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  Abstract- Quasiconformal maps have been utilized for 
generating transformation optical devices with a range of 
applications including invisibility cloaks, waveguide benders, 
couplers, surface-conformal lenses and antennas. Here, we 
discuss their generation by numerically solving the Poisson’s 
equation where the analytic solution of a typical electrostatic 
problem in the virtual space acts as a seed in numerically 
generating a quasiconformal map with a transformed shape of 
boundary.  Two examples about capacitor under external voltage 
and a point charge in a cavity are given. 
 

I.    INTRODUCTION 
 
   Transformation optics has been becoming an emerging 
technique in designing optical devices [1]-[3]. It provides an 
intuitive method in designing optical devices by using a 
coordinate transformation. A coordinate transformation keeps 
the Maxwell’s equations form-invariant with an induced 
transformation on the electric permittivity and magnetic 
permeability. By realizing the induced material profile using 
metamaterials, the resultant optical device thus provides the 
same function to the one before transformation. This 
functional equivalence provides an effective route to change 
the size and the shape of an object. The most prominent 
example is an invisibility cloak to diminish the size of an 
object [2]-[16]. In fact, the coordinate transformation is quite 
arbitrary and it becomes a well-posed engineering task to 
choose the optimal one so that the induced material parameters 
can be constructed and fabricated using metamaterials easily. 
One such attempt is the quasiconformal map which can 
minimize the maximum anisotropy in the induced materials 
profile in which the anisotropy of available materials for 
construction is limited for specific examples [5]. This 
facilitated the realization of dielectric cloaks at optical 
frequencies and has been used to design a range of 
transformation optical devices including waveguide benders, 
couplers and antennas [17]-[22]. A quasiconformal map can 
be regarded as a generalized variant of a conformal map with 
an additional advantage that the boundary of the transformed 
region, i.e. the size and shape of the transformation optical 
device, can be predefined. This gives rise to a small constant 
anisotropy, due to a general difference in conformal module 
before and after transformation, which can be further 
neglected as an approximation so that only isotropic materials 
are needed for realization. While for a conformal map, a finite 
size of transformation optical device can be obtained by a 

cutoff in dielectric constant as a similar approximation. We 
can also use a quasiconformal map to approach a conformal 
map if the shape of the virtual domain in specific applications 
can be changed so that the conformal module matches before 
and after transformation [23]. 
   This paper presents a straightforward two-steps design in 
generating a quasiconformal map using electrostatic analogy. 
First, we start with an electrostatic problem with analytic 
solution in the virtual space. Second, by numerically solving 
the same electrostatic problem (Poisson’s equation) with a 
transformed boundary of the analytic problem in the physical 
space, we generate the numerical quasiconformal map. Finally, 
full wave simulations are used to demonstrate the function of 
the resultant transformation optical devices with the generated 
quasiconformal maps. 
 

II.   Electrostatic analogs in generating Quasiconformal 
maps 

 
In this paper, we only focus on two dimensional 
transformation optical devices. We start with a map which 
transforms a rectangle (e.g. a vacuum) with coordinates 
      and       to a general quadrilateral with 
curved boundaries. By considering all possible coordinate 
transformations which map the 4 corners of the rectangle to 
the 4 corners of the curved quadrilateral and the 4 edges of the 
rectangle to the 4 edges of the curved quadrilateral with sense 
preserved but no further restrictions, one can prove the map 
generating the minimal of maximum anisotropy in the whole 
medium minimizes the Modified Liao functional [5]: 
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Such a functional minimization can then be equivalent to 
solving [24] 
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subject to the same boundary conditions. In fact, the resultant 
map is the quasiconformal map which is a type of orthogonal 
maps. It has two implications. One is that we can just use the 
Dirichlet-Neumann boundary condition [24] (Dirichlet 
boundary for    and Neumann boundary for   or vice versa). 
The quasiconformal map transforms a tiny square in the (   ) 
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coordinates to a tiny rectangle in the (   ) coordinates with 
constant aspect ratio                   . Suppose we 
are working in the transverse-electric (  ) polarization. The 
transformed medium in the (   )  coordinates has the 
permittivity profile (with respect to the medium in (  , ) 
coordinates) as 
    |  |   |  |    (3) 
and a permeability (tensor on the x-y plane) profile with the 
ratio between the two principal values as constant   . The 
anisotropy of the quasiconformal map is minimized 
(maximum of       is minimized). If   is sufficiently near 
to the value one, we then only realize Eq. (3) and neglect the 
permeability tensor. Another implication is that we can have 
an electrostatic analog towards Eq. (2) and it can be used to 
construct a composite map. In this case, the quasiconformal 
map is used as a tool for designing generic optical devices (not 
necessarily minimizing anisotropy). The potential   
corresponds to   while the streamlines of electric field  , 
surface normal to the equipotential contours, corresponds to 
the constant-   lines or vice versa. Suppose we know the 
analytic solution of a typical electrostatic problem in solving 
Eq. (2) with coordinates (     ) (instead of   and  ). For 
example, it can be a parallel plate capacitor under an applied 
voltage, or a point source within a grounded circular cavity, 
shown in the left hand side of Fig. 1. On the other hand, we 
numerically solve the same problem in the physical 
coordinates (   ) with deformed shape of boundaries (right 
hand side of Fig. 1). Then, the transformation from the virtual 
to physical space is a composite map ((     )  (   )  
(   )).For simplicity, we assume the first map is conformal 
and the overall transformation induces a permittivity profile as 

