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a b s t r a c t

One of the significant engineering applications of the elastic metamaterial (EMM) is
for low-frequency vibration attenuation because of its unusual low-frequency bandgap
behavior. However, the forbidden gap from many existing EMMs is usually of narrow
bandwidth which limits their practical engineering applications. In this paper, a chiral-
lattice-based EMM beamwith multiple embedded local resonators is suggested to achieve
broadband vibration suppression without sacrificing its load-bearing capacity. First, a
theoretical beam modeling is suggested to investigate bandgap behavior of an EMM beam
with multiple resonators. New passbands due to dynamic interaction between resonators
are unpleasantly formed, which become a design barrier for completely broadband vibra-
tion suppression. Through vibration attenuation factor analysis of the resonator, an EMM
beam with section-distributed resonators is proposed to enable broadband vibration
attenuation function. Required unit number of the resonator in each section is quantita-
tively determined for complete vibration attenuation in a specific frequency range.
Finally, the chiral-lattice-based EMM beam is fabricated, and experimental testing of
the proposed structure is conducted to validate the design.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

EMMs have gained much attention due to their unique microstructure designs to achieve effective dynamic material
properties which cannot be observed in nature [1]. The working principle of the EMM is to use man-made microstructures
(local resonators) on a scale much less than its working wavelength. Therefore, low-frequency bandgap can be observed in
the EMM with small dimensions, within which the wave/vibration energy cannot propagate. The unusual low-frequency
bandgap in such composite was explained by the negative effective mass density through equivalent discrete mass-spring
systems [2–5].

One of the significant engineering applications of the EMM is to achieve the low-frequency vibration attenuation.
Different from the Bragg scattering mechanism in phononic crystals [6,7], the locally resonant (LR) mechanism could be
easily tuned through proper microstructure design, and low-frequency vibration energy could be quickly attenuated within
only a small amount of the periodic microstructures [8]. Therefore, no gigantic meta-structure is needed to shield the
structural subject from the low-frequency vibration or wave loading. Engineering structures such as rods, beams and plates
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with desired LR microstructure designs were implemented for vibration suppression. Xiao et al. [9] investigated wave
propagation and vibration transmission in elastic rods containing periodically attached multi-degree-of-freedom spring-
mass resonators. Yu et al. [10] studied the flexural wave propagation in a beam with many spring-mass subsystems as
bending wave absorbers. Chen et al. [11] analytically and experimentally studied the behavior of bending wave propagation
in a sandwich beamwith internal resonators. However, the forbidden gap from the current EMM design is usually of narrow
bandwidth, which significantly limits its potential engineering applications. To address this problem, bandgaps in acoustic
metamaterials with multi-resonators were investigated [12]. It was found that the bandgaps can be tuned by varying
physical parameters of internal resonators. Pai [13] theoretically demonstrated that the longitudinal broadband wave
absorption can be achieved in a bar structure with distributed absorbers related to different bandgap frequency ranges in
different sections. Based on the study, a metamaterial beam was also suggested to achieve broadband vibration absorption
[14]. Similarly, flexural wave propagation in the beam consisting of multiple damped spring-mass resonators with slightly
different resonant frequencies was also investigated by Xiao et al. [15]. Broader bandgaps were found at frequencies both
below and around the Bragg condition. A chiral-lattice-based metacomposite beam was recently proposed by integrating
periodic chiral lattice with LR inclusions for low-frequency vibration attenuation applications [16]. The vibration attenuation
function was demonstrated through the numerical analysis of the band diagram. The major advantage of the proposed beam
is that the significant vibration attenuation is localized within the structure, which requires no additional structural
components. Additionally, the chiral structure beam can still be made from stiff and high strength materials so as not to
sacrifice the load-bearing capacity. To accomplish the chiral-lattice-based EMM for vibration attenuation in a broad
frequency regime, the EMM beam with multiple inner resonators should be properly designed and the experimental
validation of the design should be conducted.

