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ABSTRACT 
In this paper, an elastic metamaterial made of lead cylinders coated with elliptical rubbers in an epoxy matrix is 
considered, and a new multi-displacement microstructure model is proposed to capture the dipolar resonant motion. In 
the formulation, additional displacement and kinematic variables are introduced to describe global and local 
deformations, respectively. For the chiral metamaterial, one more rotation variable is needed. The macroscopic 
governing equations of the two-dimensional elastic metamaterial are explicitly derived. To verify the multi-displacement 
model, the wave dispersion curves from the current model are compared with those from the finite element simulation 
for wave propagation. The good agreement is observed in both the longitudinal and transverse wave modes. 
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1. INTRODUCTION 
 
Metamaterials are a new class of ordered composites that exhibit exceptional electromagnetic, optic and mechanical 
properties not readily observed in nature [1, 2]. Although electromagnetic (EM) and acoustic metamaterials have been 
studied intensively, elastic metamaterials have received much less attention, despite the fact that elastic metamaterials 
offer richer behaviors as they enable both longitudinal and transverse waves to propagate. Various novel concepts and 
engineering applications of elastic metamaterials have been successfully demonstrated such as mechanical filters, sound 
and vibration isolators, elastic waveguides and energy harvesting [3-8]. 
 
To understand global wave mechanism in elastic metamaterials, the most important and efficient approach is 
homogenization. For isotropic elastic metamaterials, conventional homogenization will result in three independent 
effective parameters: effective mass density, effective bulk modulus and effective shear modulus. Until now, several 
homogenization methods have been developed to model this kind of materials as effective homogeneous elastic media. 
Those methods include the plane wave expansion (PWE) technique, the coherent potential approximation (CPA), the 
micromechanics analytical model or multiple scattering theory (MST) based on the long-wavelength limit [9-16]. By 
requiring only the wavelength in the matrix to be much larger than the size of the microstructures, the extension of the 
CPA or effective medium theory (EMT) was further developed to predict the effective properties of the elastic 
metamaterials [17]. However, these analytical methods are mainly based on the analytical scattering solution of 
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microstructures with simple geometries (sphere or cylinder). To achieve the desirable effective properties, elastic 
metamaterials with complex microstructures or microstructure arrangements must be designed. For nonelementary 
microstructure geometries, an exact analytical model is not practicable and computational techniques should be 
suggested such as the multiple multipole (MMP) method [18], lumped mass method [19], and finite difference method 
[20]. For the acoustic metamaterial, the anisotropic effective mass density can be achieved by changing position or 
distribution array of the microstructure in the unit cell [21, 22]. However, for the elastic metamaterial, the microstructure 
geometry should be properly designed to obtain the anisotropic effective mass density [23-26]. A 2D elastic resonator of 
arbitrary geometry was systematically studied through a finite element modal analysis [27]. Gu et al. [28] investigated 
local resonance modes of elliptic cylinders coated with silicon rubber in a rigid matrix to obtain the anisotropic effective 
mass density. However, most of these methods mainly focus on understanding of local resonant mechanism. Practically, 
one may want to predict dynamic behavior of the elastic metamaterial by using an effective continuum model, wherein 
effects of the microstructure are included in effective properties and/or in macro-dynamics equations. The obtained 
macro-dynamics equations can be applied to problems of time-dependent vibration and transit wave propagation in the 
finite and infinite structures, which is important for potential engineering applications of metamaterial devices. However, 
continuum homogenization of elastic metamaterials with complex microstructures is a challenging task. 
 
Until now, few efforts have been made to study the effective properties beyond the quasi-static limit or in higher 
frequency regions, although some interesting wave phenomena occur only when the wavelength is comparable to the 
lattice scale. To describe wave propagation problems with wavelengths in an order of dimensions of microstructures, 
Wozniak [29] proposed a non-asymptotic approach of macro-dynamics modeling of composite. Milton and Willis [30] 
and Milton [31] presented a rigorous theoretical foundation for the dynamic effective parameters of the elastic 
metamaterial beyond the quasi-static limit. The microscale effects due to non-local behavior were explained by the 
modification of linear continuum elastodynamic equations. Similar efforts have been made through work on 
metamaterials with a macroscopic higher order gradient or non-local elastic response [32]. An alternative approach is to 
employ additional kinematic variables to describe the nonhomogeneous local deformation in the microstructure of the 
solid. This approach leads to Cosserat continuum models [33, 34] or micropolar models [35, 36] or strain gradient theory 
[37] or the microstructure continuum theory [38, 39]. Microstructure continuum theory has recently been adopted to 
describe global dynamic behavior of isotropic elastic metamaterials with discrete microstructures (a mass-spring system) 
[40] and of anisotropic elastic metamaterials with continuous media [41]. Accuracy of the model was verified by 
comparison with the results obtained from the finite element method. However, the microstructure continuum model or 
high-order continuum model has a difficulty to capture the dipolar motion, in which the inner inclusion moves out of 
phase with respect to motion of the matrix in elastic metamaterials. Additional displacement variables are needed to 
capture the dipolar motion. 
 
