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ABSTRACT 

One of the significant engineering applications of the elastic metamaterial is for the low-frequency vibration 

absorption because of the existence of low-frequency bandgaps. However, the forbidden gap from existing elastic 

metamaterials is of narrow bandwidth which limits their practical engineering application. In this paper, a chiral-

lattice-based elastic metamaterial beam with multiple resonators is suggested for the broadband vibration 

suppression by overlapping their resulting bandgaps. First, a theoretical modeling of the metamaterial beam with 

periodically multiple resonators is performed for bending wave propagation. The wave interaction between the 

multiple resonators is found to generate new passbands, which is a barrier to form a complete bandgap. To address 

this issue, a section distribution of the multiple resonators is suggested to diminish the interaction. Finally, the 

chiral-lattice-based metamaterial beam is fabricated and experimental testing of the structure is conducted to 

validate the proposed design. This work can serve as a theoretical and experimental foundation of the broadband 

vibration suppression by using the metamaterial structure in practical engineering applications. 
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1. INTRODUCTION 

Elastic Metamaterials (EMMs) have gained much attention due to their unique microstructure design to achieve the 

effective elastic material properties which cannot be observed in nature [1]. The working principle of the EMM is to 

use man-made microstructures (resonators) on a scale much less than its working wavelength. As a result, a low-

frequency bandgap can be observed in an EMM with small dimensions, within which the wave energy cannot 

propagate and is trapped in the resonator. The unusual low-frequency bandgaps in such a composite were explained 

by the locally resonant (LR) mechanism, which can be homogenized as the negative effective mass density of the 

composite through equivalent discrete mass-spring systems [2-5].  
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Because of the existence of low-frequency bandgaps, one of the significant engineering applications of the EMM is 

for the low-frequency vibration absorption. Different from the Bragg scattering mechanism in phononic crystals [6, 

7], the LR mechanism could be easily tuned through proper microstructure design, and low-frequency vibration 

energy could be quickly attenuated within only a small amount of the periodic microstructures [8]. Therefore, no 

gigantic meta-structure is needed to shield structural subject from the low-frequency vibration or wave loading. 

Engineering structures such as rods, beams and plates with desired LR microstructure design can be implemented 

for vibration suppression. Xiao et al. [9] investigated wave propagation and vibration transmission in elastic rods 

containing periodically attached multi-degree-of-freedom spring–mass resonators. Yu et al. [10] studied the flexural 

wave propagation in a beam with many spring-mass subsystems as bending wave absorbers. Chen et al. [11] 

analytically and experimentally studied the dynamic behavior of a sandwich beam with internal mass-spring 

resonators. However, the forbidden gap from the current metamaterial design is often of narrow bandwidth, which 

significantly limits its potential engineering application. To address this problem, band gaps in a multi-resonator 

acoustic metamaterial were investigated [12]. It was found that the band gaps can be tuned by varying the physical 

parameters of the internal resonators. Pai [13] theoretically demonstrated that the longitudinal broadband wave 

absorption can be achieved in a bar structure with distributed absorbers related to different frequency stop bands in 

different sections. However, these microstructure designs, mainly as mass-spring systems, are conceptual and far 

from reality, and they are not practical to be manufactured as load-bearing engineering structures. A chiral-lattice-

based metacomposite beam was recently proposed by integrating two-dimensional periodic chiral lattice with EMM 

inclusions for low-frequency wave applications [14]. The vibration absorption function was demonstrated through 

the numerical analysis of the band diagram. The major advantage of the proposed beam is that the significant wave 

attenuation is localized within the structure, which requires no additional components. Additionally, the chiral 

structure beam can still be made from stiff and high strength materials so as not to sacrifice load-bearing capacity. 

To design the chiral-lattice-based metamaterial for vibration absorption in a broad frequency regime, the 

metamaterial beam with multiple inner resonators should be properly designed.  

 

In this paper, a chiral-lattice-based EMM beam with multiple resonators is numerically and experimentally studied 

for the broadband vibration suppression by overlapping their resulting bandgaps. First, based on the transfer matrix 

method, a theoretical modeling of a metamaterial beam with multiple resonators is performed for bending wave 

propagation. The wave interaction between the multiple inner resonators is observed, which can result in undesired 

new wave passbands for a complete bandgap. A distributed section design of multiple resonators is thus suggested to 

diminish the resonator interaction to achieve broadband vibration suppression. Finally, the chiral-lattice-based 

metamaterial beam is fabricated and experimental vibration testing of the structure is conducted to validate the 

proposed design.  

