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Abstract

Built upon Ponte Castañeda�s method for a Cauchy medium, a variational method for evaluating the effective non-

linear behavior of micropolar composites is proposed. The same as for a Cauchy medium, it is shown that the proposed

variational method can be interpreted as the secant moduli method based on second-order stress and couple stress mo-

ments. With simple examples, the interplay between material length parameters of a higher-order medium and its geo-

metrical dimensions and/or material constants is highlighted. By using the new variational method, the influence of

reinforcement size on the yielding and strain hardening of particulate composites is examined in a simple and analytical

manner. The predictions agree well with existing experimental data for selected particulate metal matrix composite sys-

tems. The particle size effect is found to be more pronounced for shear loading and hard particles.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been rekindled interest in studying

the size dependence of material properties, both

experimentally and theoretically. The recent trend

is driven largely by the practical need in the design,

fabrication and characterization of miniaturized

electronic, photonic and mechanical systems with
0167-6636/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.mechmat.2004.03.006

* Corresponding author. Tel.: +44 1223 766316; fax: +44

1223 332662.

E-mail addresses: hugeng@public.bta.net.cn (G. Hu), tjl21@

cam.ac.uk (T.J. Lu).
length scales spanning from nanometers to sub-

micrometers. Consequently, the applicability of
classical continuum mechanics for ideal homoge-

neous materials in small structures has been sub-

jected to acute scrutiny. For instance, for a thin

film with only one or two layers of grains across

the thickness, it is found that the homogenized

material must have a non-local character in order

to accurately describe the strain distribution in

the film thickness (Haque and Saif, 2003).
In addition to the pronounced size dependence

observed in macroscopically homogeneous solids,

particle/fiber-reinforced metal matrix composites
ed.
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Fig. 1. Tensile yield stress (at 0.02% offset strain) of ceramic

particle-reinforced aluminum matrix composite plotted as a

function of particle size. Open and solid square symbols

represent experimental data taken from Kouzeli and Mortensen

(2002), whilst solid and dash lines represent curve-fitting.
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also exhibit strong size dependent yielding/

strengthening at the micron scale; see Fig. 1 plot-

ted using the recent experimental data of Kouzeli
and Mortensen (2002). However, in comparison

with crystalline solids, theoretical studies on the

size dependence of the non-linear overall proper-

ties of such composites are few. This paper aims

to couple the higher-order, phenomenological elas-

ticity and plasticity theory with Ponte Castañeda�s
variational method (Ponte Castañeda, 1991) to

provide a simple analytical tool for predicting the
non-linear behavior of particle-reinforced metal

matrix composites as the reinforcement size is

systematically decreased. We start by briefly

reviewing the different length scales existing in

composite materials, and the implications on high-

er-order non-local continuum theories.

1.1. Crystalline solids: length scales, size effects

and higher-order plasticity theories

Experimentally, it has been well established

that, in a crystalline solid such as copper wires

with diameter ranging from 12–170 lm (Fleck

et al., 1994), nickel foils of thickness in the range

of 12.5–50 lm (Stölken and Evans) and 0.1–0.5
lm thick aluminum films (Haque and Saif, 2003),

the yield stress and strain hardening are strongly

dependent upon the interplay amongst the charac-

teristic geometric size of the material L (e.g., film

thickness), the internal geometric length scale D

(e.g., grain or void size), and the plasticity length

scale l characterizing, say, the gradient of plastic

strains due to geometrically necessary dislocations.

When L�D� l�1 lm, the material becomes

harder than its bulk counterpart, and the harden-

ing/strengthening increases with the further de-

crease of L.

Theoretically, the current consensus is that a
higher-order theory is necessary in order to cap-

ture and predict the experimentally observed size

dependence (Fleck and Hutchinson, 2001). When-

ever a high-order stress measure and the associated

higher-order strain are introduced in addition to

the classical Cauchy stresses and strains, one or

more material length scales arise naturally due to

dimensional consistency. From the continuum
mechanics point of view, to include the non-local

nature of the material into a continuum formula-

tion, extra degrees of freedom (e.g., strain gradi-

ents and microrotations) must be introduced:

such a non-local Cauchy medium will be referred

to as the higher-order continuum in the following.

In this paper, the Cauchy medium means that any

material point in such medium can be considered
as infinitesimally small, and any surface of such

material element transmits only force. The high-

er-order continuum theory is introduced to de-

scribe more accurately the structural response of

the material. According to different length scale

conditions, different homogenization strategies

should be adopted (Forest et al., 1999; Hu et al.,

2004), as summarized in Table 1.
There exist different classes of higher-order

plasticity theories, some phenomenological and

some mechanism-based. The phenomenological

theory is popular due to its simplicity, the repre-

sentative being the strain gradient plasticity of

Fleck and Hutchinson (1993), and its subsequent

refinements/variations (e.g., Fleck and Hutchin-

son, 2001; Gao et al., 1999a,b; Chen and Wang,
2001). The Fleck–Hutchinson theory is built essen-

tially upon the general framework of couple stress

theory (see, e.g., Toupin, 1962; Midlin, 1964; Erin-



Table 1

Continuum models for different length scale conditions

Continuum model Length scale condition Homogenized continuum

Cauchy medium L�R D� l Cauchy medium

L�D D�d

Higher-order medium l�b D� l�1 lm
D�d

Cauchy medium L�R D� l Higher-order medium

L�D D�d

Higher-order medium l�b D� l�1 lm
D�d

L=structural dimension, d=constituent (e.g., precipitate) size, R=size of representative volume element, b=dislocation spacing,

D=inhomogeneity (e.g., grain, particle) size, l=(elastic or plastic) material length scale.
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gen, 1968), as well as the classical J2 deformation

and flow theory of plasticity. The original version

of the Fleck–Hutchinson theory contains only one

length parameter l2 associated with the rotation

gradient, which may lead to erroneous predictions

for cases where the stretch gradient is domi-

nant (e.g., void growth, cavitation, crack-tip fields

and indentation). A second length parameter l1
linked with the stretch gradient is subsequently

introduced (Fleck and Hutchinson, 2001), and its

validity verified against experimental measure-

ments. For metals, l1=0.2–0.5 lm is typically one

order of magnitude shorter than l2=2–5 lm (Stöl-

ken and Evans, 1998; Fleck and Hutchinson,

2001). 1

There are several different length scales at play
in a real material (which is intrinsically heterogene-

ous). The classical phenomenological theory of

plasticity ignores the microstructural details of

the material, treating it as a homogenized Cauchy

continuum. The underlying assumption of the

homogenization is that L�D and L� l such that

the homogenized Cauchy medium is equivalent to

the original microheterogeneous material in terms
of overall (effective) properties; until recently, a

further assumption made, often implicitly, is that

D� l. This is in general realized by introducing a
1 The most general Fleck–Hutchinson theory contains a

third length parameter, l3 but its influence is only of secondary

consequence in all the practical cases that have hitherto been

studied.
representative volume element (RVE) whose size,

R, gives an intermediate length scale between the

structure and the local inhomogeneity (Nemat-

Nasser and Hori, 1993), with L�R�D and

L�R� l assumed. In other words, R is small in

macroscale but large in comparison with �molecu-

lar� dimensions. In reality, there may exist another

sub-microscopic geometric length d which repre-
sents the size of inhomogeneities (constituents)

within a grain of a crystalline solid. Although

often not explicitly expressed, the fundamental

assumption of classical continuum mechanics is

D�d, as illustrated in Fig. 2a.

