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Introduction 

Micromechanics, aiming at establishing the relationship between the microstructural parameters 
and thermo-mechanical properties for heterogeneous materials, is recognized with a rapid 
development[I-5]. With the help of Hill's condition and representative volume element(RVE) 
concept [6], and through some adequate localization and homogenization procedures, the relation 
between the average stress and strain over the RVE is interpreted as the macroscopic properties 
for the studied heterogeneous materials. Although it is a great success in the composite materials, 
this approach fails to predict the size effect of the reinforced phases as well-observed. To this 
end, the high order stress theories or high order mediums, based on the original idea of the 
brothers Cosserat[7], are proposed. By introducing length scale parameters in the constitutive 
relation, the theories can account reasonably for the observed size effect in the heterogeneous 
materials [8,9]. 
However, the parameters introduced for the size effect such as the length scale parameters in the 
gradient theory or coupled stress coefficients lack clear physical basis. In this paper, based on the 
thin laminate plate theory, we will try to give an attempt to provide the physical explanation for 
the new material parameters introduced in the coupled stress theory. The paper will be arranged 
as follows: the constitutive relations for the couple stress theory will be briefly reviewed, and its 
special form with a transverse symmetry will be given, and applied to describe the constitutive 
relations of a thin plate element. Their relations with microstructural parameters will be provided 
through a micro-macro homogenization procedure in a thin plate element (RVE). 
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Couple stress description for a thin plate element 

The general constitutive relation for couple stress theory with centro-symmetry enables the strain 
to uncouple from the rotation at the same point. For the symmetric stress and strain, the 
traditional relation still holds: 
x ,j = C,~k, E k, (1)  

In addition, for the same point ,  another equation is needed to relate the couple stress m,j and the 

rotation vector • k , which are related to the displacement field U, by • k = 1 / 2eumUms, and this 

gives 
m o = B,,k,O~,, (2) 

m,j is an asymmetric tensor and denotes the couple stress. This is a new relation compared to the 

classical continua. So in the couple stress theory, both eqs(1) and (2) are necessary to describe 
the stress and strain relation, in addition to the relation between the couple and curvature at the 

same point. 
In a general case, the coefficients for the stress and strain satisfies C,j,I = Ck~,j = Cj,,, = C,j/k with 

21 independent constants; and B,jkt = Bkhjwith 45 independent constants. In the case of  

transverse symmetry, it can be shown that there are 5 independent constants for C,jkt and 8 for 

B,j,t. This relation is now applied for a thin plate element ( with transverse symmetry x 3), 

which represents a material point in the couple stress theory. 
In this case, the non-zero in-plane stress components are X 11, Z 22, Z,2,ml l, m12,m21,m22 • They are 

related to the strain and rotation by: 

I0 t 
ZI2J L 0 0 Q66 JlE,2 (3) 

mn~ = B . n  Bl111 0 0 q)2'2 

rnlz [ 0 0 B12n B1221 (I91'2 (4) 

m21 j 0 0 B1221 B12,2 O2'1 

~j  are components of  traditional in-plane stiffness matrix for the RVE( a thin plate element). 

Since in the X~ - X 2 plane, the properties of  the material follows the isotropic relation, even for 

the couple stress relation, it can be shown that material constant B , n  does not enter into the 

formulation[10], and for the thin plate element considered, the displacement field can be 
specialized as 

cW3 ~J3 
U I = Ulo - X 3 ~ l  ,U2 = U2o - 2 3 - ~ 9  ,U3 = V3o(Xl ,X2)  (5) 

d2 U 3 o 
This displacement field leads to O1, ~ - c7X~3)(2 - -qb2, 2 , so for the thin plate element, the couple 
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stress relation can be further simplified. In order to keep the notation as for the classical thin 
plate theory, we note M H = m~2, M= = -m2~, M~2 = m22 --- -m~z, and 

K .  = ~2.~ ,K22 = q)~,2 ,K~2 = - ~ u  = O2,2, so the relation(4) can be arranged as 

M22 = - fi- 0 K22 (6) 

fl,~ are the material constants for the couple stress applied to the case of  a thin plate element 

with transverse symmetry X 3. Usually this non-classical materials constants are difficult to 

determine experimentally. The constitutive equations (6), (3) are applied for a material point 
(with special constraint condition such as thin plate element to simplify the analyses ). From the 

micro-mechanical point of  view, the stress and strain, couple stress and curvature are in fact the 
average value from the corresponding local quantities over the RVE. As arranged in the form 

presented in equations (3,6), it can be seen that f l ,~ are in fact corresponding to the bending 

stiffness matrix for the thin plate element. 

