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By analogy with the electromagnetic wave, the acoustic transparency phenomenon is analyzed for a multi-
layered sphere with acoustic metamaterials. The neutral-inclusion concept is used to predict the transparency
conditions in the quasistatic case, which are further confirmed by a full-wave analysis. The mechanism of the
transparency is based on lowering the total-scattering cross section of the composite sphere. It is found that, to
improve the transparency, the angle-dependent scattering cross section must also be minimized for all
directions.
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I. INTRODUCTION

The study of electromagnetic wave �EM� transparency in-
duced by metamaterials has been intensified recently since
the pioneer work by Alù and Engheta �1�, who demonstrated
how a small sphere could be made invisible. Since then,
several papers �2–5� have been published to give more physi-
cal insights into this phenomenon. The theoretical investiga-
tions �2–4� revealed that invisibility could also be realized in
the case of a wavelength much shorter than the particle size.
In this situation, the refractive index of the designed devices
will have to be position dependent. This introduces some
difficulties for the physical realization of invisible devices.
However, with the development of EM metamaterials �6�,
the transparency of an object whose dimension is larger than
the operating wavelength can indeed be realized in experi-
ment �7�.

Recently, the analogy between left-handed EM metamate-
rial �8� and double-negative acoustic metamaterial has been
identified �9�. Furthermore, it is found that sound waves can
also be focused by a phononic crystal slab �10�, similar to
negative refraction by a photonic crystal �11�. So it is natural
to ask whether the transparency can be achieved for acoustic
waves by introducing acoustic metamaterials—i.e., materials
with a negative modulus and/or negative density. In the static
case, a negative modulus can be obtained for a tube structure
in the post-buckling regime �12�. With decreasing force, the
tube will have an increase in deformation. Recently, the
negative modulus in the regime of an ultrasonic wave has
been realized in a material with subwavelength sonic resona-
tors �13�, which can be considered as the acoustic analog of
EM metamaterials. The double-negative acoustic metamate-
rial can be achieved in a composite of soft spheres suspended
in a liquid �9�, and the double negativity of the bulk modulus
and density can occur in the same sonic frequency region in
the presence of a monopolar-dipolar resonance.

In a previous paper �5�, we have proposed the concept of
“neutral inclusion” to investigate the transparency phenom-
enon for EM waves. A neutral inclusion is a simple pattern
�coated sphere, etc.�, which has been fully discussed by Mil-

ton �14�. When a neutral inclusion is embedded in a material
made of assemblages of such patterns with gradual size �in
order to fill the whole space�, it will not perturb the outside
fields. In this paper, we will use this idea to analyze the
transparency phenomenon induced by acoustic metamateri-
als. For simplicity, we consider a multilayered sphere, in
which all materials are considered as fluids or fluidlike ma-
terials; i.e., they do not support shear waves. We note that
this assumption will not make the results of this paper use-
less, since most of the acoustic metamaterials reported re-
cently are fluidlike materials �9,13�.

II. THEORETICAL ANALYSIS

Figure 1 shows the cross section of a multilayered sphere,
where the outer radius of the lth layer is rl and each region
�l=1,2 , . . . ,L+1� is characterized by the bulk modulus �l,
density �l, and sound velocity vl=��l /�l. The acoustic total-
scattering cross section Qs of the multilayered sphere can be
computed in the framework of Mie theory �15�, and it is
expressed as
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FIG. 1. Cross section of a multilayered sphere.
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Qs = �L+1
2 �

n=0

� �an�2

�2n + 1��
, �1�

where �L+1 is the wavelength in region L+1. The scattering
coefficient an= �2n+1�inAn

�L+1� is calculated by using the
equation

An
�l+1� = Rn�kl+1rl�

vl+1�l+1Hn�klrl� − vl�lDn
�1��kl+1rl�

vl+1�l+1Hn�klrl� − vl�lDn
�3��kl+1rl�

, �2�

with

Hn�k1r1� = Dn
�1��k1r1� ,

Hn�klrl� =
Dn

�1��klrl�Rn�klrl� − An
�l�Dn

�3��klrl�
Rn�klrl� − An

�l� , l = 2,3, . . . ,L ,

where Dn
�1��x�= jn��x� / jn�x�, Dn

�3��x�=hn��x� /hn�x�, and Rn�x�
= jn�x� /hn�x�. jn�x� and hn�x� are the spherical Bessel func-
tion and spherical Hankel function of the first kind, respec-
tively. The prime indicates the derivative with respect to x.