The various length scales of a microheterogene-

ous material may be differentiated into two main

types. The first type includes L, R, D and d, which
represent separately macro, meso, micro and sub-

microscale geometric dimensions. The second type

includes the material length parameter l at the

microscopic scale, which comes into play only

when the deformation is such that non-negligible

(elastic and plastic) strain gradients are induced:

it may therefore be viewed as a representation of

the wavelength of local stress and strain fluctua-
tions, and as such it may depend upon the corre-

sponding geometrical length scale such as D and

also, most likely, upon material constants since

deformation and its gradients under stressing are

involved. In classical continuum mechanics, the

stress and strain wavelengths have the same order

of magnitude as the structural length scale L, and

hence Lmay also be interpreted as a (global) mate-
rial length parameter. As summarized in Table 1



Fig. 2. Length scale conditions in crystalline solids: (a) Cau-

chy medium; (b) higher-order medium; (c) homogenization

model.
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and illustrated schematically in Fig. 2, for homo-

geneous materials, classical continuum mechanics
applies when L�R�D�d and L�R�D� l

and, correspondingly, the materials are called the

Cauchy medium (Fig. 2a); higher-order continuum

mechanics theories prevail if L�R�D�d� l�1

lm, with the materials referred to as the non-Cau-

chy or higher-order continuum (Fig. 2b). Another
length scale, b�0.01 lm, representing the average

spacing of dislocations, has been neglected hith-

erto by both classical and higher-order pheno-

menological plasticity theories. A higher-order

continuum theory with atomic basis and using
the dislocation spacing b as the relevant length

scale has been put forward recently by Garkipati

(2003). In the present investigation, the assump-

tion that l�b will be retained.

For both the Cauchy medium (Fig. 2a) and the

higher-order medium (Fig. 2b), the homogeniza-

tion model is shown in Fig. 2c. In the homogenized

medium, it is assumed that the microstructural de-
tails of a material point B can be neglected. The

difference between the two different types of med-

ium is that, after homogenization, the deformation

of a higher-order continuum needs to be described,

in addition to the classical Cauchy stresses and

strains, by introducing higher-order stress/strain

measures and the associated material length scales,

whereas the latter are not needed for a Cauchy
medium.

If the length parameters L, R, D and/or d are all

on the order of 1�100 nm, recent experimental

evidence suggests that the existing higher-order

continuum theories may no longer be valid (Haque

and Saif, 2003). Using a novel testing technique

based on MEMS (microelectro-mechanical sys-

tems), Haque and Saif (2002, 2003) found that
for thin aluminum films with thickness less than

100 nm and grain sizes smaller than 50 nm, it is

energetically unfavorable for the grains to accom-

modate dislocations (Wang et al., 1995), and hence

the dislocation mechanism and the associated plas-

ticity strain gradient effect cannot be used to ex-

plain the remarkable strengthening and (yielding)

of the nanoscale thin film both under uniaxial ten-
sion and bending. In comparison, no such size

dependence is observed during the uniaxial tension

of a pure copper wire with diameter ranging from

12 to 170 lm (Fleck et al., 1994). Furthermore,

under TEM (tunneling electronic microscope),

Haque and Saif (2003) observed extensive disloca-

tion activities (with �5 nm dislocation spacing)

in 200 nm thick films, but no evidence of dislo-
cations is found for 100 nm specimens (which

nonetheless still exhibit pronounced yielding

behavior).
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1.2. Length scales and size effects in particulate

composites

The classcal micromechanics for a particle-rein-

forced matrix composite assumes that both the
reinforcements and the matrix are homogenized

Cauchy media: the homogenized equivalent mate-

rial of the composite itself is also a Cauchy med-

ium, with L�R�D (Zaoui, 2002). Here, the

microstructural details of the matrix, e.g., constit-

uents, voids and precipitates of size d and strain

gradient features, are ignored, with the assumption

that D�d and D� l. In other words, the classical
micromechanics is valid if L�R�D�d and

L�R�D� l (Fig. 3a).

However, for metal matrix composites, if the

plasticity length scale l and/or the constituent size
Fig. 3. Length scale conditions in particulate composites: (a) Cauchy
d of the matrix have the same order of magnitude

as that of the particle reinforcements, i.e., D�d

and D� l (Fig. 3a,b), the non-local nature of the

matrix material must be taken into account. In

particular, a higher-order theory of plasticity for
the matrix needs to be employed when D� l�1

lm.

For composites having either a Cauchy matrix

(Fig. 3a) or a higher-order matrix (Fig. 3b), the

continuum model after homogenization is shown

in Fig. 3c. Comments made previously regarding

Fig. 2c for a crystalline solid still apply here for

the homogenized matrix containing particulate
reinforcements.

Micromechanical methods for the length scale

condition L�R�D (�d�b) and L�R�D

(� l�b) have been well developed in the past
medium; (b) higher-order medium; (c) homogenization model.



2 For a given phase distribution and a fixed volume ratio,

Xue et al. (2002) found that the difference between the size

effects induced separately by spherical and cylindrical particles

is small.
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decades, wherein the local material and the corre-

sponding homogenized material can be both

modeled as the Cauchy medium. The bounding

methods proposed by Hashin and Shtrikman

(1963) and Milton (1981) have proven to be of
enduring allure for a wide range of applications,

see, e.g., Torquato (1991, 2002) for a comprehen-

sive review. Other approximate methods have also

been widely used to predict the overall thermome-

chanical properties of various composites with

particular microstructures, such as the Mori–Tan-

aka model (Mori and Tanaka, 1973), the double-

inclusion model (Hori and Nemat-Nasser, 1993),
the self-consistent method (Kroner, 1958), and

the generalized self-consistent method (see, e.g.,

Christensen and Lo, 1979). The interconnections

amongst these approximate methods can be found

in Hu and Weng (2000a,b).

To predict the non-linear effective behavior of a

composite material, linearized methods such as the

secant moduli method and its modification (Tan-
don and Weng, 1988; Qiu and Weng, 1992; Hu,

1996), the variational method (Ponte Castañeda,

1991), and the semi-analytical unit cell model (Ji

and Wang, 2003) have been proposed. Although

these methods provide useful tools to bridge the

macroscopic properties of the composite with its

microstructural parameters, they all fail to predict

the dependence of its overall plastic behavior on
reinforcement size at the micron scale.

