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Ab~¢traet--Based on the general concept of the secant moduli method, together with a new way 
of evaluating the average matrix effective stress originally proposed by Qiu and Weng CA 
Theory of Plasticity for Porous Materials and Particle-Reinforced Composites," ASME J. Appl. 
Mech. (1992), 59, 261.), a method for nonlinear effective properties of general aligned fiber or 
void composites is proposed. The method is capable of predicting composite (especially for 
porous materials) yielding under a hydrostatic load. Compared to the Tandon and Weng ("A 
Theory of Particle-Reinforced Plasticity," ASME J. Appl. Mech. (1988), 55, 126.), model the pro- 
posed method always gives softer prediction in the uniaxial tension. The proposed method will 
predict the same nonlinear stress and strain relation as the Ponte Castaneda ("The Effective 
Mechanical Properties of Nonlinear Isotropic Composite," J. Mech., Phys. Solids (1991), 39, 45.) 
variational model if the same estimates or bounds for the linear comparison composite are 
adopted. 

I. INTRODUCTION 

This paper is concerned with the determination of the overall elastoplastic behavior 
for a cilass of unidirectionally aligned composites. The homogeneously dispersed inclu- 
sions (void or fiber) are assumed to be spheroidal in shape, and remain elastic. The 
matrix is ductile and can undergo a plastic deformation. The theoretical analyses on 
such p:roblems have been performed by many authors. For example, Tvergaad [1990] 
and Bao et  al. [1991] performed numerical analyses with periodic micro structures; 
Tandon and Weng [1988] proposed a secant moduli method for composite materials. 
This method makes use of a linear comparison material, whose elastic moduli at every 
instant are chosen to coincide with the average secant moduli of the matrix. Adopting 
a linear comparison material to construct the corresponding bounds or estimates for 
nonlinear composites has also been proposed by Willis [1991] and Ponte Castaneda 
[1991] (PC) through variational methods. Debotton and Ponte Castaneda [1993] 
applied the PC variational method to construct the stress and strain relation for non- 
linear composites. 

As remarked by Qiu and Weng [1992], the original secant moduli method proposed 
by Tandon and Weng [1988] cannot yield correct prediction for porous materials 
under a hydrostatic pressure. Since the average matrix effective stress is obtained 
directly from the average stress of the matrix, the local stress variation is smoothed 
out. Recently Qiu and Weng [1992] advanced an improved version of the Tandon and 
Weng 111988] model; they redefined the effective stress from an energy approach and 
evalualed it approximately. 
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In this paper, we will adopt the general concept of the secant moduli method, and 
also adopt the average matrix effective stress directly from the average of elastic dis- 
tortional energy of the matrix (same as Qiu and Weng [1992]). This average matrix 
effective stress will be evaluated precisely by a new approach to be developed later. The 
emphasis will also be placed on the comparison between the proposed method and the 
original secant moduli model. In the end, the theoretical connection between the 
proposed model and the Ponte Castaneda [1991] variational method will be examined. 

II. EFFECTIVE PROPERTIES OF NONLINEAR COMPOSITE MATERIALS 

II.1 Preliminary 

The considered composite is supposed to consist of two isotropic phases; M 0, M~ 
denote the matrix and the inclusion phase compliance tensors. The inclusion phase is 
assumed to be elastic and spheroidal in shape, with xt b~ing the symmetry axis; Co, c~ 
are the volume fractions of the matrix and the inclusion phases, respectively. 

Elastic analysis of composite effective properties can be concentrated on the repre- 
sentative volume element (RVE). On its boundary, if a uniform stress ~ is prescribed, 
it was shown that the average local stress over the RVE is equal to ~. If the average 
local strain over the RVE is noted by E, we have 

E : Mc~  (1) 

Equation (1) gives the elastic stress-strain relation of the composite material. Mc is the 
composite compliance tensor; it depends on the phase properties and the microstruc- 
rural distribution. Evaluation of Mc needs detailed material phase distribution infor- 
mation, which is almost impossible analytically. However, bounds or estimates on Mc 
can be performed. For example, based on the Mori-Tanaka mean field theory, the 
estimation on the composite compliance tensor can be written as 

Mc = M0 + c, [(MtM0-'-I ) ~ + Co ( I -  S)] -~ (2) 

where [A]-~ is the inverse of the tensor A; I is the unit tensor; S is the Eshelby tensor 
(the detail analytical form can be found in Mura [1987]). 