    
|  |  
|   |  

|  |   
|   |   (4) 

  
Fig. 1 Electrostatic analog as a starting point in generating a 
quasiconformal map on the right with deformed boundaries. (a) 
A capacitor under an applied voltage with   acting as the 
voltage. Contours of constant   acts as the  -field stream lines. 
(b) A point charge within a gounded cavity. The size of the 
point charge controls the resultant anisotropy  . Contours of 
constant- /  aligns with constant-  lines / -field streamlines. 

III.   Numerical examples 

As the first example, we consider a parallel plate capacitor 
(Fig. 1(a)) as a trivial example. A starting analytic solution 
(interpreting   as electrostatic potential) can be taken as 
      while the orthogonal coordinate (assumed conformal) 
can be taken as     . Next, we numerically solve the same 
system but with deformed bottom boundary (Fig. 2(a) for 
solving   and 2(b) for solving   with the specified Dirichlet-
Neumann boundary conditions) in generating the 
quasiconformal map. The permittivity, according to Eq. (4), is 
plotted in Fig. 2(c). Such a permittivity profile can be used as 
a carpet cloak on top of a reflecting bump. Full-wave 
simulation with    polarization for an incident beam at an 
incident angle of 45 degrees has been performed and the 
resultant E-field profile is shown in Fig. 2(d). It agrees with 
the results in Ref. [5], showing scattering cancellation. 
Furthermore, the electrostatic analog interpretation gives us 
the extra flexibility in designing transformation optical devices 
by choosing other kinds of electrostatic analogs.  

  
Fig. 2 Carpet cloak. (a),(b):   and   profile in the physical 
space by solving Eq. (2) with the specified Dirichlet-Neumann 
boundary conditions; (c): induced permittivity; (d) Full-wave 
simulation for an incident beam at 45 degrees. 

  
Fig. 3 Double shifter. (a) Virtual space with.   -contours 
(analogs of equipotential contours for a point charge at origin) 
in concentric circles.   -contours in radial lines. (b) Physical 
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space with the corresponding contour lines. (c) induced 
permittivity; (d) Full-wave simulation with incident beams 
from bottom and left. 
 
  Next, we consider another electrostatic problem of a point 
charge at the center of a circular grounded cavity of radius 1 
(Fig. (b)) to design a shifter in both x and y-direction . A 
starting analytic solution (interpreting   as electrostatic 
potential   for the point source) can be taken as     (  )  
  √        and its orthogonal coordinate      
   (      )  where   (      and        ) . Next, we 
numerically solve the same problem (a point charge) in the 
physical space with square boundary (Eq. (2)) with Dirichlet-
Neumann boundary conditions (     and      ). Fig. 3(a) 
and 3(b) show the resultant    and   -contours in the virtual 
and physical space respectively. The induced permittivity 
profile is shown in Fig. 3(c). As   goes to infinity at the point 
charge, the size of the point charge in the physical space gives 
us an additional flexibity to control the resultant anisotropy. 
Figure 3(d) shows the full-wave simulation when there are 
both incident beams from bottom and from the left. As the 
circular boundary in the virtual space is now flattened, the 
incident beams now appear shifted by travelling alng the   -
contours.  
 

IV.   Conclusion 
 
  By solving a typical electrostatic problem (Poisson’s 
equation) in the virtual space with analytic solution and 
numerically solving the same problem in the physical space 
with deformed boundaries, we have established a generic way 
for generating quasiconformal maps from the virtual to the 
physical space by employing different electrostatic analogs 
(with permittivity obtained from Eq. (4) by taking   or   as 
analog of potential  ). It gives addition flexibility in designing 
transformation optical devices enabled by quasiconformal 
maps. 
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