To include the size dependence of the overall

property for a non-linear composite, two strategies

may be adopted. The first stems from the viewpoint

of materials science by introducing the geometri-

cally necessary dislocation hardening or disloca-

tion interaction (see, e.g., Fleck et al., 1994;

Yashin et al., 2001), whereas the second originates
from the viewpoint of continuum mechanics by

introducing higher-order continuum theories (see,

e.g., Smyshlyaev and Fleck, 1994; Wei, 2001; Tsa-

grakis and Aifantis, 2002; Forest et al., 2000; Chen

and Wang, 2002; Liu and Hu, in press). The latter

approach will be exploited in this study.

1.3. Scope and objectives

With focus placed on isotropic particle-rein-

forced metal matrix composites, this paper aims
to explore the interconnections between material

length scales and geometric sizes (and/or material

constants), to develop a higher-order continuum

theory for non-linear non-Cauchy media, to ex-

tend the variational principle of Ponte Castañeda
(1991) for a non-linear Cauchy composite to a

non-linear non-Cauchy composite, and to predict

analytically the overall mechanical response (yield-

ing/strengthening and strain hardening) of the

non-linear composite. Here, the size scales consid-

ered are such that L�R�D� l�1 lm. Under

these conditions, as in homogeneous crystalline

solids (but under the conditions that L�R�
D� l�1 lm), similarly compelling evidence of

strong size dependence of yielding/strengthening

exists in particle/fiber-reinforced metal matrix

composites (see, e.g., Smyshlyaev and Fleck,

1994, 1995; Lloyd, 1994; Kouzeli and Mortensen,

2002; Fig. 1). For simplicity, our analytical study

will be restricted to small strain/small rotation

time-independent non-linearity and, further, to
isotropic composites with particles firmly bonded

to the metal matrix (whose microstructural details

are ignored, i.e., the size parameter d is absent).

The volume fraction and size of the particles are

taken into account, but not the particle shape

and distribution. 2

In this paper, the variational method of Ponte

Castañeda (1991) and the deformation theory of
micropolar plasticity are used in order to obtain

simple closed form solutions. We note, on one

hand, numerical schemes such as the method of fi-

nite elements (Forest et al., 2000; Bassani et al.,

2001; Xue et al., 2002) have been applied to non-

local composites, but not all numerical methods

are suitable or can give satisfactory predictions

(Fleck and Hutchinson, 2001). For example, differ-
ent types of higher-order finite element may yield

rather different solutions for the same problem

(Shi et al., 2000), and it is cumbersome to imple-

ment non-standard boundary and interface condi-

tions numerically. On the other hand, for

proportional or nearly proportional loading, the
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deformation theory can provide analytical solu-

tions for basic problems, is much simpler to imple-

ment numerically, and its validity and applicability

has been well addressed (see, e.g., Budiansky,

1959; Fleck and Hutchinson, 2001).
2. Micropolar elasticity and plasticity:

fundamental formulations

2.1. Micropolar elasticity

Following Koiter (1964) and Eringen (1968), to
extend the classical Cauchy continuum mechanics

theory to a higher-order medium, it is assumed

that any material point is endowed with an inter-

nal microstructure. Accordingly, three displace-

ments ui (i=1, 2, 3) are employed in the usual

way to characterize the macroscopic motion of

the material point, and three additional microrota-

tion angles (or angular displacements) /i (i=1, 2,
3) are introduced to describe the rotation of the

microstructure within the material point. Further-

more, it is assumed that the rotation field is kine-

matically independent from the displacement

field, and /i is distinct from the material rotation

hi” (1/2)eijkuk, j, where eijk is the permutation ten-

sor, repeated indices imply summation over (1, 2,

3), the subscript preceded by a comma denotes
the derivative with respect to the corresponding

spatial coordinate, and the Cartesian system

(x1,x2,x3) is adopted throughout the paper. The

corresponding continuum theory is called the

micropolar theory, being different from other

higher-order continuum theories such as the

micromorphic theory (Eringen, 1999), the micro-

stretch theory (Markov, 1981), and the strain gra-
dient theory (German, 1973). More detailed

discussions on the micropolar elasticity theory

can be found in the monographs by Eringen

(1999) and by Nowacki (1986). Jasiuk and Ost-

oja-Starzewski (1995) applied the micropolar elas-

ticity theory to analyze the materials with holes

and intrusions, whilst Lubarda and Markenscoff

(2000, 2003) discussed the conservation integrals
in couple stress and micropolar elasticity.

With micropolar continuum theory, not only

forces but also moments can be transmitted across
the surface of a material element. Similar to the

conventional strain tensor eij (defined as the gradi-

ent of the displacement vector) which is the work

conjugate of the Cauchy stress tensor rij, the gra-

dient of the rotation vector is defined as the torsion
(or curvature) tensor kij, which is related by a con-

stitutive relation to the couple stress tensor mij.

Both the newly introduced couple stress (torsion)

tensor and the classical stress (strain) tensor are

in general non-symmetric. With body forces and

body couples neglected, a well-posed micropolar

boundary value problem for a continuum solid

of volume V and bounded by surface S can be
established by the following three sets of governing

equations:

eij ¼ uj;i � ekij/k

kij ¼ /j;i

(
ðKinematic relationsÞ;

ð2:1Þ

rij;i ¼ 0

mij;i þ ejikrik ¼ 0

�
ðEquilibrium equationsÞ;

ð2:2Þ

rij ¼ Cijklekl þ Bijklkkl
mij ¼ Bijklekl þ Dijklkkl

�
ðConstitutive lawsÞ;

ð2:3Þ

and the corresponding boundary conditions:

rijni ¼ pj; mijni ¼ zj; on Cr; ð2:4Þ

ui ¼ ubi ; /i ¼ /b
i ; on Cu; ð2:5Þ

where Bijkl, Cijkl and Dijkl are the elastic constant

tensors, pj and zj are the surface force and moment
vectors acting on a surface element with unit nor-

mal ni, C
r is part of the free surface S where trac-

tions and moments are prescribed, and Cu=S�Cr

is the remaining part of the surface where displace-

ments ubi and /b
i are specified.