Weng [1992] have shown that the composite stiffness evaluated by (2) corresponds 
to the Willis [1977] lower bound if the matrix is the softer phase or upper bound 
inversely. 

When the matrix undergoes a plastic deformation (the inclusion phase remains 
always elastic), we will use the following strain potential to characterize its elastoplas- 
tic deformation, 

, : • (0-°) + 1 0 - 2  (3) 
2k0 m 

The matrix is assumed plastically incompressible; 0-¢ and 0-m are the yon Mises stress 
and the hydrostatic stress defined by: Ore = (3/2 0-1 : O-1)1/2; ffm : 1/3trcr. 

The stress and strain relation of the matrix can be obtained by 

~¢ : ~,pl (O-e) 

1 
~m = k o  0-m (4) 
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where ee is the effective strain and ee = (2•3 £':~')1/2; em = 1/3tre. 
The secant shear modulus tx o and secant bulk modulus k~ of the matrix are given by 

Or° (5) s _ 
Ix0 3tp'(Or,) 

s 
k 0 k 0 

The secant moduli method (Tandon et aL [1988]) for composite plasticity indicates 
that under a macroscopic applied load X, which corresponds to the deformation state 
of the matrix Ore, the matrix can be considered as a linear isotropic material character- 
ized b,.¢ the matrix secant moduli (5), with a corresponding compliance tensor denoted 
by 1VI~- By this manipulation, (2) still holds, even when the matrix enters the plastic 
range. In this case, the composite compliance tensor is understood as the secant com- 
posite compliance tensor lVl~, depending on the deformation state of the matrix 
through M~. If the relation between the applied macroscopic load 5~ and the matrix 
deformation state parameter Ore is given, the nonlinear stress and strain relation of the 
composite can then be derived. 

In what follows, we will focus on establishing the relation between the applied 
macroscopic stress ~ and the effective stress in the matrix Or~. When the matrix 
enters the plastic range, we will still keep he notation M~ and M~ for the matrix and 
the composite secant compliance tensors. 

11.2 Average stress in matrix and inclusion 

For the RVE under a uniform applied macroscopic stress X on its boundary (the 
corresponding composite strain is noted by E), we have: 

X =co<Or>o  + c l < O r > l  (6) 

E = c 0 < e > 0  + c l < e > t  (7) 

where <A>0 is the volume average over the matrix of the quantity A, <A>l is that 
over the inclusion phase. 

With the help of the phase constitutive relations, (7) can be rewritten as 

E = Co M0 < or >0 + ct M1 < or >1 (8) 

From (6) and (8) we can readily obtain the average stresses in the matrix and the in- 
clusion: 

1 (M~_M0)_I(MI_Mc) x (9) < or >0 ------C--if- 

1 ( i o _ i l ) _ l ( i o _ i c )  • (10) < ° > 1  = - - c ~ -  

Now, we are ready to recall the von Mises equivalent stress of the matrix defined in 
Tandon and Weng [1988]: 

Z~ = 3/2 < or'>0:< or'>0 (11) 

Equations (11) together with (9) give the relation between the macroscopic applied 
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stress ~ and the matrix effective stress tre. So, for a given loading type (e.g. uniaxial 
Ell or hydrostatic E loading) at a given value of the matrix effective stress ere, the cor- 
responding secant matrix compliance tensor and the secant composite compliance ten- 
sor can be calculated from (5) and (2). The macroscopic load (e.g. E~I or X) 
corresponding to the given matrix deformation state ere can be evaluated from (9) and 
(11). Finally, the composite strain is obtained from (1). By increasing the value of tre 
and repeating the previous process, the entire stress and strain curve of the nonlinear 
composite can be derived. 

This procedure is proposed for composite materials by Tandon and Weng [1988] 
who reformulated in a different form. 

As remarked by Qiu and Weng [1992], the definition of the matrix effective stress 
directly from the average stress cannot take into account the local stress variation in 
the matrix. In fact, from (9), we observe that for isotropic phases with spherical inclu- 
sions, the composite compliance tensor is also isotropic, and thus under a pure hydro- 
static load, the average stress in the matrix is also hydrostatic in nature. In this case the 
composite can never yield with the previous definition of the matrix effective stress 
(11). Thus, in the following section, a new effective stress of the matrix will be proposed. 