In this paper, a chiral-lattice-based EMM beam with multiple local resonators is numerically and experimentally studied
for the broadband vibration suppression by utilizing their individual bandgaps. First, based on the Timoshenko beam theory
(TBT) and transfer matrix method (TMM), theoretical modeling of an EMM beam with multiple local resonators is
performed for vibration analysis. The undesirable new passbands are observed due to dynamic interaction between the
different resonators, which become a major design barrier to form complete vibration attenuation in a desired frequency
regime. Through vibration attenuation factor analysis, a section-distributed design of multiple local resonators is suggested
to achieve completely broadband vibration suppression and required unit number of the resonator in each section is
quantitatively determined. Finally, the chiral-lattice-based EMM beam is fabricated, and experimental frequency response
testing is conducted to validate the proposed design as well as the theoretical modeling.

2. Bending vibration in a beam with multiple local resonators

The vibration band structure of a beam with a single LR structure has been investigated based on the transfer matrix
theory [17]. In the study, to form a broad forbidden band, we implement this method to obtain the band structure of the
EMM beam with multiple local resonators. Attention will be paid on the understanding of dynamic interaction among
different local resonators and its effects on vibration transmission. To clearly illustrate the problem, a simple model of the
beam with multiple LR units is studied as shown in Fig. 1a. Each unit consists of s subsystems in which mass-spring
resonators are attached to the beam at a spacing of a along x direction. Each subsystem consists of two parts, beam segment
and local resonator, which is represented by an elastic spring k and a mass mj, j¼1, 2, 3, … s, as shown in Fig. 1b. The lattice
constant of the periodic system is denoted as b¼ sa. The x axis of the coordinate system is along the central line of the beam.

The governing equation of the free bending vibration of a Timoshenko beam can be written as follows:

EI

ρA

∂4vðx; tÞ
∂x4

� ρI

ρA
þ EI

κGA

� �
∂4vðx; tÞ
∂x2∂t2

þ ∂2vðx; tÞ
∂t2

þ ρI

κGA

∂4vðx; tÞ
∂t4

¼ 0; (1)

where ρ, E, and G are the density, Young’s modulus, and shear modulus, respectively; A is the cross-section area; κ is the
Timoshenko shear coefficient; I is the cross-section-area moment of inertia about the axis perpendicular to x and y axes.
Unlike Euler–Bernoulli beam theory which neglects shear deformation, Timoshenko beam with rotary inertia considers the
deformation of the beam cross-section, therefore it is more suitable for short beams i.e., those with relatively high cross-
sections compared with their lengths, especially when they are subjected to significant shear forces. Since only the steady-
state response will be considered in this section, the time factor eiωt, which applies to all the field variables, will be
suppressed. Therefore, the amplitude YðxÞ of the bending displacement vðx; tÞ can be determined as [18,19]

YðxÞ ¼ Ak�3
1 eq1xþBk�3

2 eq2xþCk�3
3 eq3xþDk�3

4 eq4x; (2)

where

qr ¼ ð�1Þ½r=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αþð�1Þr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þ4β

q
�=2

r
; r¼ 1;…;4; α ¼ � ρω2

E
� ρω2

κG
and β ¼ ρAω2

EI
� ρ2ω4

EκG
;

r
2

h i
is the largest integer less than r/2. In Eq. (2), qr (r¼1, 2, 3, 4) represent the wavenumbers of the two lowest vibration modes
along two directions (positive and negative x directions).
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For the jth subsystem in the nth cell as shown in Fig. 1b, YðxÞ can be rewritten as

Yj
nðxÞ ¼ Aj

nq
�3
1 eq1ðx�nbÞ þBj

nq
�3
2 eq2ðx�nbÞ þCj

nq
�3
3 eq3ðx�nbÞ þDj

nq
�3
4 eq4ðx�nbÞ; (3)

where nbþ(j�1)arxrnbþ ja and j¼1, 2, 3, … s. The equilibrium condition for the jth mass-spring resonator mj in the nth
cell along the vertical direction is

Fjn�mj
€Z
j
n ¼ 0; (4)

where Fjn is the interactive force between the mass-spring local resonator and the beam segment, Zj
n is the displacement of

the jth mass-spring local resonator at the position x¼nbþ(j�1)a. Then, the force Fjn can be calculated as

Fjn ¼ k½Yj
nðja�aÞ�Zj

n�; (5)

where k is the spring constant. Substituting Eqs. (5) into (4) leads to

Zj
n ¼

k
k�mjω2 Y

j
nðja�aÞ: (6)