The preceding governing equations can be ob-

tained from the principle of minimum potential en-

ergy and the principle of minimum complementary
energy (see, e.g., Koiter, 1964; Fleck and Hut-

chinson, 1993). Let ðuci ;/
c
i Þ represent any set

of kinematically admissible displacement fields

that satisfy the compatibility condition (2.1) and
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kinematic boundary condition (2.5), and let

ðr�
ij;m

�
ijÞ denote an arbitrary set of statically admis-

sible stress fields that satisfy the equilibrium condi-

tion (2.2) and force boundary condition (2.4). Let

(ui,/i) and (rij,mij) be the actual solutions of the
problem. For all kinematically admissible dis-

placement fields ðuci ;/
c
i Þ and all statically admissi-

ble stress fields ðr�
ij;m

�
ijÞ, the principle of minimum

potential energy and the principle of minimum

complementary energy dictate (see, e.g., Nowacki,

1986):

�W ðr�;m�Þ6 � W ðr;mÞ
¼ Uðu;/Þ6Uðuc;/cÞ; ð2:6Þ

where W(r�,m�) and U(uc,/c) are separately the

complementary energy and potential energy of

the system, defined by:

W ðr�;m�Þ ¼
Z
V
wðr�;m�ÞdV

�
Z
Cu
ðp�ub þm�/bÞdS; ð2:7aÞ

Uðuc;/cÞ ¼
Z
V
uðuc;/cÞdV

�
Z
Cr
ðpbuc þmb/cÞdS: ð2:7bÞ

In the above equations, w(r�,m�) and u(uc,/c) are

the strain and stress potentials, respectively, and

boldfaced symbols represent vectors or matrices.

The actual displacement and stress fields minimize

the complementary energy and the potential en-

ergy, as expressed mathematically by (2.6). Corre-

spondingly, the principle of virtual work for a

micropolar solid can be written as:Z
V
½rijdeij þ mijdkij�dV ¼

Z
S
ðpidui þ zid/iÞdS:

ð2:8Þ

The study below will be restricted to isotropic
micropolar continuum with centro-symmetry

(Eringen, 1999; Nowacki, 1986), namely

B ¼ 0; ð2:9aÞ
ijkl
Cijkl ¼ kdijdkl þ ðlþ jÞdjkdil þ ðl� jÞdikdjl;
ð2:9bÞ

Dijkl ¼ adijdkl þ ðbþ cÞdjkdil þ ðb� cÞdikdjl;
ð2:9cÞ

where (l,k) are the classical Lame constants,
(j,c,b,a) are new material constants introduced

in micropolar theory, and dij is the Kronecker

delta.

With r0
ðijÞ, rÆijæ, r (”rii) and e0ðijÞ, eÆijæ, e (”eii)

denoting separately the deviatoric symmetric,

anti-symmetric and hydrostatic parts of the stress

and strain tensors, and similar notations for the

couple-stress and torsion tensors, the well-estab-
lished elastic constitutive relations for a linear iso-

tropic micropolar material can be rewritten as

(Nowacki, 1986):

r0
ðijÞ ¼ 2le0ðijÞ; rhiji ¼ 2jehiji; r ¼ 3Ke; ð2:10aÞ

m0
ðijÞ ¼ 2bk0ðijÞ; mhiji ¼ 2ckhiji; m ¼ 3Nk;

ð2:10bÞ
and

K ¼ kþ 2

3
l; N ¼ aþ 2

3
b; ð2:11Þ

where K is the bulk modulus, N can be regarded as

the corresponding stiffness measure for torsion,

and symbols ( ) and Æ æ in the subscript denote

the symmetric and anti-symmetric parts of a ten-

sor, respectively. The strain energy density for

such a micropolar continuum then becomes:

w ¼ 1

4l
r0
ðijÞr

0
ðijÞ þ

1

4j
rhijirhiji þ

1

18K
r2

þ 1

4b
m0

ðijÞm
0
ðijÞ þ

1

4c
mhijimhiji þ

1

18N
m2; ð2:12Þ

from which the constitutive laws can be obtained

as:

e0ðijÞ ¼
ow
or0

ðijÞ
; ehiji ¼

ow
orhiji

; e ¼ 1

3

ow
or

; ð2:13aÞ

k0ðijÞ ¼
ow

om0
ðijÞ

; khiji ¼
ow

omhiji
; k ¼ 1

3

ow
om

:

ð2:13bÞ
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There are two distinct sets of moduli: (l,k,j)
which relate the traditional stresses and strains

and have a dimension of force per unit area, and

(c,b,a) which relate the higher-order couple-stres-

ses and torsions, with a dimension of force. Due to
the dimensional difference between the two sets of

moduli, at least three intrinsic characteristic

lengths can be defined for an isotropic elastic

micropolar material. These elasticity length

parameters can be defined in different ways; in this

paper, they are defined as:

l1 ¼ ðc=lÞ1=2; l2 ¼ ðb=lÞ1=2; l3 ¼ ða=lÞ1=2:
ð2:14Þ
2.2. Micropolar plasticity

The plasticity theory for a micopolar material is
not as well developed as the micropolar elasticity.

A deformation version of the phenomenological

theory of micropolar plasticity is presented below,

which is analogous to that of Chen and Wang

(2001) proposed from a different perspective. It

should be emphasized that the micropolar theory

used in this paper is different from the strain gradi-

ent theory proposed by Fleck and Hutchinson
(1993) for metals and Smyshlyaev and Fleck

(1994, 1995) for non-linear composites, since

microrotation is independent of displacement gra-

dient in the micropolar theory but not in the strain

gradient theory.

For a non-linear micropolar material, let the

generalized equivalent stress be defined as (Lipp-

mann, 1995; Fleck and Hutchinson, 2001; Chen
and Wang, 2001; Liu and Hu, in press):

r2
e ¼ r2

e þ �l
�2

1 m2
ðeÞ þ �l

�2

2 m2
hei; ð2:15Þ

where ð�l1;�l2Þ are material length parameters

appearing on dimensional grounds, and

re � rðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
r0
ðijÞr

0
ðijÞ

r
;

mðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
m0

ðijÞm
0
ðijÞ

r
; mhei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
mhijimhiji

r
; ð2:16Þ

are the usual von Mises effective stress and the

analogous effective couple stresses, respectively.
Let the generalized yield surface be specified by:

Uðre; ryÞ ¼ re � ry ¼ 0; ð2:17Þ
where ry is the current uniaxial flow stress. When

the non-linear micropolar material is subjected to

a uniaxial tensile stress r11, �re ¼ r11, and yielding
occurs when r11=ry. In the absence of plastic flow

or micropolar effect, re ¼ re. Also note that ð�l1;�l2Þ
may in the main be interpreted as the characteristic

plasticity length scales. Following Fleck and Hut-

chinson (1994) Fleck and Hutchinson (1993) and

Chen and Wang (2001), the stress potential for a

non-linear micropolar material may be written as:

w ¼ w0ðreÞ þ
1

6j
r2
hei þ

1

18K
r2 þ 1

18N
m2 ð2:18aÞ

or, equivalently,

w ¼ w0ðreÞ þ
1

6l

r2
hei

j=l
þ r2

2þ 3k=l
þ m2

2l22 þ 3l23

" #
:

ð2:18bÞ
Here, rhei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rhijirhiji

q
, and w0ðreÞ is specified by

a power law relation as:

w0ðreÞ ¼
r2
e

6l
þ n
nþ 1

1

H 1=n
ðre � ryÞ

nþ1
n ; ð2:19Þ

where n is the strain hardening exponent and H is

the hardening modulus. In the absence of plasticity

effects, (2.19) reduces to the elastic counterpart

(2.12).