II.3 Average matrix second order stress moment 

We will follow the general method proposed by Bobeth and Diener [1986,1987]. 
In the elastic case, for the composite RVE under a constant macroscopic applied load 
E, the average stored energy of the RVE can be expressed as 

1 1 
- -  < cr.e > = U = E: Me: X (12 )  

2 2 

Mc is the composite compliance tensor. 
Equation (12) can be rewritten as: 

< er.M:tr > = ~: Me: ~ (13) 

where M is the local phase compliance tensor. 
Now, under a constant applied macroscopic load E, a variation of the local compli- 

ance tensor ~M will lead to a variation of the local stress 8X, which in turn will lead 
to a variation of the composite compliance tensor 8M~. We have 

E: ~M~: E = < tr.~M :tr > +2 < cr.M :~tr > (14) 

Since, under a constant applied stress, the volume average of the local stress variation 
<Str> vanishes, with the help of Hill's condition (Hill [1963]), it can be shown that the 
second term of (14) vanishes. So we obtain 

E: ~M~: X = < cr.~M :or > (15) 

For a two-phase composite with isotropic phases, if we let the shear modulus of the 
matrix undergo a variation, we have 

Co < o-' xr' >0 ~(2-~-o ) = X: 8M~: X (16) 

Now, we follow Qiu and Weng's [1992] definition of effective stress from the average 



A method of plasticity for general composites 443 

of  the', elastic distortional energy of the matrix, which can be evaluated from the varia- 
tion of the effective compliance with respect to the variation of  the local shear 
modulus, as 

2_ 3 / 2< or, :fi, >0 ~ : ( _  3 ~  BMe):~ (17) f i e - -  

Co 8p~0 

The expression of  the composite compliance can be estimated or bounded. Since we 
can ~Llso choose (2) for an estimation, 5M~/8~, fie can be evaluated without much 
difficulty. The Eshelby tensor S depends also on ~0 through the Poisson ratio of  the 
matrix. It is easy to check that for the isotropic phases and spherical inclusions, even 
under a pure hydrostatic load, the effective stress will not vanish. So we believe that 
the new definition of the matrix effective stress can take into account (to some extent) 
the local stress variation of  the matrix. 

With the aid of the secant moduli method (Tandon and Weng [1988]) and the 
abow~ matrix effective stress defined by (17), the stress and strain relation of  the non- 
linear composite can then be constructed following the same procedure explained in 
Section II.2. 

In the following section, we will analyze in detail the effective behavior of the com- 
posite predicted by the proposed method. 

11.4 Numerical applications 

The matrix is assumed to have 
following: 

fie =fly +he"~p 

The strain potential for the matrix is 

1 n 1 n+~ 1 
- -  2 + _ _  - -  2 (19) 

= 6~0 fie (n + 1) h TM ( f i e - f ly )  n + 2ko fire 

The secant shear modulus and the secant bulk modulus of the matrix are given by 

1 
p.~ = (20) 

1 3E~p 
- -  + 

tXo fiy +he~p 

a power law type hardening, expressed by the 

(18) 

k~ =/Co (21) 

The matrix is 6061 aluminum, with material constants of  E 0 = 68.3 GPa; v0 = 0.33; Cry 
= 251) MPa; h = 173 MPa, n = 0.455. For the reinforced phase, El = 490 GPa; vl = 0.17. 

Figure 1 shows the contribution of  pure hydrostatic pressure on the matrix effective 
stress defined by the first and second order stress moment ((1 l) and (17)) as a function 
of  the aligned fiber aspect ratio. For  spherical inclusions, this contribution is zero, 
based on the matrix average stress. The contribution based on the second-order stress 
moment is larger than that based on the matrix average stress. For  voided materials, 
under a hydrostatic load, the average stress of the matrix is always hydrostatic in 
nature whatever the form of  the voids (6), so the contribution on the matrix effective 
stress based the matrix average stress is zero. However, the contribution on the matrix 
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Fig. 1. The contribution of a pure hydrostatic stress on the matrix effective stress as a function of rein- 
forced phase aspect ratios. Solid line, new model; dashed line, average stress. 
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Fig. 2. The contribution of a pure hydrostatic stress on the matrix effective stress of the porous materials as 
a function of void aspect ratios. 

effective stress based  on the second-order  stress m o m e n t  keeps a finite value:  it 
increases as a funct ion o f  the void  vo lume f rac t ion (Fig.  2). F o r  d i sk- type  voids,  this 
con t r ibu t ion  is more  significant.  