In this paper, an elastic metamaterial made of lead cylinders coated with elliptical rubbers in an epoxy matrix is 
considered. To analytically obtain global governing equations of motion in the elastic metamaterial, the complex 
continuous microstructure is simplified to a discrete mass-spring system based on strain energy equivalence. Based on 
the simplified system, a new multi-displacement microstructure theory is developed to capture both dipolar local 
resonant motion and microstructure deformation by introducing both multi-displacement variables and 
micro-deformation variables, which are not considered in the conventional continuum model. For the chiral metamaterial, 
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one more rotation variable is needed. The macroscopic governing equations of the two-dimensional elastic metamaterial 
are explicitly derived. To verify the multi-displacement model, the wave dispersion curves from the current model are 
compared with those from the finite element simulation for wave propagation. The good agreement is observed in both 
the longitudinal and transverse wave modes. 
 

2. A multi-displacement microstructure model for 2D metamaterial 
 
In this study, an anisotropic elastic metamaterial made of heavy cylinder cores coated with elliptical soft layer and 
embedded in a matrix is considered, as shown in Fig. 1(a), and its representative volume element (RVE) is identified in 
Fig. 1(b). The microstructure is distributed in a rectangular lattice array. In the figure, the hard inclusion core is labeled 
as medium 1, the soft coating medium is labeled as medium 2, and the matrix is labeled as medium 3. The isotropic 
material constants of the inclusion core, the coating layer and the matrix are ߩଵ, ,ଵܧ ,ଶߩ	;ଵߥ ,ଶܧ ଶߥ  and ߩଷ, ,ଷܧ  ,ଷߥ
respectively. The radius of the core is ܽ. The lattice constants along the ܺଶ and ܺଷ directions are denoted as ݀ଶ and ݀ଷ. The semimajor and semiminor axes of the ellipse are denoted as ܾଵand ܾଶ, respectively. In the unit cell (݇, ݈), 
position of the center point is given in the global coordinate ܺଶ = ܺଶ௟ and ܺଷ = ܺଷ௞. For convenience, we define a 
local polar coordinate system (ݎ, ,ଶݔ) as well as a local Cartesian coordinates (ߠ ଶݔ ଷ)in the unit cell withݔ =  ߠݏ݋ܿݎ
and ݔଷ = as shown in Fig. 1(b). Strong anisotropic properties of the metamaterial along the ܺଶ ,ߠ݊݅ݏݎ  and ܺଷ 
directions can be achieved by adjusting dimensions of the major and minor axes of the coating ellipse.  

a. b.    

Fig. 1. (a) An anisotropic elastic metamaterial made of cylinders coated with elliptical soft layer in a matrix; (b) 
The(݇, ݈) element (RVE). 

 
2.1 A simplified model of the elastic metamaterial 
For the elastic metamaterial with the complicated microstructure geometry shown in Fig.1, analytical-based 
homogenization approaches have difficulties to find the exact local scattering wave field. In this study, the RVE with the 
continuous microstructure is first simplified to the RVE with a discrete mass-spring microstructure with spring constants ܭଶ and ܭଷ, as shown in Fig. 2 [30], based on the strain energy equivalence between the two systems. The inclusion core 
is reduced as a rigid mass ݉ଵ =  ଶܭ ଶ and the coating material is replaced by the springs with the spring constantsܽߨଵߩ
and ܭଷ because of the large stiffness mismatch between the core and the coating material. The spring constants ܭଶ and ܭଷ can be numerically determined as ܭఈ = ߙ ఈ withߛ/ఈܨ = 2,3, where ܨఈ is the restoring force on the outer fixed 
boundary of the coating layer and ݑఈ =  .ଷ directions of the coating layerݔ ଶ andݔ ఈ is the applied displacement alongߛ
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For the general geometry of the coating layer, the problem can be numerically solved by using finite element method 
(FEM). 

 

Fig. 2. The equivalent RVE for the (݇, ݈) element of the elastic metamaterial. 
 