Using the above formulations, we can determine the qua-
sistatic transparency condition by examining the first several
scattering coefficients an. However, a more simple method is
to utilize the “neutral-inclusion” concept �5,14�. The key
point of this idea is to evaluate the effective bulk modulus
and effective density of the multilayered sphere assemblage
and let them be equal to those of the surrounding medium. In
order to proceed, we will first discuss two simple cases—i.e.,
the equal-density case in which all densities are equal and the
equal-modulus case in which all moduli are equal. Then we
will examine the transparency phenomenon for acoustic
waves in a general case.

A. Equal-density case

Consider firstly the case of a coated sphere �L=2�. It is
known that the effective bulk modulus �eff of the coated-
sphere assemblage realizes the Hashin-Shtrikman �HS�
bound �16�. When the shear moduli of the materials vanish,
the effective bulk moduli will reduce to the Voigt bound—
i.e.,

�eff =
r2

3�1�2

r1
3�2 + �r2

3 − r1
3��1

. �3�

By letting �eff=�3, the transparency condition of a coated
sphere can be obtained as

r2
3

�3
=

r1
3

�1
+

r2
3 − r1

3

�2
. �4�

It is noted that Eq. �4� can also be obtained when we exam-
ine the zeroth-order scattering coefficient a0 in Eq. �1� and
set it to zero in the small-particle approximation.

For EM waves, if the permittivity of one phase of the
coated sphere is larger than that of the surrounding medium,
the permittivity of the other one must be lower in order to
satisfy the transparency condition �1,5�. However, for acous-
tic waves, we can find from Eq. �4� that if one bulk modulus

�for example, �1� of the coated sphere takes a negative value,
the other one ��2� must be 0��2��3. Both moduli can be
lower than the modulus of the surrounding medium.

For the multilayered-sphere case, the effective bulk
modulus of the assemblage made of the multilayered spheres
can be derived based on the solution of a coated sphere,
using the recursive method �5,14�. The recursive process is
based on an assumption that the l-layer sphere can be con-
sidered as an effective core embedded in the lth-coating ma-
terial. So the effective bulk modulus �eff

L of the multilayered-
sphere assemblage can be determined by the equation

rL
3

�eff
L =

r1
3

�1
+ �

l=2

L
rl

3 − rl−1
3

�l
. �5�

With help of Eq. �5� and the neutral-inclusion concept, the
quasistatic transparency condition for acoustic waves can be
obtained by setting �eff

L =�L+1 if all the densities are equal.

B. Equal-modulus case

A region with different density from that of the surround-
ing can also scatter acoustic waves, as can be seen from Eq.
�1�. So there may exist transparency phenomena induced by
densities. We still consider the multilayered-sphere configu-
ration as discussed in the equal-density case, but by assum-
ing that moduli of the materials are equal. Contrary to the
equal-density case, the HS bound model cannot be applied
for evaluating the effective density of the assemblage made
of the multilayered spheres, since the density itself is not a
transport quantity. For solid materials, the effective density
will obey the mixture rule based on the mass conservation,
while for a fluid matrix with inclusions, there may be an
additional density due to the induced-mass effect �17�. For
this case, the self-consistent method can be used to deter-
mine the effective density of the multilayered-sphere assem-
blage.

We first discuss a coated sphere and consider the case of
long-wavelength limit where the single-scattering effect
dominates. We embed a coated sphere in the effective me-
dium made of the coated-sphere assemblage with the effec-
tive density �eff and adjust the effective medium so that the
total-scattering cross section of the coated sphere vanishes.
With help of Eq. �1� and the equal-modulus assumption, the
effective density �eff of the coated-sphere assemblage can be
estimated by

�eff = �2 +
3f�2��1 − �2�

3�2 + 2�1 − f���1 − �2�
, �6�

where f =r1
3 /r2

3. Equation �6� is the same as that obtained by
using the Kuster-Toksöz method �17�. Using Eq. �6�, the
transparency condition of a coated sphere can be obtained by
setting �eff=�3, leading to

��2 − �3���2 + 2�1�
��2 − �1���2 + 2�3�

=
r1

3

r2
3 . �7�

In the long-wavelength limit, Eq. �7� can also be obtained if
we examine the first-order scattering coefficient a1 of a
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coated sphere and set it to be zero. The zeroth-order scatter-
ing coefficient a0 always vanishes for this limit.