Applying the continuity conditions of displacement, displacement gradient, bending moment, and shear force at the
interface between jth and (j�1)th subsystems in the nth cell, we have

Yj
n½ðj�1Þa� ¼ Yj�1

n ½ðj�1Þa�; (7a)

Y 0j
n½ðj�1Þa� ¼ Y 0j�1

n ½ðj�1Þa�; (7b)

EIY ″j
n ½ðj�1Þa� ¼ EIY″j�1

n ½ðj�1Þa�; (7c)

EIY‴j
n ½ðj�1Þa��Fjn ¼ EIY‴j�1

n ½ðj�1Þa�: (7d)

Substituting Eqs. (3) and (6) into (7), the continuity conditions can be expressed in the matrix form as

Kjψj
n ¼Hjψj�1

n ; (8)

Fig. 1. (a) The model of an EMM beam with multiple LR units. (b) The jth subsystem in nth unit cell with applied forces.
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where

Kj ¼

q�3
1 eq1ðj�1Þa

q�2
1 eq1ðj�1Þa

q�1
1 eq1ðj�1Þa

ð1þF jq�3
1 Þeq1ðj�1Þa

q�3
2 eq2ðj�1Þa

q�2
2 eq2ðj�1Þa

q�1
2 eq2ðj�1Þa

ð1þF jq�3
2 Þeq2ðj�1Þa

q�3
3 eq3ðj�1Þa

q�2
3 eq3ðj�1Þa

q�1
3 eq3ðj�1Þa

ð1þF jq�3
3 Þeq3ðj�1Þa

q�3
4 eq4ðj�1Þa

q�2
4 eq4ðj�1Þa

q�1
4 eq4ðj�1Þa

ð1þF jq�3
4 Þeq4ðj�1Þa

2
66666664

3
77777775
;

Hj ¼

q�3
1 eq1½ðj�1Þa�

q�2
1 eq1½ðj�1Þa�

q�1
1 eq1½ðj�1Þa�

eq1½ðj�1Þa�

q�3
2 eq2½ðj�1Þa�

q�2
2 eq2½ðj�1Þa�

q�1
2 eq2½ðj�1Þa�

eq2½ðj�1Þa�

q�3
3 eq3½ðj�1Þa�

q�2
3 eq3½ðj�1Þa�

q�1
3 eq3½ðj�1Þa�

eq3½ðj�1Þa�

q�3
4 eq4 ½ðj�1Þa�

q�2
4 eq4 ½ðj�1Þa�

q�1
4 eq4 ½ðj�1Þa�

eq4 ½ðj�1Þa�

2
6666664

3
7777775
;

ψj
n ¼

Aj
n

Bj
n

Cj
n

Dj
n

2
6666664

3
7777775
; F j ¼

�1
EI

mjkω2

k�mjω2 :

Based on Eq. (8), the wave transfer relation between the nth cell and (n�1)th cell can be given as

ψn ¼ Tψn�1; (9)

where T¼K�1
s Hs…K�1

1 H1 is the transfer matrix between the two cells [20]. It should be mentioned that the TMM based on
the coefficient of YðxÞ can obtain the same result as that obtained by using the TMM based on the global solution, such as:
displacement, displacement gradient, bending moment and shear force.

For an infinite periodic EMM beam, Bloch theorem can be applied as

ψn ¼ eiqbψn�1; (10)

where q is the wavenumber in the x direction. Inserting Eq. (9) into (10) yields the eigen-value problem:

jT�eiqbIj ¼ 0; (11)

from which the band structure of the EMM beam can be determined.
Fig. 2a shows the band structure of the EMM beam consisting of two periodic resonant subsystems with masses m1 and

m2. The material and geometrical parameters used in the calculation are listed in Table 1. In the figure, qn ¼ ðqb=πÞ is the
normalized wavenumber along the x direction, the normalized frequency is defined as f n ¼ ðf =f 0Þ, where f 0 ¼ ð1=2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
k=m1

p
.