In the linear elastic range (i.e., re < ry), substi-

tution of (2.19) into (2.13) leads to the same stress

(couple stress) and strain (torsion) relations as

those shown in (2.10). In the elastic–plastic regime,
an identical manipulation leads to:

e0ðijÞ ¼
1

2ls

r0
ðijÞ

re

; ehiji ¼
1

2js
rhiji; e ¼ 1

3Ks r;

ð2:20aÞ

k0ðijÞ ¼
1

2bs

m0
ðijÞ

re

; k0hiji ¼
1

2cs
m0

hiji

re

; k ¼ 1

3N s m;

ð2:20bÞ
where

ls ¼ 1

ð1=lÞ þ 3½ð�re � ryÞ=H �1=n=�re

;

js ¼ j; Ks ¼ K; ð2:21aÞ
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bs ¼ l
2

1l
s; cs ¼ l

2

2l
s; N s ¼ N ; ð2:21bÞ

and the superscript �s� is used to denote the secant

moduli of the non-linear micropolar material (Liu

and Hu, in press). These secant moduli will be used

in the following sections to determine the non-lin-

ear effective properties of a particle-reinforced

micropolar composite.
It is seen from (2.21b) that, to have a smooth

transition from elasticity to plasticity, l1 ¼ l1 and

l2 ¼ l2 are required, i.e., there is no difference be-

tween elastic and plastic length scales. Conse-

quently, for simplicity, l1 ¼ l2 ¼ l3 ¼ l1 ¼ l2 � lm
will be assumed in the present study so that only

one length scale appears in the theory.
3. Variational method for non-linear micropolar

composites

3.1. Micro–macro transition principle for

heterogeneous micropolar medium

As previously discussed, this study will focus on
the length scale condition L�R�D�d (Fig. 3a)

for particle-reinforced micropolar composites.

That is, the particle size D is sufficiently small in

comparison with the RVE size R, and the effect

of macroscopic stress gradient on the RVE can

be neglected (i.e., R is sufficiently small in compar-

ison with the structural dimension L). In other

words, whilst the effective medium can be consid-
ered as the classical Cauchy medium, the local

constituents are idealized as micropolar materials

due to the coarse microstructure of the matrix

(D�d). Consequently, the following traditional

boundary conditions can be applied:

rijni ¼ RðijÞni; mijni ¼ 0; ð3:1Þ

where hrðijÞi ¼ RðijÞ � Rsym
ij . Here, Æ�æ represents the

volume average of the said quantity over the RVE,

and the average stress R(ij) is symmetric and con-

stant over the RVE. In the case of elasticity, it

has been demonstrated that the following micro–

macro transition principle holds (Xun et al.,

2004; Liu and Hu, in press):

hreþmki ¼ RsymM
sym

Rsym; ð3:2Þ
where the overbar is used to denote the effective

quantities of the composite, and M
sym

is the effec-

tive compliance tensor of the composite that

relates the average symmetric stress and strain of

the RVE as Rsym ¼ M
symhesymi.

For non-linear elasticity, the local strain poten-

tial is defined by Eqs. (2.18) and (2.19). The corre-

sponding effective macroscopic potential of the

micropolar composite is defined in the same way

as that in classical micromechanics:

W effðRsymÞ ¼ Inf
8ðr�;m�Þ2SA

hwðr�;m�; xÞi; ð3:3Þ

where SA represents the set of all statistically

admissible fields that satisfy the boundary condi-

tion (3.1) and the equilibrium condition (2.2),

and the operator Inf means the minimum.

The same process as that shown above for the

force boundary condition (3.1) holds for the
following displacement boundary condition,

eijxi=E(ij)xi and /i=0 where EðijÞ � Esym
ij ¼ heðijÞi

is the symmetric part of the average strain, which

allows one to define the effective stiffness tensor

of the micropolar composite for linear elasticity

and the stress potential for non-linear elasticity.

3.2. Variational method for non-linear

micropolar composites

We will now apply the variational principle

to the RVE of a non-linear micropolar composite

under the boundary condition of (3.1). It is as-

sumed that the non-linear composite contains N

phases and, for phase r (of volume fraction cr),

its strain potential wr is defined by (2.19). Follow-
ing Ponte Castañeda (1991), we introduce a linear

comparison material associated with phase r and

write its strain potential as:

ws
rðr;mÞ ¼ 1

2
rMs

rrþ 1

2
mHs

rm; ð3:4aÞ

where the superscript �s� represents quantities asso-
ciated with the non-Cauchy matrix of the linear
comparison micropolar composite, and Ms

r and

Hs
r are the local compliance tensors of phase r in

the linear comparison composite. Let

V rðMs
r;H

s
rÞ ¼ Sup

8ðr;mÞ
½ws

rðr;mÞ � wrðr;mÞ�; ð3:4bÞ
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where the operator Sup means the supreme opera-

tion.

It will now be shown that the linear comparison

material as defined above has a secant compliance

of the actual material. Multiplying both sides of
(3.4) by the characteristic function vr(x) of phase
r (vr=1 for all points inside the phase; otherwise

vr=0; r=1,2, . . . ,N), one can rearrange (3.4) for

the whole composite, as:

wðr;m; xÞPwsðr;m; xÞ � V ðMs;Hs;xÞ: ð3:5Þ

Averaging both sides of (3.5) over the RVE and
then carrying out the minimization over all the sta-

tistically admissible fields (r,m)––noting that the

statistically admissible fields for the non-linear

composite are automatically the statistically admis-

sible fields for the linear comparison composite

under the same loading condition––we arrive at:

W eff PW
sðMs;Hs;RsymÞ � V ðMs;HsÞ; ð3:6Þ

where W
sðMs;H s;RsymÞ is the effective macro-

scopic strain potential for the linear comparison

composite with local compliance tensors (Ms
r;H

s
r)

for phase r, and

V ðMs;HsÞ ¼
XN
r¼1

crV rðMs
r;H

s
rÞ: ð3:7Þ

The same as Ponte Castañeda�s variational method

for a non-linear Cauchy composite, the bounds

and estimate of the effective strain potential for a

non-linear micropolar composite can be obtained

by the corresponding bounds and estimate for

the corresponding linear comparison micropolar
composite. These bounds and estimate can be op-

timized over all the possible linear comparison

composites, as:

W eff PW
�
eff � Sup

8ðMs;HsÞ
½W sðMs;Hs;RsymÞ� V ðMs;HsÞ�

� Sup
8ðMs;HsÞ

½F �; ð3:8Þ

which represents the micropolar version of Ponte

Castañeda�s variational method for non-linear

micropolar composites.
3.3. Interpretation as the secant moduli method

For a Cauchy medium, Qiu and Weng (1992),

Suquet (1995) and Hu (1996) have demonstrated

that the variational method of Ponte Castañeda
(1991) can be interpreted as the secantmoduli meth-

od based on the second-order stress moments. We

will demonstrate next that the micropolar version

of Ponte Castañeda�s variational method can be ex-

actly interpreted as the secant moduli method based

on the second-order stress and couple stress mo-

ments, proposed recently by Liu and Hu (in press).