2.  BENDING VIBRATION IN A BEAM WITH MULTIPLE RESONATORS  

The band structure of bending vibration in a beam with a single LR structure has been investigated based on the 

transfer matrix theory [15]. In the study, we extend this method to determine the band structure of bending vibration 

of a beam with multiple resonators. Attention will be paid on the new passing band generated because of the 

interaction among multiple resonators. To clearly illustrate the problem, a simple model of a beam with periodical 

multiple LR units is studied as shown in Fig. 1 (a). Each unit consists of   subsystems in which mass-spring 

resonators are attached to the beam at a spacing of   along x direction. Each subsystem has two parts, beam segment 

and resonator, which consists of an elastic spring   and a mass              , as shown in Fig. 1(b). The lattice 

constant of the periodic system is denoted as     .  
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Fig. 1. (a) The simple model of the beam with periodical multiple resonant units. (b) The jth subsystem in nth unit cell with 

applied forces. 

The governing equation of the free bending vibration of a Timoshenko beam can be written as follows: 
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where  ,  , and   are the density, Young’s modulus, and shear modulus, respectively;    is the cross-section area;   

is the Timoshenko shear coefficient;   is the cross-section-area moment of inertia about the axis perpendicular x and 

y axis. Unlike Euler-Bernoulli beam theory which neglects shear deformation, Timoshenko beam with rotary inertia 

considers the deformation of the beam cross-section, therefore it is more suitable for deep beams i.e., those with 

relatively high cross-sections compared with the beam length, when they are subjected to significant shear forces. 

Since only the steady-state response of the wave/vibration field will be considered in this section, the time factor 

    , which applies to all the field variables, will be suppressed. Assume the amplitude of the vertical displacement 

     is     , which can be represented as [16, 17]: 
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  is the largest 

integer less than 
 

 
. In Eq. (2),                represent the wave numbers of the two lowest vibration modes along 

two directions (positive and negative x directions). 

 

For the j
th

 subsystem in the n
th

 cell,      can be written as: 
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where                    and           . The equilibrium condition for the j
th

 mass-spring resonator 

mj in the n
th

 cell along the vertical direction is: 

   
 
      

 
    (4) 

where   
 

 is the interactive force between the mass-spring local resonator and the beam segment,   
 
 is the 

displacement of the j
th

 mass-spring resonator at the position            . The force   
 
 can be represented by: 
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where k is the spring constant. Substituting Eq. (5) into Eq. (4) leads to  

  
 

 
 

     
 
  

         
(6) 

Applying the continuity conditions of displacement, displacement gradient, bending moment, and shear force at the 

interface between j
th

 and (j-1)
th
 subsystems in the n

th
 cell, we have: 
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Substituting Eq. (3) and (6) into Eq. (7), the continuity conditions can be rewritten in the matrix form as 
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where, 

   

 
 
 
 
 

  
           

  
           

  
           

        
            

  
           

  
           

  
           

        
            

  
           

  
           

  
           

        
            

  
           

  
           

  
           

        
            

 
 
 
 
 

  

 

   

 
 
 
 
 
  

             

  
             

  
             

           

  
             

  
             

  
            

           

  
             

  
             

  
             

           

  
             

  
             

  
             

            
 
 
 
 

  

 

 

 

  
 

 

 
 
 
 
   

 

  
 

  
 

  
 
 
 
 
 
 

     
  

  

     

     
 
   

Based on Eq. (8), the wave transfer relation between the n
th

 cell and (n-1)
th

 cell can be given as 
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          (9) 

where     
       

     is the transfer matrix between the two cells [18]. It is noticed that the transfer matrix 

approach based on the coefficient of      can obtain the same result by using the transfer matrix approach based on 

the global solution, such as: displacement, displacement gradient, bending moment and shear force.  

For an infinite periodic locally resonant beam, Bloch theorem can be applied  

             (10) 

where   is the wave vector in the   direction. Inserting Eq. (9) into Eq. (10) yields the eigen-value problem: 

             (11) 

For clear demonstration, a numerical study is conducted on the periodic metamaterial beam consisting of two locally 

resonant subsystems with masses    and   , respectively. The material and geometrical parameters used in the 

calculation are listed in Table 1. Fig. 2 shows the band structures of the metamaterial beam. In the figure,    
  

 
 is 

the normalized wave number along x direction, the normalized frequency is defined as    
 

  
, where    

 

  
 

 

  
. 