With Eq. �6� and the recursive method, the effective den-
sity of an l-layer sphere assemblage is given by

�eff
l = �l +

3�1 − f l��l��eff
l−1 − �l�

3�l + 2f l��eff
l−1 − �l�

, l = 2, . . . ,L , �8�

where f l=1−rl−1
3 /rl

3 is the volume fraction of the lth layer in
the l-layer sphere and �eff

1 =�1. Then in the quasistatic case,
the corresponding transparency condition is given by �eff

L

=�L+1 if all the bulk moduli of the multilayered sphere are
equal. Especially for a doubly coated sphere �L=3�, the
transparency condition becomes

r2
3��3 + 2�4�
r3

3��3 − �4�
=

r2
3��2 + 2�1���3 + 2�2� + 2r1

3��2 − �1���3 − �2�
r2

3��2 + 2�1���3 − �2� + r1
3��2 − �1���2 + 2�3�

.

�9�

C. General case

Now let us discuss the general case that each region of the
system shown in Fig. 1 has not necessarily the same density
or bulk modulus. For the coated-sphere configuration, the
self-consistent method can be employed to predict the effec-
tive bulk modulus �eff and effective density �eff of the
coated-sphere assemblage. To do this, we embed a coated
sphere in the effective medium made of the coated-sphere
assemblage with �eff and �eff and adjust the effective medium
so that the total scattering cross section of the coated sphere
vanishes. In the long-wavelength limit, it is interesting to
find that Eq. �3� for effective bulk modulus �eff and Eq. �6�
for effective density �eff are recovered. With Eqs. �3� and �6�,
the transparency conditions for the coated sphere in the gen-
eral case can be obtained by setting �eff=�3 and �eff=�3. So
a coated sphere will be acoustically transparent when Eqs.
�4� and �7� are satisfied simultaneously. It is noted that trans-
parency conditions �4� and �7� can also be obtained when we
let the numerator of scattering coefficients a0 and a1 of the
coated sphere be equal to zero, respectively. For the
multilayered-sphere configuration, the corresponding effec-
tive bulk modulus and effective density can be found in Eqs.
�5� and �8� with help of the recursive method. So the trans-
parency conditions in the quasistatic case can be obtained by
setting �eff

L =�L+1 and �*
L=�L+1.

The above results show that the influences of the bulk
modulus and density on the total scattering are actually un-
coupled in the quasistatic case. So the discussions given pre-
viously on two special cases �i.e., equal-density case and
equal-modulus case� are helpful for the investigation of
transparency phenomenon in a general case. Although these
analyses are given for the quasistatic case, they will be still
useful for investigating the transparency phenomenon in the
full-wave dynamic case. This will be verified in the follow-
ing section.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will perform numerical computations
for the full-wave scattering case in order to check the quasi-

static transparency conditions. First of all, it is necessary to
give a study of the influence of particle size on the transpar-
ency, since the particle size plays a key role in the scattering
of the multilayered sphere. Consider a coated sphere with
material parameters �1=0.2�3, �2=−3�3, and �1=�2=�3.
From Eq. �3�, the computed effective bulk modulus �eff /�3
of the coated-sphere assemblage is shown in Fig. 2�a� as a
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FIG. 2. �a� Normalized effective bulk modulus �eff /�3 of a
coated-sphere assemblage calculated with Eq. �3� and normalized
total-scattering cross section of the coated sphere with three differ-
ent core radii �b� r1=�3 /50, �c� r1=�3 /10, and �d� r1=�3 /5 as a
function of ratio r2 /r1 ��1=0.2�3, �2=−3�3, and �1=�2=�3�.
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function of ratio r2 /r1. It is expected that the transparency of
the coated sphere will take place at about r2 /r1=1.6, for
which �eff /�3�1. Figures 2�b�, 2�c�, and 2�d� show the nor-
malized total-scattering cross section Qs /�3