2.2 A multi-displacement microstructure model 
In this subsection, a new homogeneous high-order continuum theory will be proposed to homogenize the simplified 
elastic anisotropic metamaterial, as shown in Fig. 3. For the elastic metamaterial, the inner mass will move out-of-phase 
with respect to the motion of the composite when the frequency is close to the resonant frequency of the inner mass, 
which is called the dipolar motion. The schematic illustration of the dipolar motion in the elastic metamaterial near the 
resonant frequency is shown in Fig. 4.   
 

 

Fig.3. Heterogeneous medium replaced by a homogeneous medium. 

 

Fig.4. A schematic illustration of dipolar motion in the metamaterial near the resonant frequency. 
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The conventional continuum model cannot capture the dipolar motion, therefore, a continuum model with additional 
multi-displacement variables should be introduced. Specifically, attention is also paid to the problem with wavelengths 
in an order of the dimension of the unit-cell. To describe the relative high-frequency dynamic behaviors, microstructure 
kinetic variables are also needed. In the formulation, we assume the lead core is rigid because of its high modulus and 
the local displacements in the matrix can be approximated by linear series expansions in terms of quantities which are 
defined at the center of the element. The micro-deformations are assumed as follows: 
 
(1) In the inclusion of the cell (݇, ݎ) ,(݈ < ܽ) ࢛ଵ = ഥ࢛                                                                                     (1a) 
(2) In the matrix of the cell (݇, ݎ) ,(݈ ≥ തܾ) ࢛ଷ = ഥ࢜ + തܾ઴૛દ + ൫ݎ − തܾ൯઴૜દ	                                                                (1b) 
where ࢛ଵ = ଶଵ(௞,௟)ݑൣ ,ଷଵ(௞,௟)൧்ݑ ഥ࢛ = തଶ(௞,௟)ݑൣ   ,തଷ(௞,௟)൧்ݑ

࢛ଷ = ଶଷ(௞,௟)ݑൣ ,ଷଷ(௞,௟)൧்ݑ ഥ࢜ = ଶ(௞,௟)ݒ̅ൣ ,ଷ(௞,௟)൧்ݒ̅ દ = ሾܿߠݏ݋   ,ሿ்ߠ݊݅ݏ

઴૛ = ቈ߶ଶଶଶ(௞,௟) ߶ଷଶଶ(௞,௟)߶ଶଷଶ(௞,௟) ߶ଷଷଶ(௞,௟)቉ , ઴૜ = ቈ߶ଶଶଷ(௞,௟) ߶ଷଶଷ(௞,௟)߶ଶଷଷ(௞,௟) ߶ଷଷଷ(௞,௟)቉ , തܾ = ௕భ௕మට௕భమ௦௜௡మఏା௕మమ௖௢௦మఏ.  

where ഥ࢛, ഥ࢜, ઴૛,઴૜are global variables in functions of (ܺଶ, ܺଷ,  the local displacements ࢛ଵ and ࢛ଷ are functions of ,(ݐ
(ܺଶ, ܺଷ, ,ଶݔ ,ଷݔ ,or in other words, functions of (ܺଶ ,(ݐ ܺଷ, ,ݎ ,ߠ  Physical interpretation of the terms in Eq. (4) is that .(ݐ
global displacements ഥ࢛ and ഥ࢜ are the displacements of the center of the inclusion and the center of the matrix, 
respectively; while ઴૛ represents micro-deformation in the area within the inner boundary of the matrix, and ઴૜ 
represents micro-deformation in the matrix. It should be mentioned that the additional displacement components are 
necessary to capture the dipolar motion in the metamaterial, which is different from the microstructure continuum theory 
[39]. In the microstructure continuum theory, additional microstructure variables were only introduced to capture the 
micro-deformation in the microstructure. 
 
In principle, the boundary condition between the unit-cell and the neighboring cells should be satisfied on every point of 
the boundaries. However, the approximated local field, assumed in Eq. (1b), cannot exactly satisfy the point-to-point 
continuity at the boundaries. In this study, relaxation boundary continuity conditions, which are defined as averaged 
displacement continuity conditions at the interfaces of the cells, are suggested as: ׬ ൤ݑఈଷ(௞ାଵ,௟)|௫యୀି೏యమ − ఈଷ(௞,௟)|௫యୀ೏యమݑ ൨ ଶௗమ/ଶିௗమ/ଶݔ݀ = 0                                                   (2a) 

