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We propose a general method to circumvent the singularity �infinitely large values of material
parameters� of arbitrary two dimensional �2D� cloaks. The presented method is based on the
deformation view of the transformation design method. It is shown that by adjusting the principle
stretch out of the cloaking plane, 2D cloaks of arbitrary shapes without singularity can be
constructed. It is also demonstrated that the method based on the equivalent dispersion relation and
the design method for nonsingular 2D cloak from mirror-symmetric cross section of a three
dimensional �3D� cloak can be derived from the proposed theory. Examples of a cylindrical
electromagnetic cloak and an arbitrary shaped 2D electromagnetic cloak without singularity are
provided to demonstrate the method. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3168652�

Recently, there have been intensive studies on the trans-
formation optics,1–3 a general method that enables one to
design a device with prescribed functionality, for example
the invisibility cloaks.2,4 The designed cloaks are locally an-
isotropic and spatially inhomogeneous. For a two dimen-
sional �2D� cloak, the necessary material parameters at the
inner boundary is usually singular,5 this singular problem
significantly limits the practical realization of cloaks. For
carpet or cylindrical cloaks, the singularity can be avoided
by introducing special transformations, such as by expanding
the cloak region from a line segment6,7 instead of a point.
Another interesting method8 designs a nonsingular 2D cloak
by projecting on a mirror-symmetric cross section from
a three dimensional �3D� cloak, which is inherently
nonsingular.5 One can also design approximately a 2D cloak
without singularity by carefully tuning the material param-
eters under the condition of the equivalent dispersion relation
as an ideal singular one.4,9–11 More recently, a method based
on non-Euclidean geometry is proposed to construct cloaks
with nonzero finite parameters.12 Design with nonsingular or
simpler material parameters for a given functionality is an
important step for practical engineering applications, espe-
cially for broadband applications.4,6–13 This paper will pro-
pose a general method to design nonsingular 2D cloaks of
random shapes. The method is based on the deformation
view of the transformation method recently established by
Hu et al.14 Numerical examples will be given to demonstrate
how a nonsingular arbitrary cloak can be constructed.

Let us first explain how the singularity is formed during
the construction of a 2D cloak. Transformation optics is
based on form-invariant Maxwell’s equation during coordi-
nate transformation. The spatial coordinate transformation
from a flat space x to a distorted space x��x� is equivalent to
material parameter variations in the original flat space. The
permittivity �� and permeability �� in the transformed space
are given by5

�� = A�0AT/det A, �� = A�0AT/det A , �1�

where A is the Jacobian transformation tensor with compo-
nents Aij=�xi� /�xj. From the deformation perspective14 of co-
ordinate grids, the material parameters �� and �� are related
directly to the pure stretch component of the deformation
gradient �x� that characterizes the distortion of the original
flat grids. Suppose the principal stretches15 are denoted by
�1, �2, and �3, respectively, in the principal directions and
for the original material �0=�0=1. In the same principal
system, Eq. �1� can be rewritten as the following diagonal
form:14

�� = �� = diag� �1

�2�3
,

�2

�1�3
,

�3

�1�2
� . �2�

In order to make a perfect cloak, its outer boundary
needs to be fixed, i.e., x�=x.5 This condition naturally con-
straints the stretches to unity �without deformation� in the
tangential directions at the outer boundary. The perfectly
matched layer �PML� of the outer boundary has additional
conditions: the unit tangential stretches are the corresponding
principal stretches, the third principal stretch must be normal
to the boundary and has a value equal to the component of
the transformed material parameters in that direction, i.e.,
�n=an ,�t1=1 ,�t2=1.16

For a cylindrical cloak,4 the material parameters and
principal stretches of the transformation-induced deforma-
tion are sketched in Fig. 1. For a linear transformation r�
=a+b−a /br, ��=� and the cloak is bordered by r�� �a ,b�,
the principal stretches of each point within the cloak are
given by

�r =
dr�

dr
=

b − a

b
, �3a�

�� =
r�d��

rd�
=

r�

r� − a

b − a

b
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�z =
dz�

dz
= 1, �3c�

where no transformation is assumed in the z direction, i.e.,
z�=z. At the inner boundary r�=a of the cloak, it can be seen
from Eq. �3� that ��→�, while �r and �z are kept finite. Due
to the infinite stretch �� in the azimuthal direction, some
components in permittivity and permeability tensors may ap-
proach infinite values near the inner boundary, as seen in
Eq. �2�.

For a 2D cloak, the stretch �z perpendicular to the cloak-
ing plane is decoupled with the in-plane stretches �r and ��,
so the continuously variant stretch �z can be chosen freely
except that �z=1 is needed at the outer boundary in order to
satisfy the impedance-matching condition. Hence the singu-
larity can be avoided if we set �z=��. In this case, the ratios
of the stretches in Eq. �2� are finite. From Eq. �3b�, it can be
found that �z=1 is satisfied at the outer boundary. According
to Eq. �2�, we get a nonsingular perfect cylindrical cloak as

�r� = �r� =
�r

���z
=

b

b − a
� r� − a

r�
�2

, �4a�

��� = ��� =
��

�z�r
=

b

b − a
, �4b�

�z� = �z� =
�z

�r��

=
b

b − a
. �4c�

The material parameters in Eq. �4� are exactly the same as
those reported in Refs. 10 and 11 based on a different
method.