F igures  3 and  4 show the pred ic ted  uniaxia l  stress and  s t ra in  curves for  the a l igned 
fiber re inforced compos i t e s  and  po rous  mater ia ls .  I t  is observed  tha t  the stress and  
s t ra in  p red ic ted  by the p r o p o s e d  m e t h o d  is a lways  softer,  c o m p a r e d  with the m e t h o d  
based  on the mat r ix  average stress. The  difference becomes  more  significant for  disk- 
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Fig. 3. ;Stress and strain curves of composites predicted by the proposed model (solid line) and with the 
model based on the average stress (11) (c 1 = 0.2). 
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Fig. 4. Stress and strain curves of porous materials predicted by the proposed model (solid line) and with 
the model based on the average stress (11) (el -- 0.2). 

type voids or fibers with medium aspect ratio. If we examine the contribution pre- 
dicted by the two methods on the matrix effective stress under a uniaxial tension, we 
observe that for long cylindrical voids the matrix effective stresses are almost the same 
given by the two methods, but the difference becomes important for oblate voids. For  
the studied composite, the effective stresses of  the matrix predicted by the two meth- 
ods are almost the same for disk shape inclusion or long fibers. The difference is large 
with fibers of  medium aspect ratio; this difference increases during the matrix plastic 
deformation (Fig. 5, curves C). 

In order to examine the accuracy of  the proposed method, we then apply the pro- 
posed model to the material with cylindrical void under biaxial loading ~ =E22 = ~ss, 
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Fig. 5. The contribution of a pure tensile stress on the matrix effective stress as a function of reinforced 
phase aspect ratio: solid line, new model; dashed line, average stress (A, porous; B, I~l/l~ 0 -- 8.16; C, ixl/la, 0 
= 8-16 (c I = 0.2). 

= E22 = E33 (plane strain condition), and the material with spherical voids under a 
hydrostatic loading ~ - Xkk, E = Ekk, since in these cases the exact local analyses can 
be performed (for further details, we refer the reader to Qiu & Weng [1992,1993]). For  
the matrix n = 1.0; Ep/Eo = 0.1; and h = 1/(1/Ep-1/Eo), the other constants remain the 
same. The results are shown in the Fig. 6; a good general agreement is observed for 
the two cases considered between the proposed method and the local exact analyses. 
Since the proposed method is also a mean field one, it cannot account for the 
detailed local yielding of  the composite, which explains the difference observed near 
the beginning of  the composite local yielding. 

III. THEORETICAL CONNECTION WITH P O N T E  CASTANEDA 
VARIATIONAL APPROACH 

Another approach in the literature for predicting the composite nonlinear behavior 
is proposed by Ponte Castaneda [1991]. The method characterizes the effective energy 
potential of  the nonlinear composite in terms of  the corresponding energy potential 
for the linear composite with the same microstructural characterization. This method 
is applied by Debotton and Ponte [1993] to construct the stress and strain relation for 
nonlinear composites. In this section, we will examine in detail the connection 
between this variational method and the proposed one in Section II.3. 

For  the composite with isotropic phases, the inclusion remains elastic and the non- 
linear matrix is characterized by the strain potential given by (3). The effective energy 
function of  the composite can be expressed as (for further details, we refer the reader 
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Fig. 6. Comparison between the results predicted by the present model (solid line) and the exact local solu- 
tion (dashed line) for porous material, v 0 = 1/2. Cl = 0.3. A, cylindrical voids under biaxial loading (plane 
strain); B, spherical void under a pure pressure. 

to  P o n t e  C a s t a n e d a  [1991] a n d  D e b o t t o n  et al. [1993]) 

1 1 1 
= m a x  [U0 - max[c0(----~- (r 2 + (r2m - - -  (r 2m)]] (22) 

.o~o'O ~,.~m 6p-0 e 2 )C o -- q~((re) 2k o 

w h e r e  ~ , /Co a re  the  a r b i t r a r y  l i nea r  c o m p a r i s o n  m o d u l i  o f  the  m a t r i x ,  a n d  

Uo (~)  = m i n f  U ((r)d V (23) 
ores(X} V 

U0(Z) is the effective energy function of the linear comparison composite with the 
local energy density U((r). The linear comparison composite consists of the isotropic 
matrix with the shear and bulk moduli ~0, ]Co, and it has the same inclusion properties 
and geometry as the studied composite, s(Z) is the set of statistically admissible stress 
field in the RVE with a uniform applied stress Z on the RVE boundary. 