Firstly, by evaluating the supreme operation in
Eq. (3.4), we obtain:

Ms
rr ¼ owr

or
; Hs

rm ¼ owr

om
: ð3:9Þ

Eq. (3.9) indicates that the compliance of phase r in

the linear comparison micropolar material is al-
ways equal to the secant compliance tensor of

phase r in the actual micropolar material. Next,

the supreme operation in (3.8) that determines the

evolution of local secant compliance tensors as a

function of external load is carried out, yielding:

hvrrr 	 rri þ 2 vrrrM
s
r

orr

oMs
r

� �
� 2 vr

owr

orr

orr

oMs
r

� �
¼ Rsym oM

sym

oMs
r

Rsym; ð3:10aÞ

hvrmr 	mri þ 2 vrmrH
s
r

omr

oHs
r

� �
� 2 vr

owr

omr

omr

oHs
r

� �
¼ Rsym oM

sym

oHs
r

Rsym; ð3:10bÞ

where M
sym

is the effective compliance tensor of

the linear comparison micropolar composite, and

	 denotes the dydic operation. In deriving

(3.10a,b), the following properties of a centro-sym-

metric material have been utilized:

omr

oMs
r

¼ 0;
orr

oHs
r

¼ 0: ð3:11Þ

With the help of (3.9), Eqs. (3.10a,b) can be fur-

ther reduced to:

crhrr 	 rrir ¼ Rsym oM
sym

oMs
r

Rsym; ð3:12aÞ
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crhmr 	mrir ¼ Rsym oM
sym

oHs
r

Rsym; ð3:12bÞ

where Æ�ær means the volume average of the said

quantity over phase r.

Eqs. (3.11) and (3.12) allow one to evaluate the

effective stress defined in (2.15) for the micropolar

matrix in the linear comparison composite and, in
turn, the evolution of the secant compliance tensor

of the matrix in the actual non-linear micropolar

composite. The strain and stress relation for the

non-linear micropolar composite can be simply

obtained as:

Esym ¼ oW
�
eff

oRsym

¼ M
sym

Rsym � oF
oMs

r

oMs
r

oRsym � oF
oHs

r

oHs
r

oRsym :

ð3:13Þ

However, due to the optimization process in (3.8),

one has:

oF
oMs

r

¼ 0;
oF
oHs

r

¼ 0; ð3:14Þ

upon which (3.13) reduces to:

Esym ¼ M
sym

Rsym: ð3:15Þ
We have therefore established the equivalence be-

tween the effective elastic compliance tensor of

the linear comparison micropolar composite and
the effective secant compliance tensor of the actual

non-linear micropolar composite.

In fact, (3.12a,b) can be derived directly from

the fluctuation field method, recently developed

by Liu and Hu (in press) for a micropolar compos-

ite. From the micro–macro transition principle de-

fined in (3.1), Eq. (3.2) for the linear comparison

composite can be rewritten as

hrMsrþmHsmi ¼ RsymM
sym

Rsym: ð3:16Þ

With the macroscopic stress Rsym fixed, the inde-
pendent variations dMs

r and dHs
r of the local com-

pliance tensor for each of the N phases give:

crhrdMs
rrþmdHs

rmir þ 2hrMsdri þ 2hmHsdmi
¼ RsymdM

sym
Rsym: ð3:17Þ
It can be shown ÆrMsdræ= ÆmHsdmæ=0, so that

(3.17) can be simplified as:

crhrdMs
rrþmdHs

rmir ¼ RsymdM
sym

Rsym: ð3:18Þ
Since dMs

r and dHs
r are independent, (3.18) leads

naturally to (3.12a,b).

In summary, the proposed variational method

is exactly equivalent to the secant moduli method
based on the second-order stress and couple stress

moments (Liu and Hu, in press). This variational

method can be considered as the natural extension

of Ponte Castañeda�s variational method for a

non-linear Cauchy medium, and the secant moduli

interpretation of the latter has already been estab-

lished by Suquet (1995) and Hu (1996). In the next

section, this method will be applied to predict the
non-linear behavior of selected non-linear micro-

polar composite systems subjected to either uniax-

ial or multiaxial loading.
4. Applications

Although the Hashin–Shtrikman bounds and
self-consistent approximation of an incompressible

composite with strain gradient effects have been

provided by Smyshlyaev and Fleck (1994), as pre-

viously discussed, the strain gradient theory (Fleck

and Hutchinson, 1993) they used is different from

the micropolar theory used in this paper. At pre-

sent, it appears that the bounds for a linear micro-

polar composite, like the Hashin–Shtrikman
bounds for a Cauchy medium (Hashin and Shtrik-

man, 1963), are not available. The analytical esti-

mate for the effective moduli of micropolar

composites is only recently given by Sharma and

Dasgupta (2002), Xun et al. (2004), Liu and Hu

(in press). To apply the proposed variational

method to a non-linear particle-reinforced micro-

polar composite and obtain analytical solutions,
the particles are assumed to be elastic Cauchy

medium, spherical in shape, randomly distributed,

and have identical size with volume fraction f; the

matrix material is taken as a non-linear micropolar

medium that satisfies the power law of (2.19).

According to Sharma and Dasgupta (2002) and

Liu and Hu (in press), for a particulate composite,

the effective moduli of the linear comparison
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micropolar composite estimated by extending the

Mori–Tanaka method (Mori and Tanaka, 1973)

to a micropolar composite are given by:

�ls

ls
0

¼ 1þ f
ð1� f Þbs þ ls

0=ðl1 � ls
0Þ
; ð4:1aÞ

K
s

K0

¼ 1þ f
ð1� f Þas þ K0=ðK1 � K0Þ

; ð4:1bÞ

where (K
s
;K1;K0Þ are separately the bulk moduli

of the linear comparison composite, particle, and

matrix, (ls; l1; l
s
0) are the corresponding shear

moduli, and (bs,as) are the components of the

average Eshelby tensor for the micropolar linear

comparison matrix (Liu and Hu, in press):

bs ¼ 6ðK0 þ 2ls
0Þ

5ð3K0 þ 4ls
0Þ
� 6j0

5ðj0 þ ls
0Þ
GðgÞ; ð4:2aÞ

as ¼ 3K0

3K0 þ 4ls
0

: ð4:2bÞ

Here, the superscript �s� represents quantities asso-
ciated with the matrix of the linear comparison

micropolar composite, and

GðgÞ ¼ e�gðg�2 þ g�3Þ½g cosh g� sinh g�;

g ¼ a
h
; h2 ¼ ðls

0 þ j0Þðcs0 þ bs
0Þ

4ls
0j0

;

where a denotes the particle radius. Since K0 and

j0 are equal to their elastic counterparts, the

superscript �s� has been dropped for these varia-

bles.