For the sake of comparison, the band structure of the EMM beams with the single periodic resonator (m1 or m2), are also
depicted in Fig. 2b and c, respectively. Comparing with the bandgap frequency ranges (1, 1.55) of the EMM beam with the
resonant mass m1 and (0.50, 1.29) of the EMM beamwith the resonant mass m2, bandgap frequency range of the EMM beam

Fig. 2. Band structures of the EMM beam units with (a) a single resonator m1; (b) a single resonator m2; and (c) two resonators (m1 and m2).
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with the two resonant masses is increased to (0.50, 1.46), which seems to be the linear summation of bandgap frequency
ranges of the EMM beams with the individual resonator. However, two new passbands are unexpectedly formed at the
frequency ranges (0.73, 1) and (1.46, 1.55). The first new passband (0.73, 1) locates within the acoustic passband of the
resonant mass m1 but the forbidden band of the resonant mass m2. In contrast, the second new passband (1.46, 1.55) locates
within the forbidden band of the resonant mass m1 but the optical passband of the resonant mass m2. The new passbands
are undesirable to form completely broadband vibration attenuation and should be eliminated.

To understand new passband's formation mechanism, detailed linear momentum analysis within the unit cell is
conducted to quantitatively illustrate the dynamic interaction between different resonators, because linear momentum in
the host beam segment and linear momentum in the resonators, which are proportional to their inertia forces, could
provide a clear physical explanation about the generation of the new passband. In the study, the linear momentum ratio
P ¼ ðptotal=pBÞ is defined as a physical parameter to reflect the vibration behavior, where the total linear momentum in the
unit cell is defined as ptotal ¼ pBþ∑2

j ¼ 1pj, and the linear moment in the host beam and the resonator j are defined as
pB ¼

R b
0 ρA _vðxÞdx and pj ¼mj

_Z
j
n; j¼ 1; 2, respectively. It is well known that when the total linear momentum is out of phase

with the linear momentum of the host beam, the linear momentum ratio P becomes a negative value. Therefore, the
vibration cannot transmit through the EMM beam and a bandgap is generated. On the other hand, when the total linear
momentum is in phase with the linear momentum of the host beam, P will be a positive value and a vibration passband is
then guaranteed. Fig. 3 shows the linear momentum ratio P of the EMM beamwith two different resonant masses and those
of the EMM beam with the single resonant mass m1 or m2, respectively. Gray shaded areas show the bandgaps and blue
shaded areas indicate the new passbands. For example, at the frequency f n ¼ 0:9 in the first new passband, p2, the linear
momentum of the local resonant massm2, is out of phase with pB while p1, the linear momentum of the local resonant mass
m1, is in phase with pB. Therefore,m2 is moving along opposite direction with the beam segment andm1 is moving along the
same direction with the beam, as illustrated in Fig. 3. However, the amplitude of p1 is larger than that of p2 at this frequency,
therefore, the total momentum in the unit cell is still in phase with that of the host beam segment, which gives a clear
explanation about the generation of the new passband in the EMM beam. Based on this understanding, the newly formed

Table 1
Geometrical and material parameters for the broadband EMM beam.

Geometrical parameters Material parameters

a 75 mm Mass density of the beam, ρ 2600 kg m�3

b 150 mm Young’s modulus of the beam, E 70 GPa
A 160.2 mm2

Shear modulus of the beam, G 27 GPa
I 5968 mm4 Timoshenko shear coefficient, κ 0.925

Spring constant k 165,000 N m�1

Mass, m1 0.0437 kg
Mass, m2 0.1748 kg

Fig. 3. Linear momentum ratios of the beam units with (a) a single resonator m1; (b) a single resonator m2; and (c) two resonators (m1 and m2).
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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passbands, as shown in Fig. 2, can be quantitatively determined through the positive/negative value of the linear
momentum ratio P. It should be mentioned that the dynamic interaction between different resonators could be tuned
through careful design of multiple resonators. However, in order to achieve complete low-frequency vibration suppression,
this dynamic interaction is undesirable and should be avoided for practical engineering application.