The effective energy function of the linear comparison composite can bc bounded 
or estimated, and this leads to the corresponding bounds or estimates for the effective 
cncr~ function of the composite. In our case, wc still use (2) to estimate the linear 
comparison composite compliance tensor, but hcrc the matrix shear and bulk moduli 
arc ~, ~c 0. Wc still use M~ to note the compliance tensor for the linear comparison 
composite. The effective energy function of the linear comparison composite is given 
by 

Vo (X) = 1 Z :M¢:Z  (24) 
2 

N o w  we wil l  p e r f o r m  the  t w o  o p t i m i z a t i o n  p roces ses  t h a t  a p p e a r  in (22). 
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The first optimization process inside o f  the brackets yields 
1 

- -  o-o- q~' (O'e) = 0 
3;o 

1 1 
- - O ' m - - - -  O" m = 0 

ko ko 

(25) 

o r  

;O - (re (26) 

3q~' (cre) 

k0 = k0 
^ 

It can be seen that (26) are identical to (5); this implies that P-0, k:0 are in fact the 
secant shear and bulk moduli of the matrix a t  the deformation state cre. We note that 
~r e is the solution of  (26), which depends on ~0. So the effective energy function can be 
expressed as 

= max [F] = max[ I E : M ¢ : E - c 0 (  1 b. 2 
;o.0 ;o-0 2 ~ - ~  e - qD(~re)] (27) 

The optimization leads to the following equation: 

1 E OM¢:E+Co 1 ~-2- 1 O~r e b~(~re) Ob'e - -  - -  Co-Tz-~ b e - -  + Co - 0 (28) 
2 :--~m 6 ~  e 3~tO 0 ~  O~e O~tO 

Using (25), we obtain 

~r 2 = E: (-  - -  3~°2 OMe):E (29) 
e CO 

This matrix effective stress is exactly the effective stress defined by (17). The stress and 
strain relation of  the nonlinear composite material can be obtained by 

E 0U : M~(~):X + OF 0~t 0 (30) 
0E 0~t0 0X 

From the optimization process (27), OF 0 - ~  = 0, and we obtain 

E = Me ~0):X (31) 

This equation gives the stress and strain relation of  the nonlinear composites. The 
parameter O0 is determined by (26) and (29); they are exactly the same as in the pro- 
posed method in Section 11.3. So, for the considered composite (the matrix yielding is 
pressure insensitive and follows the von Mises flow rule), both models predict the 
same initial yield surface and the stress-strain relation for the nonlinear composite. 
The matrix effective stress defined by PC's variational method corresponds exactly to 
the average of the local matrix effective stress. 

It can be concluded that the secant moduli method with the effective stress defined 
from the matrix average second-order stress moment always gives the same stress and 
strain predictions for nonlinear composites as by PC's variational method. 
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IV. C O N C L U S I O N S  

In this paper,  a n  average matrix effective stress for  linear composites is defined 
directly f rom the average o f  the elastic distort ional energy o f  the matrix; i.e. the aver- 
age o f  the local matrix effective stress. It  is evaluated precisely, provided that  the esti- 
mates or  bounds  on the linear composi te  compliance are known.  With the aid o f  
secant modul i  method  combined with the proposed  matrix effective stress, a me thod  is 
proposed  to construct  the stress and strain relations for the nonlinear  composites.  The 
method  is capable o f  account ing to some extent for the local stress variat ion in the 
matrix and gives reasonable predictions for porous  material  under  a pure hydrostat ic  
loading. Compared  to the secant modul i  based on the average matrix stress, the 
proposed  method  always gives softer predictions in the case o f  uniaxial loading; the 
differences are larger for oblate voids or  for fibers with medium aspect ratios. 

It  is shown theoretically that  the matrix effective stress defined by PC's  variat ional  
method  is exactly equal to the newly defined matrix effective stress. Both methods  give 
the same predictions for the stress and strain relations if the same estimates or  bounds  
on the linear compar i son  composi te  are used. 
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