׬ ൤ݑఈଷ(௞,௟ାଵ)|௫మୀି೏మమ − ఈଷ(௞,௟)|௫మୀ೏మమݑ ൨ ଷௗయ/ଶିௗయ/ଶݔ݀ = 0                                      (2b) 

where ݑఈଷ(௞ାଵ,௟) and ݑఈଷ(௞,௟ାଵ) represent displacement components of the matrix in the cells (݇ + 1, ݈) and (݇, ݈ + 1). 
Eq. (2a) represents the averaged displacement continuity on the boundary between the cell (݇, ݈) and the cell (݇ + 1, ݈); 
and Eq. (2b) represents the averaged displacement continuity on the boundary between the cell (݇, ݈) and the cell 

Proc. of SPIE Vol. 8348  834825-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/12/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



(݇, ݈ + 1). This approximate is more reasonable for relatively low frequency cases. Substituting the local displacement in 
the matrix Eq. (1b) into Eq. (2a) results in ̅ݒఈ(௞ାଵ,௟) − ఈ(௞,௟)ݒ̅ − ௕భௗయௗమ ln ൬ଵାඥଵାకమక ൰ ൫߶ଷఈଶ(௞ାଵ,௟) − ߶ଷఈଷ(௞ାଵ,௟) + ߶ଷఈଶ(௞,௟) − ߶ଷఈଷ(௞,௟)൯ − ௗయଶ ൫߶ଷఈଷ(௞ାଵ,௟) + ߶ଷఈଷ(௞,௟)൯ = 0  (3a) 

where ߦ = ௕భௗయ௕మௗమ.  

Similarly, another continuous condition can be obtained from Eq. (5b) as ̅ݒఈ(௞,௟ାଵ) − ఈ(௞,௟)ݒ̅ − ௕మௗమௗయ ln൫ߦ + ඥ1 + ଶ൯ߦ ൫߶ଶఈଶ(௞,௟ାଵ) − ߶ଶఈଷ(௞,௟ାଵ) + ߶ଶఈଶ(௞,௟) − ߶ଶఈଷ(௞,௟)൯ − ௗమଶ ൫߶ଶఈଷ(௞,௟ାଵ) + ߶ଶఈଷ(௞,௟)൯ = 0(3b) 

The corresponding local strain in the matrix can be obtained as ࢿଷ = ∇⨂࢛ଷ                                                                                  (4) 

where	∇ is the differentiation operator in the local coordinate system (ݔଶ, ଷࢿ ,(ଷݔ = ൥ߝଶଶଷ(௞,௟) ଷଶଷ(௞,௟)ߝଶଷଷ(௞,௟)ߝ  ଷଷଷ(௞,௟)൩ is the strain tensorߝ

of the matrix. 
 
Based on the displacement expressions in Eq. (1), the total kinetic energy density in the cell (݇, ݈) can be calculated as 

௔ܶ௩௘(௞,௟) = ଵ஺೎ (ܶଵ(௞,௟) + ܶଷ(௞,௟))                                (5) 

where ܶଵ(௞,௟) and ܶଷ(௞,௟) are the kinetic energies in the inclusion and matrix, respectively.  
On the other hand, the strain deformation energy in the spring within the cell (݇, ݈) can be obtained as ܹ௦(௞,௟) ଶܭ = ቂ൫̅ݒଶ(௞,௟) − തଶ(௞,௟)൯ଶݑ + ൫ܾଵ߶ଶଶଶ(௞,௟)൯ଶ + ൫ܾଵ߶ଷଶଶ(௞,௟)൯ଶቃ + ଷܭ ቂ൫̅ݒଷ(௞,௟) − തଷ(௞,௟)൯ଶݑ + ൫ܾଶ߶ଷଷଶ(௞,௟)൯ଶ + ൫ܾଶ߶ଶଷଶ(௞,௟)൯ଶቃ     (6) 

and the strain deformation energy in the matrix for the plane stress problem is ܹ௠(௞,௟) = ாయଶ(ଵିఔయమ)∬ ቂ൫ߝଶଶଷ(௞,௟)൯ଶ + ൫ߝଷଷଷ(௞,௟)൯ଶ + ଷଷଷ(௞,௟)൯ߝଶଶଷ(௞,௟)൯൫ߝଷ൫ߥ2 + 2(1 − ଶଷଷ(௞,௟)൯ଶቃ஺యߝଷ)൫ߥ  ଷ             (7)ܣ݀

The total strain deformation energy averaged over the volume of cell (k, l) yields 

௔ܹ௩௘(௞,௟) = ଵ஺೎ ൫ܹ௦(௞,௟) + ܹ௠(௞,௟)൯                                  (8) 