2 of coated
spheres with the core radii r1=�3 /50, r1=�3 /10, and r1
=�3 /5, respectively. When the particle size is very small
�r1=�3 /50�, the transparency of a coated sphere indeed oc-
curs at around r2 /r1=1.6, where Qs /�3

2 is extremely low.
When the core radius is increased to r1=�3 /10, the ratio
r2 /r1 corresponding to the minimum scattering still exists,
but has been shifted upwards. This shifting phenomenon can
be attributed to the large particle effect, analogous to the case
of electromagnetic waves. When the particle size is further
increased �r1=�3 /5�, the coated sphere cannot be acousti-
cally transparent any longer. The above results show that the
transparency of a coated sphere is easily realized when the
particle size is relatively small. Note that this result is not
limited to coated spheres that satisfy the equal-density case.
For this reason, we typically choose the core radius to be
r1=�3 /20 in the following computations and discuss how the
quasistatic conditions can be used to predict the transparency
phenomenon.

We again give an example of the equal-density case. Con-
sider the parameters �1=0.1�3, �2=−2�3, �1=�2=�3, and
r1=�3 /20 for the coated sphere. Figure 3�a� gives the nor-
malized effective bulk modulus �eff /�3 of the coated-sphere
assemblage evaluated with Eq. �3� as a function of ratio
r2 /r1. From Fig. 3�a�, the acoustic transparency is expected
at about r2 /r1=1.91, for which �eff /�3�1. With the help of
Eq. �1�, the normalized total-scattering cross sections for the
coated sphere �the solid line� and effective single sphere �the
dashed line� with �eff, �3, and r2 as a function of ratio r2 /r1
are illustrated in Fig. 3�b�. In Fig. 3�b�, we can observe a
dramatic reduction of the total-scattering cross section of the
effective sphere at r2 /r1=1.91, as predicted. For the coated
sphere, the “position” of the minimum scattering has been
shifted upwards due to the large particle effect, analogous to
the EM case �1�. The contributions from the first three scat-
tering coefficients of the coated sphere are illustrated in Fig.
3�c�. It can be seen that the transparency is largely controlled
by the zeroth-order scattering effect. When the particle size
is small, the contributions of the higher-order scattering are
much smaller compared to the zero-order scattering.

The same computations can be applied for the equal-
modulus case, as shown in Fig. 4. The parameters of the
coated sphere are �1=−0.8�3, �2=2.5�3, �1=�2=�3, and r1
=�3 /20. The normalized effective density �eff /�3 of a
coated-sphere assemblage calculated with Eq. �6� is shown in
Fig. 4�a�. According to the method described previously, the
acoustic transparency will take place approximately at
r2 /r1=2.22, for which �eff /�3�1. It is found indeed from the
full-wave analyses that the total-scattering cross sections for
both the coated sphere �the solid line� and a effective single
sphere �the dashed line� are almost zero, as shown in Fig.
4�b�. In addition, a resonance phenomenon is observed due
to the vanishing denominator of a1. For a single sphere
�� ,�0� embedded in a matrix ��0 ,�0�, we examine its first-
order scattering coefficient a1 in the small-particle approxi-
mation and find that the resonance will occur when the con-
dition �=−�0 /2 is satisfied. With help of the neutral-

inclusion concept, the resonance of a coated sphere will take
place at the condition �eff=−�3 /2. Comparing Fig. 4�a� with
Fig. 4�b�, we can find that the resonance phenomenon is well
predicted by �eff /�3=−0.5. The resonance and transparency
phenomena due to the first-order scattering effect can be
verified in Fig. 4�c�, which gives the contributions of the first
three scattering coefficients of the coated sphere. It can be
found that the first-order scattering effect dominates in this
case and other scattering coefficients are small compared to
a1.