With (2.12) for the strain potential of a linear

micropolar material and with the help from
(3.18), we let ls

0, b
s
0 and cs0 have independent vari-

ations, resulting in:

hr0
ðijÞr

0
ðijÞi0 ¼

2

3c0

ls
0

ls

� �2
ols

ols
0

R2
e þ

1

3

ls
0

K
s

� �2
oK

s

ols
0

R
2

" #
;

ð4:3aÞ

hm0
ðijÞm

0
ðijÞi0 ¼

2

3c0

bs
0

ls

� �2
ols

obs
0

R2
e þ

1

3

bs
0

K
s

� �2
oK

s

obs
0

R
2

" #
;

ð4:3bÞ
hmhijimhijii0 ¼
2

3c0

cs0
ls

� �2
ols

ocs0
R2

e þ
1

3

cs0
K

s

� �2
oK

s

ocs0
R

2

" #
;

ð4:3cÞ

where Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
R0

ðijÞR
0
ðijÞ

q
, R=Rii, and Æ�æ0 denotes

the volume average of the said quantity over the

matrix phase.

For the linear comparison micropolar compos-

ite, the effective stress of the matrix defined by

(2.15) can now be written as:

r2
e ¼ A2R2

e þ B2R2; ð4:4Þ

where A and B are non-dimensional parameters

given by:

A2 ¼ ls2

0

c0ls2

ols

ols
0

þ l2m
ols

obs
0

þ l2m
ols

ocs0

� �
; ð4:5aÞ

B2 ¼ ls2

0

3c0K
s2

oK
s

ols
0

þ l2m
oK

s

obs
0

þ l2m
oK

s

ocs0

� �
: ð4:5bÞ

With the secant moduli given in (2.21) and the

hardening law of (2.19), the elastic compliance of

the linear comparison micropolar composite can

now be determined as a function of the applied

load. The corresponding strain and stress relation

is given by (3.15), with the compliance tensor of

the linear comparison micropolar composite

M
sym

expressed as:

M
sym

ijkl ¼ 1

4ls ðdikdjl þ djkdilÞ þ
1

K
s �

3

2ls

� �
dijdkl;

ð4:6Þ

where the effective secant moduli (K
s
, ls) of the

composite are related to constituent properties by

(4.1). By setting re ¼ ry and let the elastic moduli

of the linear comparison matrix equal the elastic
moduli of the matrix phase of the actual compos-

ite, the initial yielding surface of the composite can

be obtained. When the micropolar effect is ne-

glected or a� lm, the above formulation reduces

to that obtained with the traditional Cauchy med-

ium approach (Hu, 1997).

The general yielding criterion re ¼ ry will be

applied below to selected metal matrix composite
systems. For simplicity, only the initial yielding
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of the composite will be considered. In general, the

yield stress of the composite Ry, normalized by ry,
can be written as:

Ry

ry

¼ gð~l; ~k; q; m; g; f Þ: ð4:7aÞ

where ~l ¼ l1
l0
, ~k ¼ K1

K0
, q ¼ j0

l0
, m ¼ K0

l0
, g and f are all

non-dimensional parameters. Note that the influ-

ence of particle size is included in the parameter
g, which is in turn related to the intrinsic length

scale lm of the micropolar matrix:

g ¼ a
h
¼ a

lm

ffiffiffiffiffiffiffiffiffiffiffi
2q

1þ q

s
: ð4:7bÞ

(a) General particulate composites

From Eqs. (4.5a,b) and the expressions for the

effective moduli of the composite, (4.1a,b), we get:
A2 ¼ a1 þ a2Gþ a3G
2 þ a4gG

0

½ð1þ qÞðð8þ 9mÞð1� f ð1� ~lÞÞ þ 12~lþ 6m~lÞ þ 6qð1� f Þð1� ~lÞð4þ 3mÞG�2
; ð4:8aÞ
B2 ¼ 4f ð1� ekÞ2
½4� 4f ð1� ekÞ þ 3vek �2 ; ð4:8bÞ

where G
0
”dG/dg, and
A2 ¼ ð1þ qÞ2ð3þ 2f Þ þ 2q½6ð1� f Þ þ qð6� f Þ�Gþ 12q2ð1� f ÞG2 � 5fqgG0

3ð1� f Þ2ð1þ qþ 2qGÞ2
; ð4:11aÞ
a1 ¼ ð1þ qÞ2½6f ð16þ 16vþ 9v2Þð1� ~lÞ2

þ ð8þ 9mþ 12~lþ 6m~lÞ2�;

a2 ¼ 6qð4þ 3mÞð1� ~lÞ½2ð1þ qÞð8þ 9mþ 12~lþ 6m~lÞ

� f ð1� ~lÞð16þ 18m� qð4� 3mÞÞ�;

2 2 2
a3 ¼ 36ð1� f Þq ð4þ 3mÞ ð1� ~lÞ ;
a4 ¼ �15fqð4þ 3mÞ2ð1� ~lÞ2:

The initial yield surface of the composite can then

be written as

A2R2
e þ B2R2 � r2

y ¼ 0; ð4:9Þ

which reveals, in a simple and explicit manner, the

size dependence of the initial yielding of a particu-

late composite. In the limit g ! 1, G ! 0 and

gG0 ! 0, the results are independent of the para-
meter q and reduce to those associated with the

classical size-independent Cauchy composites

(Hu, 1997), namely:

A2 ¼ 6f ð16þ 16vþ 9v2Þð1� ~lÞ2 þ ð8þ 9mþ 12~lþ 6m~lÞ2

ðð8þ 9mÞð1� f ð1� ~lÞÞ þ 12~lþ 6m~lÞ2
;

ð4:10Þ

with B still given by (4.8b).
(b) Voids in elastically incompressible

matrix

In this case, by letting ~l ¼ 0, ek ¼ 0 and v ! 1,

we have:
B2 ¼ f

4ð1� f Þ2
: ð4:11bÞ

It is straightforward to check that when g !
1, G ! 0 and gG0 ! 0, A2=(1+2f/3)/(1� f)2,

whatever values of q. This is the exact result

corresponding to the case of voids surrounded
by an incompressible Cauchy matrix (Hu,

1997).
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(c) Rigid particle-reinforced elastically incom-

pressible matrix composite

In this case, ek ! 1, ~l ! 1 and v ! 1, result-

ing in:
A2 ¼ 2ð1þ qÞ2ð2þ 3f Þ � 6q½4þ 6f þ qð4þ f Þ�Gþ 36q2ð1� f ÞG2 � 15fqgG0

½ð1þ qÞð2þ 3f Þ � 6qð1� f ÞG�2
; ð4:12aÞ
B2 ¼ 0: ð4:12bÞ
Fig. 4. Uniaxial tensile stress–strain curves of Al2O3–Al com-

posite system: comparison between theory and experiment

(Kouzeli and Mortensen, 2002).
Again, it is easy to check that when g ! 1, G ! 0

and gG0 ! 0, A2=1/(1+3f/2), which is the exact

result for a rigid particle-reinforced elastically

incompressible matrix Cauchy composite (Hu,

1997).