To obtain a continuum model, we now introduce fields that are continuous in the global coordinate system ܺଶ and ܺଷ, 
and the values at ܺଶ = ܺଶ௟  and ܺଷ = ܺଷ௞ coincide with those in the actual micro (local) field variables at the center of 
the cell. Therefore, we can consider the strain energy density ܹ(ܺଶ, ܺଷ, ,and the kinetic energy density ܶ(ܺଶ (ݐ ܺଷ,  (ݐ
as continuous functions. Based on Eq. (5), the kinetic energy density ܶ(ܺଶ, ܺଷ, ,in the continuum field is ܶ(ܺଶ (ݐ ܺଷ, (ݐ = ௔ܶ௩௘(௞,௟) = ଵ஺೎ (ܶଵ(௞,௟) + ܶଷ(௞,௟))                                           (9) 

and the strain energy density ܹ(ܺଶ, ܺଷ, ,is ܹ(ܺଶ (ݐ ܺଷ, (ݐ = ௔ܹ௩௘(௞,௟) = ଵ஺೎ ൫ܹ௦(௞,௟) +ܹ௠(௞,௟)൯                                       (10) 

At the same time, the continuity conditions in Eq. (3) can be written in the terms of continuous variables by considering 
the field variables as continuous functions of ܺଶ and ܺଷ, as 
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ܵଷఈ(ܺଶ, ܺଷ, (ݐ = డ௩തഀడ௑య − ଶ௕భௗమ ln ൬ଵାඥଵାకమక ൰ ቀ߶ଷఈଶ − ߶ଷఈଷ + ௗయଶ డథయഀమడ௑య − ௗయଶ డథయഀయడ௑య ቁ − ߶ଷఈଷ − ௗయଶ డథయഀయడ௑య = 0             (11a) 

ܵଶఈ(ܺଶ, ܺଷ, (ݐ = డ௩തഀడ௑మ − ଶ௕మௗయ ln൫ߦ + ඥ1 + ଶ൯ߦ ቀ߶ଶఈଶ − ߶ଶఈଷ + ௗమଶ డథమഀమడ௑మ − ௗమଶ డథమഀయడ௑మ ቁ − ߶ଶఈଷ − ௗమଶ డథమഀయడ௑మ = 0          (11b) 

where ߙ = 2,3.  
Considering a fixed regular region ܸ of the medium, the displacement equations of motion can be obtained by 
employing Hamilton’s principle for independent variables in ܸ and a specified time interval ݐ଴ ≤ ݐ ≤ ߜ ଵasݐ ׬ ׬ ௏௧భ௧బܸ݀ݐ݀ܨ + ׬ ߜ ଵܹ݀ݐ௧భ௧బ = 0                                                    (12) 

where ܨ = ܶ ߜ ,ܹ− ଵܹis the variation of the work done by external forces, and ܸ݀is the scalar volume element. For 
the current model, there are no existing external forces and the continuity conditions can be considered as subsidiary 
conditions through the use of Lagrangian multipliers, so the problem can be redefined as ߜ ׬ ׬ ௏௧భ௧బܸ݀ݐ݀ܨ = 0                                                  (13) 

With ܨ = ܶ −ܹ − ∑ (Γଶఈܵଶఈ + Γଷఈܵଷఈ)ଷఈୀଶ                                          (14) 
where the Lagrangian multipliers Γଶఈ and Γଷఈare functions of ܺଶ, ܺଷ and ݐ. Since the function ܨ as given in Eq. (14) 
depends only on the global field variables (ܺଶ, ܺଷ,  and their first order derivatives, the system of the Euler equations (ݐ
can be written as ∑ డడ௣ೝ ቈ డிడቀങ೑ೞങ೛ೝቁ቉ − డிడ௙ೞଷ௥ୀଵ = 0                                                     (15) 

where ௦݂ ݏ) = 1,2, … ,16) represent the sixteen dependent variables ݑതఈ ఈݒ̅ , , 	߶ଶఈଶ , ߶ଷఈଶ , ߶ଶఈଷ , ߶ଷఈଷ , Γଶఈ  and Γଷఈ 
ߙ) = 2,3); and ݌௥ (ݎ = 1,2,3) are the spatial variables ܺଶ, ܺଷ and time variable ݐ. A system of sixteen governing 
equations of motion can be obtained from the Eq. (15).  
 
2.3 Multi-displacement microstructure modeling for the chiral metamaterials 
 
The chiral metamaterials are the periodical structure similar to the sketch shown in Fig.1, except that the springs are no 
longer vertical or horizontal, but inclined to form a chiral structure. The number of springs which inclined to connect the 
core and the matrix is ܰ, which is an even number. And the elastic constant of the springs is ܭ௦. The representative 
volume element (RVE) with ܰ = 6 springs are shown in Fig. 5. 
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Fig. 5. The RVE for the (݇, ݈) element of the chiral metamaterials. 
 