Now we discuss the general case by considering the pa-
rameters �1=0.1�3, �1=−0.2�3, �2=−2�3, �2=1.8�3, and r1
=�3 /20 for a coated sphere. The effective bulk modulus �eff
and effective density �eff of a coated-sphere assemblage cal-
culated with Eqs. �3� and �6�, respectively, as a function of
ratio r2 /r1 are shown in Fig. 5�a�. Figure 5�b� shows the
normalized total-scattering cross sections of the coated
sphere �the solid line� and effective single sphere �the dashed
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FIG. 3. �a� Normalized effective bulk modulus �eff /�3 of a
coated-sphere assemblage calculated with Eq. �3�, �b� normalized
total-scattering cross section of a coated sphere �the solid line� and
effective homogeneous sphere �the dashed line� with bulk modulus
�eff, density �3, and radius r2, and �c� contributions of the first three
scattering coefficients of the coated sphere vs the ratio r2 /r1 ��1

=0.1�3, �2=−2�3, �1=�2=�3, and r1=�3 /20�.
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line� with the bulk modulus �eff and density �eff as a function
of the ratio r2 /r1. According to Fig. 5�a�, the designed cover
radius is approximately r2=1.91r1, for which �eff /�3�1 and
�eff /�3�1. From Fig. 5�b�, we can see that a low total-
scattering cross section of the effective sphere at r2 /r1
=1.91 can be observed, as predicted. However, for the coated
sphere, the corresponding “point” has been shifted upwards.
The contributions of the first three scattering coefficients of
the coated sphere are shown in Fig. 5�c�. When the particle
size is very small, it can be seen that the first two scattering
coefficients contribute to the final scattering and higher-order
scattering coefficients can be neglected.

A doubly coated sphere with the parameters �1=1.5�4,
�1=2�4, �2=0.2�4, �2=−0.1�4, �3=−3.5�4, �3=2.2�4, r1
=0.2r3, and r3=0.1�4 is examined in the following. Figure
6�a� gives the effective bulk modulus �eff and effective den-
sity �eff of a doubly-coated-sphere assemblage calculated

with Eqs. �5� and �8�, respectively, as a function of the ratio
r2 /r3. The normalized total-scattering cross sections of the
doubly coated sphere �the solid line� and effective single
sphere �the dashed line� with the bulk modulus �eff, density
�eff, and radius r3 as a function of ratio r2 /r3 are shown in
Fig. 6�b�. The acoustic transparency of the doubly coated
sphere is designed approximately at the ratio r2 /r3=0.63, for
which �eff /�3�1 and �eff /�3�1. This can be checked by the
result of the effective single sphere shown in Fig. 6�b�, where
a low total-scattering cross section at around the ratio r2 /r3
=0.63 can be observed, while for the doubly coated sphere,
the corresponding “point” has been shifted downwards, due
to the large particle effect.

Realization of acoustic transparency can be further
checked when we examine the contour plot of scattered
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FIG. 4. �a� Normalized effective density �eff /�3 of a coated-
sphere assemblage calculated with Eq. �6�, �b� normalized total-
scattering cross section of a coated sphere �the solid line� and ef-
fective homogeneous sphere �the dashed line� with bulk modulus
�3, density �eff, and radius r2, and �c� contributions of the first three
scattering coefficients of the coated sphere vs the ratio r2 /r1 ��1
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FIG. 5. �a� Normalized effective bulk modulus �eff /�3 and ef-
fective density �eff /�3 of a coated-sphere assemblage calculated
with Eqs. �3� and �6�, respectively, �b� normalized total-scattering
cross section of a coated sphere �the solid line� and effective homo-
geneous sphere �the dashed line� with bulk modulus �eff, density
�eff, and radius r2, and �c� contributions of the first three scattering
coefficients of the coated sphere vs the ratio r2 /r1 ��1=0.1�3, �1

=−0.2�3, �2=−2�3, �2=1.8�3, and r1=�3 /20�.