To check the predictive capability of the pro-

posed method against available experimental
results, several particulate composites are consid-

ered below, with the matrix taken as a non-linear

micropolar medium and the particles as a linear

elastic Cauchy medium.

Consider first a Al2O3–Al composite system

subjected to uniaxial tension, for which the corre-

sponding experimental results are given by Kouzeli

and Mortensen (2002). The material constants
used in the modeling and taken from Kouzeli

and Mortensen (2002) are listed in Table 2. For

higher-order material constants of the matrix,

j=l/2 and lm=4.2 lm are assumed; these values

can give a better fit to the experimental results as

shown shortly. The corresponding non-dimen-

sional material parameters for the Al2O3–Al com-

posite system are ~l ¼ 6:52, ~k ¼ 3:71, q=0.6, and
m=2.61. Although at present there is no available

experiment data to guide the selection of micropo-

lar material constants, their values ought to lie in a

reasonable range, and have the same order of mag-

nitude as those obtained from material science ap-
Table 2

Material constants for Al2O3–Al composite system (Kouzeli and Mo

l (GPa) K (GPa) j (GPa)

Al 25 65.2 12.5

Al2O3 163.0 241.3
proaches. For typical ductile metals the plasticity

length scales of local non-uniform plastic deforma-

tion determined from the strain-gradient theory is

indeed on the order of micrometers (see, e.g., Fleck
et al., 1994; Gao et al., 1999a,b). Our choice of

lm=4.2 lm for aluminum is consistent with this

result.

The predicted uniaxial stress versus strain

curves for the Al2O3–Al composite system with

different particle sizes and volume fractions are

plotted in Fig. 4 together with those measured by

Kouzeli and Mortensen (2002). A total of four
composite samples are examined, with the particle

diameter 2a and volume fraction f separately given

by: (4.5 lm, 0.39), (9.3 lm, 0.54), (29.2 lm, 0.461)
rtensen, 2002)

lm (lm) ry (MPa) h (MPa) n

4.2 25 110 0.255
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and (58 lm, 0.475). It is seen from Fig. 4 that an

excellent correlation exists between the modeling

and experiment over a large range of macroscopic

strain.

Next, the predicted yield stress at 0.2% perma-

nent strain as a function of particle radius a is plot-

ted in Fig. 5 together with that measured (Kouzeli
and Mortensen, 2002). Again, close agreement is

observed, although neither the predictions nor

the experimental data exhibit smooth trend when

the particle size is decreased. This is attributed

to the fact that, whilst the particle size a is varied,

the particle volume fraction f also varies for the

composite samples tested by Kouzeli and Morten-

sen (2002). Fig. 6 plots the predicted uniaxial yield
stress Ry

micropolar (at 0.2% permanent strain) of the

composite, normalized by that of the correspond-

ing Cauchy composite Ry
Cauchy, as a function of rel-

ative particle size g (=a/h) for v=2.53, q=0.5 and

f=0.3. The results show that for hard particle-rein-

forced composites, the strengthening effect is more

pronounced when the particle size is reduced to the

same level as the matrix intrinsic length, whereas
for soft particle-reinforced composites, this size

effect is much less significant.

Finally, based on Eqs. (4.4) and (4.5), the pre-

dicted initial yielding surfaces of different compos-

ite systems are plotted in Fig. 7. The results

demonstrate how the deviatoric (Reff) and hydro-

static (R) parts of the macroscopic stressing, nor-
malized by the yielding stress of the matrix ry,
would cause different composite systems to yield.

The constants used in the computation for the

micropolar matrix are v=2.53 and q=0.5, corre-

sponding approximately to the aluminum matrix

examined previously, whilst ~l ¼ 10 and ~k ¼ 10

are chosen for common particles. Two particle

sizes are examined: a= lm and a=100lm, corre-
sponding to g=0.82 and g=82, respectively. In

all the cases considered, the volume fraction of

the particles is fixed at f=0.3.

It is seen from Fig. 7 that the size effect on ini-

tial yielding of a particulate composite is more
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pronounced in shear loading and for hard parti-

cles. This is likely to be caused by the large fluctu-

ations of stress and couple stress in the matrix for

composites with hard particles and for composites

loaded in shear. On the other hand, under hydro-
static loading, the model predicts no size effect for

the composite, since in the micropolar theory, the

local motion of the microstructure inside a mate-

rial point is assumed to be rigid rotation, with

the breathing-like (dilatation) deformation ignored

(Eringen, 1999). The breathing-like deformation is

believed to be more pronounced in porous matrix

composites. To include this effect, a more refined
higher-order continuum theory incorporating, for

example, the microstretch theory needs to be used

(see, e.g., Markov, 1981; Eringen, 1999; Liu and

Hu, 2004). Correspondingly, at least two material

length scales must be introduced, one to account

for the rotation deformation, and the other for dil-

atation (Fleck and Hutchinson, 2001). However,

for a polycrystal matrix such as aluminum, as
demonstrated by the close agreement between the-

ory and experiment in Figs. 4 and 5 the micropolar

theory appears to be capable of capturing the non-

local effect of the matrix when the particle size is

comparable to the grain size and when the dilata-

tion deformation is not dominant. The simplicity

of the current approach and its capability to solve

simple problems analytically compares favorably
with other methods.
5. Conclusions

Ponte Castañeda�s variational method has been

extended from a non-linear Cauchy composite to a

non-linear micropolar particulate composite. It is
established that the micropolar version of Ponte

Castañeda�s variational method can be interpreted

as the secant moduli method based on second-

order stress and couple stress moments. The

method is reduced to the classical micromechanic

approach when the micropolar effect is neglected

or the particle size is much larger than the intrinsic

length scale of the matrix. With the deformation
theory of micropolar plasticity having one intrinsic

length scale adopted, it is demonstrated the influ-

ence of particle size on the yielding/strengthening
and strain hardening of the composite can be

taken into account in a simple and analytical man-

ner. The predictions agree well with existing exper-

iment results for particle-reinforced metal matrix

composites, and it is found that the particle size ef-
fect is more pronounced in shear loading and for

hard particles. Future work includes the extension

of the micropolar theory to account for the dilata-

tion effect that is important in void enlargement,

indentation and crack-tip field studies.
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