Because of the additional displacement motion of the inner core, the additional rotation variable is needed. The 
micro-deformations are assumed as follows: 
(3) In the inclusion of the cell (݇, ݈), (r<a) 

Displacement  ࢛ଵ = ഥ࢛  
Rotation ഥ࣐   

(4) In the matrix of the cell (݇, ݈), (r≥ ܾ) ࢛ଷ = ഥ࢜ + തܾ઴૛દ + ൫ݎ − തܾ൯઴૜દ	                                                           (16) 
Where the global variable ഥ࣐  indicates the rotation of the inner core and is in functions of (ܺଶ, ܺଷ,   .(ݐ
the strain deformation energies in the springs can be obtained as  ܹ௦(௞,௟) =ଵଶ ௦ܭ ∑ ቄܥଵଶൣ̅ݒଵ(௞,௟) + ଶ߶ଵଵଵ(௞,௟)ܥܾ + ܾܵଶ߶ଶଵଵ(௞,௟) − തଵ(௞,௟)ݑ − ଵܥܽ ത߮(௞,௟)൧ଶ + Sଵଶൣ̅ݒଶ(௞,௟) + ଶ߶ଵଶଵ(௞,௟)ܥܾ + ܾܵଶ߶ଶଶଵ(௞,௟) − തଶ(௞,௟)ݑ −ே௡ୀଵ
ܽSଵ ത߮(௞,௟)൧ଶ + ଵ(௞,௟)ݒଵSଵൣ̅ܥ2 + ଶ߶ଵଵଵ(௞,௟)ܥܾ + ଶ߶ଶଵଵ(௞,௟)ܵݏܾ − തଵ(௞,௟)ݑ − ଵܥܽ ത߮ (௞,௟)൧ൣ̅ݒଶ(௞,௟) + ଶ߶ଵଶଵ(௞,௟)ܥܾ + ܾܵଶ߶ଶଶଵ(௞,௟) − തଶ(௞,௟)ݑ −ܽSଵ ത߮(௞,௟)൧ቅ  

(17) 

Where ߚ = గଶ + ߟ − arccos	(௔௕), ܰ is the number of the springs. ܥଵ = ݏ݋ܿ ቀ(݊ − 1) ଶగே + ቁ, Sଵߟ = ݊݅ݏ ቀ(݊ − 1) ଶగே +
ଶܥ .ቁߟ = ݏ݋ܿ ቀ(݊ − 1) ଶగே + ቁ, ܵଶߚ = ݊݅ݏ ቀ(݊ − 1) ଶగே +  ቁߚ

Following the same procedure in section 2.2, the 17 governing equations with 17 variables can be obtained.  
 

3. Modal Verification 
 
To verify the proposed continuum model, let us first consider a two-dimensional elastic metamaterial with a cylinder 
heavy core coated with a circular soft layer and embedded in matrix in a square lattice array. The microstructure 
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geometry parameters are listed in Table 1 and the material parameters are provided in Table 2. Based on the simplified 
model for the continuous systems, spring constants for the 2D plane stress problem with the circle coated metamaterial 
can be numerically determined as ܭଶ = ଷܭ = 1.184 × 10଻ܰ/݉ . It should be mentioned that for the current 
microstructure geometry, when the coating material is incompressible (the Poisson’s ratio of the coat material ߥଶ is 
about 0.5), the analytical solution for the spring constants [42] is also available as ܭଶ = ଷܭ ≅ସ଴గఓమ(௔మା௕మ)ଶହ(௔మା௕మ) ୪୬(௕ ௔⁄ )ିଽ(௕మି௔మ)	,	where ߤଶ is the shear modulus of the coating material ߤଶ = ாమଶ(ଵାఔమ). The good agreement 

about the spring constant’s prediction between the two methods shows the accuracy of the current numerical method. 
 

Table 1. The microstructure geometry parameters. 
Lattice parameters Elliptical coat Circle coat ݀ଶ = ݀ଷ ܽ ܾଵ ܾଶ 

20݉݉ 3݉݉ 7݉݉ 5݉݉ 

20݉݉ 5.155݉݉ 7.14݉݉ 7.14݉݉ 
 

Table 2.The constituent material parameters. 
The parameters Core: lead Coating: rubber Matrix: epoxy 