3. Section design of multiple local resonators

In the study, a section design of multiple local resonators in the finite EMM beam is proposed for broadband vibration
attenuation by eliminating the dynamic interaction between different resonators in the unit cell, and its resulting new
passbands. Each section is composed of a finite unit number of particular resonator to completely attenuate vibration energy
in a certain frequency range. One of the most fundamental issues in this design is to determine required unit number of the
resonator in each section to fully attenuate the vibration energy in the specified frequency range. Harmonic bending
simulation of the finite EMM beam with finite local resonators (X units) is conducted. Based on the transfer matrix TX , in
Eq. (9), frequency response function (FRF) of the finite beam [21], which is the ratio of the amplitude of the out-of-plane
acceleration at the right end to the amplitude of the out-of-plane excitation force at the left end, can be obtained by setting
the boundary conditions as [17,22]

EIY ″1
0 ð0Þ ¼ 0; (12a)

EIY‴1
0 ð0Þ ¼ F̂0; (12b)

EIY″s
X ðbÞ ¼ 0; (12c)

EIY‴s
X ðbÞ ¼ 0; (12d)

where the harmonic excitation force, F̂0, is applied to the left end of the finite beam along transverse direction and the right
end of the beam is assumed to be free.

Fig. 4a and b show FRFs of the finite EMM beams with the resonant masses m1 and m2, respectively. In both figures, the
finite EMM beams with 6, 11 and 16 units of the resonator are studied. The shaded areas in the figures indicate the predicted
bandgaps of the infinite EMM beam based on the TBT model. It can be found that the vibration attenuation frequency region
becomes wider and converges to a stable frequency region with the increase of the unit number of the resonator. Therefore,
sufficient resonator units should be determined to function as a section in the finite EMM beam to completely attenuate the
vibration energy in the desired frequency range to match bandgap prediction of the infinite EMM beam. Also, it is noticed
that the required unit number of the resonator could be tuned through the change of physical parameters of the local
resonator, such as resonant mass.

For any frequency within the bandgap of the EMM beam containing finite resonator units, if substituted in the dispersion
relation Eq. (11), a wavenumber yields in the complex form qðωÞ¼αþβi. Then, a vibration attenuation factor of the finite
EMM beam can be defined as e�βnn, where the vibration attenuation coefficient βn ¼ βb is the normalized imaginary part of
the wavenumber and n is the unit number of the resonator. In this study, e�βnn ¼ 0:01 is chosen as a sufficient vibration
attenuation threshold for the finite EMM beam and the designed vibration attenuation frequency region (ω1, ω2) by the
finite EMM beam is assumed to cover 90 percent of the bandgap predicted from the infinite EMM beam. In the study, we
focus on the vibration attenuation behavior of the EMM beam at the upper bound frequency ω2 to meet the defined
attention threshold, which require the maximum unit number of the resonator. Fig. 5 shows the function of required unit
number of the resonator along the beam direction to achieve complete vibration attenuation in the frequency ω¼ω2 in

Fig. 4. (a) FRFs of the finite EMM beams with different unit numbers of the resonant mass m1 and (b) FRFs of the finite EMM beams with different unit
numbers of the resonant mass m2.
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function of the dimensionless resonant mass. In the figure, the normalized mass is defined as mn ¼ ðm1=m0Þ, where
m0¼0.0437 kg. The unit dimension of the EMM beam is b¼75mm and the spring constant is k¼165,000 N m�1. It can be
found that more unit number of the resonator is needed with the increase of the resonant mass, and 16 resonator units are
sufficient for all the considered cases, which is consistent with the previous prediction in Fig. 4. The vibration attenuation
coefficient (normalized wavenumber's imaginary part) βn of the EMM beam in the frequency ω¼ω2 is also plotted in Fig. 5. It
is noticed that the vibration attenuation coefficient of the EMM beam decreases as the value of the resonant mass increases,
which means that more resonators along the beam direction are needed to sufficiently attenuate vibration for the EMM
beamwith larger resonant mass. Fig. 6 shows required unit number of the resonator with the change of flexibility of the host
beam. In the figure, geometrical and material properties of the EMM beam are kept the same as they are in Table 1 except for
the bending stiffness of the beam. It can be found that the required unit number of the resonator increases as the bending
stiffness of the beam increases while the vibration attenuation coefficient, βn, decreases as the bending stiffness increases.
Therefore, the vibration attenuation coefficient of the EMM beam can be used as the beam attenuation factor to determine
the required unit number of the resonator.