ACOUSTIC WAVE TRANSPARENCY FOR A MULTILAYERED … PHYSICAL REVIEW E 75, 046606 �2007�

046606-5



fields excited by a coated sphere. For comparison, we first
examine a single sphere with parameters �1=0.1�3, �1=
−0.2�3, and r1=�3 /20 incident by a plane compressional
wave along the z direction, as shown in Fig. 7�a�. The mag-
nitude of the radial component of the displacement field of
the scattered wave in the x-z plane is plotted in Fig. 7�c�. It is
clearly seen that the single sphere generates the scattered
fields outside of the sphere. When a coating with parameters
�2=−2�3, �2=1.8�3, and r2=2.1r1 is employed, as shown in
Fig. 7�b�, the contour plot of the scattered fields of the coated
sphere is shown in Fig. 7�d�. It can be seen in Fig. 7�d� that
the cover almost cancels the scattered radiation outside. For
this case, the coated sphere has a very small total-scattering
cross section. The effect of the cover is very similar to that of
the plasmonic coating for the EM wave transparency �1�.

From all the analyses given above, it is evident that the
acoustic-wave transparency of a multilayered sphere can be
realized, for which the total-scattering cross section is dra-
matically reduced. The transparency and resonance phenom-
ena in the full-wave computations can be well predicted by
the quasistatic conditions, obtained with the neutral-inclusion
concept.

It is known that complete transparency will be achieved
when the total-scattering cross section of a particle is zero.
However, from the above computations, it is found that the
total-scattering cross section can be extremely low, but never
be zero. So it is necessary to discuss the distribution of the

scattered field in space. After reflection and refraction by a
particle, the incident wave may be localized in some particu-
lar directions. The angle distribution of the scattered acoustic
wave in space can be evaluated by the differential scattering
cross section �d, which is calculated by �18�

�d�	� = �L+1
2 	�

n=0

�

�− i�n+1anPn�cos 	�	2
�4�2� , �10�

where Pn is the Legendre function. Using the same param-
eters as in Fig. 3, we compute the angle-dependent differen-
tial scattering cross sections of coated spheres with different
cover radii r2=2r1, r2=2.05r1, and r2=2.1r1, as shown in
Fig. 8. For the purpose of macroscopic transparency �lower
total-scattering cross section�, the coated sphere is best with
the cover radius r2=2.05r1, compared to those with r2=2r1
and r2=2.1r1. However, this configuration is not the best if
we examine the scattering from other directions; for ex-
ample, it has larger scattering cross sections in the forward
direction compared to the coated sphere with r2=2r1 and in
the backward direction compared to that with r2=2.1r1. For
further study, we can calculate the backscattering or sonar
��b=4��d���� and forward �� f =4��d�0�� scattering cross
sections of the coated sphere as a function of ratio r2 /r1. The
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results are shown in Fig. 9, where the total-scattering cross
section �which has been plotted as the solid line in Fig. 3�b��
is plotted again for comparison. It is observed that the trans-
parency phenomena resulting from the three scattering cross
sections are not realized in the same configuration. These
results show that the scattering over all directions is not
equally reduced when we lower the total scattering cross
section. So if we would like to improve the transparency, the
scattering from all directions must also be minimized simul-
taneously. This kind of problem may be solved when an
anisotropic metamaterial �2,3� is introduced.

In this paper, we investigate composite spheres that are
made of fluidlike materials to achieve acoustic transparency.
A simple configuration to realize the transparency may be
composed of a fluid acoustic metamaterial covered by a soft
rubber. When a concentric shell made of fluids is concerned,
the manufacturing of multilayered spheres seems to be chal-
lenging. However, we can let the fluid shell be sandwiched
by soft rubber to construct a multilayered system. Then the
parameters of the whole system can be determined with the
help of the transparency condition of a multilayered sphere.
It is also expected that acoustic metamaterials with a solid
nature can be designed and fabricated in the future. In that
case, the manufacturing of multilayered spheres can be rela-

tively easy. However, the influences of shear waves localized
in the composite structure on the transparency must be evalu-
ated. The relevant analyses will be given in our future work.

IV. SUMMARY

To conclude, we have investigated the acoustic transpar-
ency phenomenon induced by metamaterials. With help of
the neutral-inclusion concept, the quasistatic transparency
conditions are derived for a multilayered sphere in three
cases—i.e., equal-density, equal-modulus, and general cases.
Numerical results by full-wave analyses have been con-
ducted to verify these quasistatic conditions. It is also found
that, to improve the transparency, the scattering of particles
in all directions must also be reduced. Finally, we indicate
that objects other than multilayered spheres can be easily
designed to be acoustically transparent with the neutral-
inclusion concept.
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