Connection with microstructures 

From the classical thin plate theory and the centro-symmetry assumption, the relations between 
the average stress, strain, bending moment and curvature over the thin plate element are in this 

case  

] j  

< 0",2 0 0 < Q66 >Jl- < a'12 

< Mll > <x~Q u > <x3Q12 > 0 kl, > 

= <x3Q12 > <x3Q= > 0 M22 2 2 k ,  2 (8)  

< X3 Q66 > 12 M12 0 0 z < k 

< .  > means the volume average over the thin plate element. The centro-symmetry 
assures< x3Q,j >= 0, Mij are the bending moment and k,j are the corresponding curvature. It can 

be seen that for such thin plate element, the bending moment  and the curvature are constant 

through the RVE due to the thin plate assumption. 

In view of  the similarity of  equations (6),(8) and (3),(7), we see that for the couple stress theory 

applied to the thin plate element, the stress and strain relation can be estimated with the classical 
homogeneous procedure, and the couple stress and rotation relation can be evaluated with 
bending moment and curvature relation averaged over the RVE. This leads to the following 
expressions for non-classical material constants 

For homogeneous materials, it is found that these material constants are related to the element 

size h. 
_ h 2 h 2 
fl=---3-Q,2 ~ =TO,, (1o) 
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where h is the half-thickness for the thin plate element. 
For a layered composite plate, the local length scale such as the thickness of the each individual 
layer may enter into the constitutive formulation in the bending stiffness matrix. Consider a RVE 
consisting of two layered materials equally separated (Fig. 1, due to the symmetry, only half of 

the element is shown ). The Q,J,Q,~ are the in-plane stiffness tensors and ti,tEare the 

corresponding thickness of each layers, and volume fraction of the two materials are f~, f2 .  From 

the basic thin plate theory, we get 

< Q,J >= ~Q~ + /2Q$ (II) 

1 i 1 l 2 1 l 
< x~Qu >= 7[QDf~ + Q$f2 ] hz - 7[QDf~t2 + Q~ f2 t, ]h - g[Qdf, + Q$f2 ]',t2 

(12) 
It is easy to check that when Q~ = Q~ , equation (12) yields results for the homogeneous case. 

Equation (12) also leads to the following results 

1 (SiQ;2t2 -LQ?2t,) I tlt 2 fi 1 (/iQ~it2-f2Q~itl) I tit 2 
- 1 - 1 ( 1 3 )  

flh h (f~Q~: +AQ,22) 2 h 2 'Yh h (f~Q,', +f2Q(~) 2 h 2 

1 1 + r .~2 . h  2 1 I where flh = ~(flQ,2 ]2~,2) ,~'h = -~(fiQH +f2Q(]) h2 , corresponding to the homogeneous 

case with effective in-plane stiffness equal to f~ Q~ + f2 Q~. 

It is seen that < Q,j > is just the average of stiffness matrix weighted by their volume fractions, 

and it corresponds to Q,) in the couple stress theory. For this relation, the microstructure size 

effects does not appears. However for the coefficients of the bending stiffness matrix < x~Q o >, 

which corresponds to the coefficient matrix for the couple and rotation in the couple stress 
theory, the micro-structural parameters such as t] ,t z and the representative volume element size 

h enter into the constitutive formulation, as shown in equation (12). 
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Fig. 1 RVE with layered microstructures 
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Fig 2 coefficient l~ / flh for couple stress 

theory as function of micro-structural size 

Fig 2 shows that influence of the number of the layers on the couple stress coefficients while the 
volume fractions f~ ,f2 are fixed. 

It is seen that when the micro-structural sizes are comparable to the RVE size, the micro- 
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structural size effects are significant. So in this situation, besides the relation between the stress 
and strain, another independent materials constants are necessary to relate the couple stress to the 
curvature. These materials constants are, as can be seen, related to the micro-structural size and 
the local material properties. When micro-structural sizes are fine enough compared to the h, 
equation (12) becomes 

2 1 f c~ 21 h2 hZ <x3Q, >=[flQ,~ + 2~vr-~-=<Q,; > - -  (14) 
• 3 

The thin layered plate element can be considered as a homogeneous material with the in-plane 
stiffness matrix given by < Q,j >, this time the micro-structural size effect disappears in 

accordance with the classical micromechanical concept. 

Discussion and Conclusions 

It is shown, from the above analyses (based on a thin plate element), even for the homogeneous 
material, when the couple stress and curvature are considered, a length scale parameter appears, 
which is equal to the RVE size. When the RVE has microstructures (layered structure considered 
in this paper), a complex length parameter appears, depending on the microstructure size and 
their material properties. If the microstructure sizes are small enough compared to RVE size, the 
microstructure size effect can be neglected and the RVE can be considered as a homogeneous 
material. 
Although in this paper a full connection between the couple stress theory and their implied 
microstructures is not given, a simple idea was indeed advanced to interpret the material 
constants from the microstructural parameters (geometry and material properties). It seems that 
the traditional RVE must be extended to include gradient effect in order to include the size effect 
into the constitutive formulation[11]. For a thin plate element, the obtained constitutive relations 
( stress-strain, moment-curvature) can be fit into macroscopic couple stress formulation, but the 
more general connection between the micro and macro is still being pursued 
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