For the sake of comparison, the band structures of the metamaterial beams with the single periodical resonator (   

or   ),  are also calculated, respectively.  Comparing with the bandgap frequency ranges (1, 1.55) of the beam with 

the resonant mass    and (0.50, 1.29) of the beam with the resonant mass   , it can be found that the bandgap 

frequency range of the beam with the two resonant masses could be increased to (0.50, 1.46), which seems to follow 

the linear summation of the bandgap frequency range of the beam with the single resonator. However, it is also 

interesting to notice that two new passbands are generated at the frequency ranges (0.73, 1) and (1.46, 1.55). The 

two new passbands are undesired to form a complete broad bandgap and should be eliminated. The form mechanism 

of the new passing band in the metamaterial beam is the wave interaction between the two different resonators. In 

order to achieve a complete low-frequency bandgap for practical engineering application, this interaction is 

undesired and should be eliminated.  
Table 1  Geometrical and material parameters for the broadband metamaterial beam 

GEOMETRICAL PARAMETERS MATERIAL PARAMETERS 

a 75 mm Mass density of the beam             

b 150 mm Young’s modulus of the beam E       

   1.602 mm
2 

Shear modulus of the beam G       

I 5968 mm
4 

Timoshenko shear coefficient   0.925 

  Spring constant k 165000N/m 

  Mass m1 0.0437kg 

  Mass m2 0.1748kg 

 

 

Proc. of SPIE Vol. 8695  86952J-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/31/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



-x

2.5
with single resonant subsystem (m, )

.

1.0 -

0.5-

with single resonant subsystem (m2)

100 0.5

qn

with two resonant subsystems (m1& m2

.

10 0

 

 

(a) (b) (c) 

Fig. 2. Band structures of the beams with (a) a single resonator   ; (b) a single resonator   ; (c) two resonators (   and 

  ). 

 

 

3. EXPERIMENTAL TESTING OF THE METAMATERIAL BEAM WITH 

DISTRIBUTED SECTION DESIGN 

In the section, a distributed section design of multiple resonators in the finite EMM beam is proposed to diminish 

the wave interaction between different resonators. Furthermore, in order to apply the proposed broadband design in 

the realistic structures, a chiral-lattice-based metamaterial beam integrated with different section-distributed 

resonators is fabricated. Chiral lattice is selected due to its excellent stiffness-to-weight ratio and potential of 

massive production. The resonators are implanted in the node circles of the chiral lattice therefore the load bearing 

capacity of chiral lattice will not be affected. The fabrication process is briefly described as follows: First, the chiral 

honeycomb beam is fabricated from an Aluminum (Al) beam through a water jet cutter, as shown in Fig. 3 (a). A 

unit cell of the chiral lattice is shown in zoom picture in Fig. 3 (a). In the beam structure, the periodic chiral lattice is 

sandwiched into a beam frame and the end of the ligament is rigidly linked to the frame. The length of the sandwich 

beam is         , the total height is         and the height of the chiral layer is        , the width 

of the beam is        . The wall thickness of the frame is 0.5mm. The structure contains 16 unit cells in the 

length direction and 3 unit cells in the height direction. A zoom picture in Fig. 3 (b) shows the topology of the 

hexagonal chiral lattice used in the finite beam. The geometrical and material parameters of the chiral lattice beam 

are listed in Table 2. Then, to form the metamaterial beam, local resonators, made of rubber (Polytek® Poly PT Flex 

20 RTV Liquid Rubber, Polytek Development Corp.) coated metal cylinders, are filled in the node circles of the 

chiral lattices with the help of a supplementary guiding plate, which is used to precisely locate the metal cylinders. 

Steel cylinders as well as Al cylinders with the same geometry, 6.35mm in diameter and 25.4mm in height, are used 

as inclusion cores in the subsystems.  

 
Table 2  Geometrical and material parameters of the chiral lattice beam 

GEOMETRICAL PARAMETERS MATERIAL PARAMETERS 

Topology parameter          Mass density            

Ligament length L=24.6 mm Young’s modulus        

Node radius Rn= 8.6mm
2 

Poisson's ratio       

Ligament wall thickness tL= 0.5mm   

Node wall thickness tN= 0.5mm   

Unit cell size aL= 15mm   
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Fig. 3. (a) Chiral lattice beam and the unit cell of the chiral lattice in zoom picture. (b) The topology of the hexagonal chiral 

lattice used in the finite beam. 