Mass density ߩଵ: 11.31 × 10ଷ ݇݃ ݉ଷ⁄ :ଶߩ  0.92 × 10ଷ ݇݃ ݉ଷ⁄ :ଷߩ  1.11 × 10ଷ	݇݃ ݉ଷ⁄  
Young’s modulus ܧଵ: 1.3 × 10ଵ଴ ܰ ݉ଶ⁄ ଶ:1.5ܧ  × 10଺ ܰ ݉ଶ⁄ :ଷܧ  2.35 × 10ଽ	ܰ ݉ଶ⁄  
Poisson’s ratio ߥଵ: :ଶߥ 0.435 :ଷߥ 0.499 0.38 
Area ܣଵ: :ଶܣ ଶܽߨ ଵܾଶܾ)ߨ − ܽଶ) ܣଷ: ݀ଶ݀ଷ −  ଵܾଶܾߨ

 
For a longitudinal wave propagation along ܺଶ direction in the metamaterial with infinite dimension in ܺଷ direction, the 
available kinematic variables include multi-displacement variables ݑതଶ, ଶ, the microstructure field variables ߶ଶଶଶݒ̅ , ߶ଶଶଷ  
and the Lagrangian multiplier Γଶଶ. Therefore, five governing equations can be obtained. For the longitudinal wave 
propagating along ܺଶ direction, the continuum wave fields can be defined as ሼݑതଶ, ,ଶݒ̅ ߶ଶଶଶ , ߶ଶଶଷ , Γଶଶሽ = ሼܤଵ, ,ଶܤ ,ଷܤ ,ସܤ ହሽܤ expሾ݅(ݍଶܺଶ −  ሿ                                       (18)(ݐ߱
where	݅ =  ଶ is the wave-number in ܺଶ direction, and ߱ is theݍ ,ହare constant amplitudesܤ ସandܤ ,ଷܤ ,ଶܤ,ଵܤ,1−√
angular frequency. For a nontrivial set of solutions the determinant of the coefficients must vanish to yield the dispersion 
relation. The exact wave dispersion curves can also be calculated by using commercial finite element (FE) software, 
ANSYS 12.0. In the FE model, Plane-82 element is used to model the elastic medium, and Combine-14 elements are 
used to model the springs. After properly applying boundary conditions for the model, modal analysis is conducted to 
obtain the natural frequencies, from which the dispersion curve can be obtained. Fig.6(a) shows comparison of the 
normalized dispersion curves of the longitudinal wave predicted by the current multi-displacement microstructure 

continuum model, the reduced single-displacement continuum model, and the FE simulation, where ߱଴௅ = ඥ2ܭଶ ݉ଵ⁄ =5007.37 ݀ܽݎ ൗݏ  and the resonant frequency is ଴݂௅ = ߱଴௅ ⁄(ߨ2) =  The single-displacement model is reduced .ݖܪ797
from the current model by removing the additional global displacement variable. It is found that the multi-displacement 
microstructure continuum model can give excellent prediction for acoustic wave mode and is also reasonably good for 
the optic wave mode for ݍଶ݀ଶ < 0.9. The band gap behavior of the elastic metamaterial can be accurately predicted by 
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using the current model, which is very useful for the design of the desirable elastic metamaterial. It is also very 
interesting to note that the band gap behavior cannot be captured when only single-displacement (conventional) 
continuum model is adopted. This is understandable because no additional degrees of freedom are used to capture the 
local dipolar resonance phenomenon. In addition, it is noticed that the current model has difficulty in capturing the optic 
wave mode when the frequency is around ߱ ߱଴௅⁄ = 8.48 (f=6757Hz). Based on the eigenmode analysis at this 
frequency, it can be found that the resonance deformation is focus on the coating layer and no motions occur in the core 
and host matrix, which is similar to the quadrupolar resonance. To capture the quadrupolar resonance in the metamaterial, 
additional microstructure kinematic variables in the coating layer may be needed. 

a. b.  

Fig.6. (a). Comparison of the normalized dispersion curves by the current model, the reduced single-displacement model 
and the FE simulation for longitudinal wave propagation. (b). The displacement amplitude ratio of the matrix to the core 

in function of the frequency. 
 

Fig.6(b) shows the wave amplitude ratio of the matrix to the core in a function of the frequency predicted by the current 
model and the finite element method (FEM). The very good agreement between the current model and FEM is observed 
for the local displacement prediction in the elastic metamaterial, which is impossible for the conventional continuum 
models. Around ݂ =  there exists a resonance in the metamaterial in which the displacement of the core is very ,ݖܪ797
large and experiences a very sharp change from the in-phase state to the out-of-phase state. A large displacement ratio 
enhancement can be observed in the in-phase resonance region. From eigenmode analysis, we can find that the core 
inclusion moves opposite to the motion in the matrix in the band gap frequency range, which cannot be captured through 
the conventional continuum model. 
 

