @ ﬂbo ﬂgo H

With the ad of the effective moduli given by equations (6, 20), the yidd function of a micropolar
composite can then be estimated from equation (22) by setting s « =s , (s, istheinitid yield stress of the
matrix). When the matrix materid has undergone a plastic deformation, the secant moduli method can be
utilized to determine the overdl nonlinear stress and srain relation of the composite, the method is the same
as explained in the dlasscd micromechanics,

The capacity of the present modd can be illustrated by the following examples, only particulate
composites are conddered. The influence of the mechanicd property and the gze of the particle on the

inid  yiedld surface is shown in Fgl 1 (S = 38(”)8(”)/2, S =S;i). In the computation,
Ko/my=0.5Ky/my =253, ¢, =30%, and for the common particles m / my = K; / Ky =10.
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Fg. linitid yidd surface of composites Fig. 2 comparison between theory and experiment

Two particle Szes are examined a =1,,, a =100l ,,,, corresponding the outer and inner lines for each
classs of the particle in figure 1 For a =100l,,, the proposed theory is in fact reduced to the classca
micromechanica method, however if the particle Sze is comparable to the matrix characterigtic length [,
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a 9ze-dependent initid yidd stress is observed. This 9ze-dependence is more pronounced for a pure shear
loading and for hard particles. The comparison between the modding and the experimental results
conducted by Kouzeli and Mortensen[9] is shown in Fig. 2 for different paricle szes and volume
concentrations, the following materid constants are usad in the modding: K; /Ky =3.71, m /my = 6.52,

Ko/ my =261, kg/my =05 and |, =4.2mm. Four sets of composite samples are examined, with the
particle diameter 2a and the volume fraction ¢, separately given by: (45mm, 0.39), (9.3mm, 0.54),
(29.2mm, 0.461) and (58 mm, 0.475). An excdlent corrdation exists between the modding and the
experimental observation

Smilar to the case in the dlassica micromechanics, the proposed secant moduli method based on second
order stress and couple stress moments can aso have a variationd interpretation of the Ponte Castafieda s
type, which can be written in the following form
—_ e A s N N
Wer ® War © sp @V (M5, R%,S9™)- & ¢, spwis ,m)- w, (s, m)]j. 23)

e u

" M3,R® r=1 "s,m
wherew, is the stress potentid of the nonlinear phase r, and W is the stress potentid for a linear

micropolar material associated with the phaser. ¢, isthe volume fraction of the phaser. W °isthe effective

sress potentia of a linear comparison composite, characterized locally by stress potentids Wy . W is
the stress potential of the nonlinear composite.

Discussion and Summary

There are, of cause, different approaches to include the size effect in amicromechanica formulation: firstly
different high order materid modes can be utilized for the condtituent materids, for example strain gradient
theory[12] or gradient plasticity[18]; or a more radicaly different approach which incorporates the
interfacia energy. The main problem encountered in the high order theory is the determination and
interpretation of the high order nmeterial constants, more fundamental works are still needed to clarify these
points.

To summarize, we have discussed some homogenization methods applied for two different length scale
conditions, the first one is for the case where the particle szeis very large compared to the characteristic
length of the matrix, the second one is that the microstructure of the matrix materia cannot be neglected.
The nonlocd nature of the coarse-grain structure of the matrix is modeled by a micropolar modd, secant
moduli method and Ponte Castarieda’ s variational method are extended to micropolar composites, particle
Sze effects are then well captured andyticdly.
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