Fig. 4 shows the experimental set-up of the vibration testing. The chiral metamaterial beam is fixed on one end and 

excited by a shaker (LDS V203) which is close to that fixed end. The shaker is powered by a power amplifier (LDS 

PA25E). White noise excitation signal with bandwidth from 0 to 1200Hz is generated by the shaker and the response 

of the finite chiral metamaterial beam is captured by an accelerometer which is attached to the other end of the 

metamateiral beam. Both the input signal and the output signal are recorded by the dynamic signal analyzer 

(Dactron PHOTON+
TM

). A laptop installed with Data Recorder software is used for the post-processing. The 

experimental measured frequency response function (FRF) is defined as the ratio of the output signal from the 

accelerometer with respect to the input signal from the force transducer, where the output signal measures the 

acceleration of the beam at the position of the accelerometer and the input signal measures the applied force at the 

excitation point of the beam.  

 

 
Fig. 4. Experimental set-up of the vibration testing. 
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To confirm the accuracy of the experimental set-up of the vibration testing, the measured FRF of the chiral lattice 

beam is first compared with that obtained from finite element simulation based on the exact geometry of the beam 

specimen, as shown in Fig. 5. It can be found that the two results are very close to each other for the modal peaks at 

low frequency range and some discrepancies at higher frequency range which are caused by the lack of fabrication 

accuracy of the microstructure inside the chiral lattice beam such as: ligament wall thickness.   

 

   

Fig. 5. The comparison of the FRFs of the chiral lattice beam from the experimental testing and from the FE method. 

Next, the vibration testing is conducted on the chiral metamaterial beam. In order to validate the experimental 

results, the FE method is performed to obtain the FRF of the finite chiral metamaterial beam. Fig. 6 shows the FRF 

comparison of the finite metamaterial beam with 7 resonant units (rubber coated steel cylinders) from both the 

experimental testing and numerical simulation. The strong vibration attenuation can be observed from both the 

numerical (FE) and experimental results at the low-frequency region. The wave attenuation frequency predictions 

from the finite metamaterial beam by using the FE method and the experimental testing are in good agreement in 

principle. It can be seen from Fig. 6 that the gap width in the experimental result is wider than that in the FE result 

and the experimental measured FRF value at high frequency range is smaller than the FE result. Those differences 

are completely due to the rubber material damping. 

 

 
Fig. 6. The comparison of the FRF of the finite chiral metamaterial beam from the experimental testing and from the FE method. 
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Finally, in order to achieve the complete bandgap in a broad frequency range with proposed distributed section 

design, the finite metamaterial beam with two distributed resonator sections is tested, which is shown in Fig. 7. In 

the figure, the distributed resonator in the first section is the rubber-coated steel cylinder, and the distributed 

resonator in the second section is the rubber-coated Al cylinder. Due to the geometry limitation, 7 resonant units in 

the each section are used to filter out the bending wave significantly. The measured FRF of the proposed broadband 

metamateiral beam is shown in Fig. 8. For clear demonstration, the FRFs from the finite beams with 7 single 

resonant units (rubber-coated steel or Al cylinders) are also plotted in the figure. It can be seen that the measured 

wave attenuation region of the finite broadband metamaterial beam is located at the frequency range between 305Hz 

and 968Hz, which is very close to the linear summation of the wave attenuation regions of the metamaterial beams 

with the single resonator.  

 

 
Fig. 7. The finite broadband metamaterial beam with two distributed resonator sections. 

 

  
Fig. 8. The measured FRF of the proposed broadband metamaterial beam. 

4. CONCLUSIONS 

The broadband vibration suppression mechanism is studied in a metamaterial beam containing multiple periodic 

resonators. It is found that the new passing bands are generated due to the wave interaction between the multiple 

resonators, which is not desired to form a complete broad bandgap. To circumvent this problem, we propose a 

section distribution of the multiple local resonators in the metamaterial beam to diminish the interaction. Finally, the 

chiral-lattice-based metamaterial beams with section-distributed multiple resonators are fabricated and the 

experimental testing is conducted to validate the proposed design. This work can serve as a theoretical and 

experimental foundation for the development of broadband vibration suppression by using the metamaterial 

structure under realistic loadings. 
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