4. Numerical Simulation and Discussions 
 
4.1 Wave propagation in anisotropic elastic metamaterials 
 
It is well known that for isotropic metamaterials, wave propagation behavior is identical for any wave propagation 
direction. For anisotropic elastic metamaterials, wave propagation behavior is different along different directions and is 
direction-dependent. Fig. 7(a) and (b) show the comparison of the normalized dispersion curves for the transverse shear 
wave propagation along ܺଶ and ܺଷ directions for the anisotropic elastic metamaterial, respectively. In the figures, the 
material properties are the same as in Table 2. The microstructure geometry parameters are shown in Table 1 with an 
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elliptical coating medium, from which the spring constants are numerically obtained as ܭଶ = 4.93 × 10଺݇݃/݉,ܭଷ =6.45 × 10଺݇݃/݉. The resonant angular frequencies are ߱଴்ଶ = ඥ2ܭଷ ݉ଵ⁄  and ߱଴்ଷ = ඥ2ܭଶ ݉ଵ⁄ , respectively. It is 
found that the current model can provide good prediction of dispersion curves for both the acoustic wave mode and the 
optic wave mode along different wave propagation directions. The anisotropic wave propagation behavior can be 
observed from the different wave dispersion curves along different directions. From the numerical simulation, it is also 
concluded that the band gap frequency regime is within the same frequency when the effective mass density becomes 
negative, which confirms wave mechanism in the current anisotropic metamaterial is caused by the dipolar wave motion. 
 

a. b.  

Fig.7. Comparison of the normalized dispersion curves for the anisotropic metamaterial for transverse wave propagation 
(a).along ܺଶdirection; (b). along ܺଷdirection. 

 
4.2 Wave propagation in the chiral metamaterials 
 
For the chiral metamaterial (the RVE sketch is shown in Fig.5), we consider the wave propagation similarly. The springs 
constant between the inclusion and the matrix are chosen as ܭ௦ = 1 × 10଼ܰ/݉, the number is ܰ = 6, and the angle ߟ = 30°.  
For the harmonic wave propagation, the continuum wave fields can be defined as  ௦݂ = ଶܺଶݍ)ሾ݅	௦expܤ + ଷܺଷݍ − ݏ) ሿ(ݐ߱ = 1,2, … ,17)                                                (19) 
where 	݅ = √−1, ௦ܤ   are constant amplitudes, ݍଶ, ଷݍ  are the wavenumbers, and ߱  is the angular frequency. 
Substitution of (19) into the equations of motion yields 17 homogeneous equations for ܤ௦. For a nontrivial set of 
solutions the determinant of the coefficients must vanish to yield the dispersion relation. Fig.8 shows a comparison of the 
dispersion curves of the wave predicted by the current multi-displacement microstructure model and the finite element 
simulation (FE simulation) in the Irreducible Brillouin Zone. We can clearly see that the multi-displacement theory can 
capture the low-frequency dispersion. For the higher frequency, our current model is failed to capture the transverse 
because the rotation and the shear mode are uncoupled in our current model while they are coupled in real wave 
propagation (Ansys simulation). The most important feature of the dispersion curves is that there is an additional band 
(the 3rd band) which is neither longitudinal nor transverse. The existence of the rotation of the core can explain the 
additional 3rd band. Fig.9 shows the effective mass of the chiral metamaterial through the Ansys method, where ݉଴ = ݉ଵ + ݉ଷ = ଶܽߨଵߩ + ଷ(݀ଶ݀ଷߩ − ݂ ଶ) is the static mass of the unit-cell. The frequency rangeܾߨ = 2kHz~7kHz 
is shown and the negative mass band if corresponding to the band gap of the dispersion curves shown in Fig.8.  
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Fig.8. The dispersion curves in the first Brillouin Zone 

 

Fig.9. The effective mass of the chiral metamaterial  

 
 

5. CONCLUSION 
In this paper, an elastic metamaterial made of lead cylinders coated with elliptical rubbers in an epoxy matrix is 
considered. To describe global dynamic behavior in the elastic metamaterial, a new multi-displacement microstructure 
continuum model is developed to obtain the macroscopic governing equations of the anisotropic elastic metamaterial. 
Especially, one more variable is needed to describe the rotation of the core for the chiral metamaterial. The current 
model is verified through comparison of wave dispersion curves predicted by the current model and the finite element 
simulation. Very good agreement is observed in both the acoustic and optic wave modes. The proposed model may 
provide an efficient tool for modeling of the elastic metamaterial with complex microstructures. 
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