Finally, to validate the proposed section design, the FRF of a finite beam with two distributed resonator sections is
evaluated based on the TMM. Fig. 7 shows the calculated FRF of the proposed finite EMM beam. In the figure, the first
section contains 16 resonant units consisting of mass m1 and the second section contains 16 resonant units consisting of
mass m2. A complete broadband vibration attenuation regime is successfully formed in the normalized frequency range
between 0.5 and 1.54 which almost coincides with the linear summation of the bandgap frequency range of EMM beams
with resonant mass m1, (1, 1.55) and the bandgap frequency range of EMM beams with resonant mass m2, (0.50, 1.29).

4. Experimental testing of the EMM beam

In order to apply the broadband design in the realistic structures, a chiral-lattice-based EMM beam integrated with
different section-distributed resonators is fabricated. Chiral lattice is selected due to its excellent capability for load bearing

Fig. 5. The required unit number of the resonator and the imaginary part of the wavenumber as functions of the dimensionless resonant mass in the
EMM beam.

Fig. 6. The required unit number of the resonator and the imaginary part of the wavenumber as functions of bending stiffness of the host beam.

R. Zhu et al. / Journal of Sound and Vibration 333 (2014) 2759–2773 2765
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and feasibility for the inner resonator implantation. The resonators can be implanted into the node circles of the chiral
lattice therefore the load-bearing capacity of chiral lattice will not be affected. First, the chiral honeycomb beam is fabricated
from an aluminum (Al) beam through a water jet cutter, as shown in Fig. 8a. A unit cell of the chiral lattice is also zoomed in
Fig. 8a. In the beam structure, the periodic chiral lattice is sandwiched into a beam frame and the end of each ligament is
rigidly linked to the frame. The length of the sandwich beam is LB¼470 mm, the total height is HB¼91 mm and the height of
the chiral layer is HC¼90 mm, the width of the beam is WB¼10 mm. The wall thickness of the frame is 0.5 mm. The
structure contains 16 unit cells in the length direction and 3 unit cells in the height direction. The zoomed picture in Fig. 8b
shows the topology of the hexagonal chiral lattice used in the finite beam. The geometrical and material parameters of the
chiral lattice beam are listed in Table 2. Then, to form the EMM beam for vibration attenuation, local resonators, made of
rubber (Polyteks Poly PT Flex 20 RTV Liquid Rubber, Polytek Development Corp.) coated metal cylinders, are filled in the
node circles of the chiral lattices with the help of a supplementary guiding plate, which is used to precisely locate the metal
cylinders. Steel cylinders as well as tungsten cylinders with the same geometry, 6.35 mm in diameter and 25.4 mm in
height, are used as inclusion cores. The geometrical and material parameters of the local resonators are listed in Table 3.

Fig. 9 shows the experimental set-up of the vibration testing. The chiral EMM beam is fixed on one end and excited by a
shaker (LDS V203) which is close to the fixed end. The shaker is powered by a power amplifier (LDS PA25E). White noise
excitation signal with bandwidth from 0 to 1000 Hz is generated by the shaker, and the response of the finite chiral EMM
beam is captured by an accelerometer, which is attached to the other end of the EMM beam. Both the input signal and the

Fig. 8. (a) The fabricated chiral lattice beam and its zoomed unit cell and (b) the topology of the hexagonal chiral lattice.

Fig. 7. The FRF of the finite EMM beam with two resonator sections.

R. Zhu et al. / Journal of Sound and Vibration 333 (2014) 2759–27732766
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output signal are recorded by the dynamic signal analyzer (Dactron PHOTONþTM). A laptop installed with Data Recorder
software is used for the post-processing. The experimental measured FRF is defined as the ratio of the output voltage signal
from the accelerometer with respect to the input voltage signal from the force transducer as a function of frequency.

Table 2
Geometrical and material parameters of the chiral lattice beam.

Geometrical parameters Material parameters

Topology parameter L=R¼ 0:82 Mass density 2700 kg m�3

Ligament length L¼24.6 mm Young’s modulus 71 GPa
Node radius Rn¼8.6 mm2 Poisson's ratio 0:33
Ligament wall thickness tL¼0.5 mm
Node wall thickness tN¼0.5 mm
Unit cell size aL¼15 mm

Table 3
Geometrical and material parameters of the local resonator.