To generalize the above idea to 2D cloaks of arbitrary
shape, we observe that the in-plane �x1 ,x2� and out-of-plane
�x3� deformations are decoupled. According to Hu et al.,14

the in-plane deformation can be solved from the Laplace’s
equation with the proper boundary conditions

� �2

�x1�
2 +

�2

�x2�
2�xi = 0, i = 1,2, �5a�

x	x����+
= x�, x	x����−

= 0, �5b�

where ��+ and ��− are the outer and inner boundaries of the
2D cloak, respectively. For the out-of-plane stretch, x3�=x3 is
assumed. Note that �3=1 is satisfied at the outer boundary.
The deformation gradient tensor A=�x� can be inversely
obtained from Eq. �5�, as well as the left Cauchy–Green de-
formation tensor B=AAT. In Cartesian coordinate system,
we have

A = 
A11 A12 0

A21 A22 0

0 0 1
�, B = 
B11 B12 0

B12 B22 0

0 0 1
� . �6�

The in-plane principal stretches can be calculated directly
from B as

�1,2 =�B11 + B22 � �B11
2 − 2B11B22 + B22

2 + 4B12
2

2
. �7�

�2 is always greater than �1 and it will tend to infinite near
the inner boundary. To avoid the singularity, we let �3 tend to
infinity with same order as �2 at the inner boundary and �3
=1 at the outer boundary. For an arbitrary 2D cloak, we
cannot simply set �3=�2, since there may be �2�1 at the
outer boundary, which means the principle stretch may not
be tangential to the outer boundary. For this reason, we
choose the out-of-plane stretch �3 as

�̃3 = C0�	x1� − x1	 + 	x2� − x2	��2 + 1, �8�

where C0 is a constant value. Then Eq. �6� can be rewritten
as

Ã = 
A11 A12 0

A21 A22 0

0 0 �̃3
�, B̃ = 
B11 B12 0

B12 B22 0

0 0 �̃3
2 � . �9�

For an arbitrary 2D cloak, the permittivity and permeability
tensors in the transformed space are finally given by14

�� = �� = B̃/det Ã . �10�

As discussed above, the designed 2D cloak will have no
singular material parameter and the outer boundary is imped-
ance matching. Theoretically, there are no reflections at inner
boundary, and no waves can penetrate into the cloaked
region.5 As an example of an arbitrary cloak illuminated by
plane harmonic waves, the simulation results of an arbitrary
shaped 2D cloak designed by the proposed method are given
in Fig. 2, where C0=5 is taken in Eq. �8�. The corresponding
material parameters are shown in Fig. 3. As shown in these
figures, the cloaking effect can really be achieved by finite
material parameters.

The coordinate transformation for the out-of-plane dis-

placement x3� can be calculated from �̃3. In Cartesian coordi-

nate system, it reads x3�= �̃3�x1� ,x2��x3+C1, where C1 is a
constant value. Usually the corresponding spatial transforma-

tions for �̃3 are not unique, in order to construct the nonsin-
gular 2D cloak, we can associate it with a 3D cloak
constructed with a special transformation perpendicular to
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FIG. 1. �Color online� The sketch for the formation of singularity in mate-
rial parameters of a cylindrical cloak.
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the cloaking plane, so the proposed construction for 2D non-
singular cloak can be considered as the projection on the
cloaking plane from a 3D cloak, which is constructed by
expending a point into a finite boundary through a special
transformation, while the outer boundary is fixed. In this
sense, the method in Ref. 8 for designing a 2D cloak with
complex shapes from the mirror-symmetric cross section of a
3D cloak can be understood.

Now recall the cylindrical cloak, the stretch perpendicu-
lar to the cloaking plane can be chosen freely. Then we
choose �z=r� / �r�−a� instead of �z=��=r��b−a� / ��r�−a�b�,
leading to the following parameters for the cloak

�r� = �r� =
�r

���z
= � r� − a

r�
�2

, �11a�

��� = ��� =
��

�z�r
= � b

b − a
�2

, �11b�

�z� = �z� =
�z

�r��

= 1. �11c�

The result in Eq. �11� is the same as that derived by Schurig
et al.4 and Cummer et al.9 by the equivalent dispersion rela-
tions. However at the outer boundary, �z=b / �b−a� violates

the impedance-matching condition �z=1. So the designed
cloak will have nonzero reflectance.4,9

The proposed method is applicable in removing the in-
finite material parameters but zero-value parameters are still
unavoidable,17 which may be tackled with the help of non-
Euclidean cloaking theory.12 It is worth to indicate that the
proposed method has interesting relations with the transmu-
tation of isolated singularities in optical instruments.18 Both
methods eliminate the singular material parameters by keep-
ing the ratios in Eq. �2� finite through special transforma-
tions.

In conclusion, the geometrical view of Eq. �2� on trans-
formation optics can be used to simplify material parameters
to avoid the singularity in designing 2D effective cloaks of
arbitrary shape. It is shown that the existing methods such as
projection method and the method based on equivalent dis-
persion relation can be better understood from the present
method. Full-wave simulations validate the design method
for a 2D cloak of arbitrary shape without singularity. Since
the proposed method is based on the spatial transformation
without other additional assumptions, it can be extended to
the acoustic case19,20 directly.
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FIG. 2. �Color online� The contour plots of the electric fields Ez of the TE
wave incident from �a� left and �b� bottom sides on an irregular shaped cloak
without singularity. �The white lines indicate directions of the power flow�.

FIG. 3. �Color online� The contour plots of the material parameters �a� �z,
�b� �xx, �c� �xy, and �d� �yy of the irregular cloak by setting C0=5 in Eq. �8�.
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