Geometrical parameters Material parameters

Diameter of the metal cylinder Dc ¼ 6:35 mm Mass density of steel 7850 kg m�3

Height of the metal cylinder Hc ¼ 25:4 mm Mass density of tungsten 15,630 kg m�3

Elastic modulus of the rubber 586 MPa
Loss tangent of the rubber (tan δ) o0.1

Fig. 9. Experimental set-up of the vibration testing of the EMM beam.

Fig. 10. The FRFs of the chiral lattice beam from the experimental testing and the FE method. The blue vertical lines indicate the calculated natural
frequencies from the TBT model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Experimental vibration testing on the chiral lattice beam without local resonators is first performed to validate the
experimental set-up of the system. Fig. 10 shows the measured FRF of the chiral lattice beam. For comparison, the FRF
calculated from the finite element (FE) method based on the exact geometry of the beam specimen is also depicted in the
figure. Both FRF results give close estimation about the first and second natural frequencies of the bending mode. There is a
small difference about the third natural frequency prediction from the experimental measurement and the FE method,
which can be accounted for errors in specimen manufacturing accuracy control such as: ligament wall thickness. The
measured FRF peaks are also compared with the three lowest natural frequencies obtained from the TBT model, which are
marked with blue vertical lines in Fig. 10. In the TBT model, the beam specimen is homogenized as a sandwich beam with
two Al face sheets, and effective material properties for the core layer are calculated from the chiral lattice structure [16].
The effective bending stiffness ðEIÞ and the effective transverse shear stiffness ðkGAÞ of the sandwich beam are listed in
Table 4 and the detailed derivation can be found in Appendix A. It is noted that the TBT model can give very good prediction
about the two lowest natural frequencies, and the small discrepancy for the third natural frequency prediction can be
attributed to approximate estimations of the effective properties of the sandwich beam such as the mass of the sandwich
beam per unit length, ρA, and the rotary inertia, ρI. In order to improve the accuracy of the TBT model, a model based on the
exact geometry of the chiral lattice beam cross section is needed [23], which requires complicated and large computational
work and is beyond the interest of this paper. Overall, it is evident that the TBT model is applicable for the current beam. In
the following, the proposed experimental set-up and TBT model will be used for the vibration characterization of the finite
EMM beam.

Next, vibration testing is conducted on the finite chiral EMM beam. Fig. 11 shows the FRF comparison of the finite EMM
beam with 7 resonator units (rubber coated steel cylinders) from both the experimental measurement and FE simulation.
Based on the TBT model, bandgap prediction for the infinite chiral EMM beam is also inserted in the shaded area. In the
model, the resonators are represented by the effective spring-mass system with effective properties listed in Table 4. The
lattice constant is

ffiffiffi
3

p
aL. The effective masses of the steel and tungsten cylinders are calculated by simply taking products of

densities and volumes of the cylinders. The effective spring constant of the rubber coating layer can be numerically
determined based on a model of two springs connecting the center mass along the vibration direction as kreff ¼ Fc=γc, where
Fc is the restoring force on the outer fixed boundary of the coating layer and γc is the applied displacement along the
vibration direction [24]. For the resonator in TBT model, which is represented by a single spring connecting the center mass

Table 4
Effective material properties of the chiral lattice, the local resonator and the sandwich beam.

Chiral lattice Sandwich beam Local resonator

Effective mass
density

ρeff ¼ 194:75 kg m�3 Effective bending stiffness ðEIÞ ¼ 1662:7 Pa m4 Effective mass
(steel cylinder)

m1
eff ¼ 0:0063 kg

Effective bulk
modulus

κeff ¼ 0:01328 GPa Effective transverse shear
stiffness

ðkGAÞ ¼ 17;360 Pa m2 Effective mass
(tungsten cylinder)

m2
eff ¼ 0:0126 kg

Effective shear
modulus

μeff ¼ 0:03334 GPa Effective rotatory inertia ðρIÞ ¼ 1:736e�4 kg m Effective spring
constant

keff ¼ 24892 N m�1

Mass per unit length ðρAÞ ¼ 0:2016 kg m�1

Fig. 11. The FRFs of the finite chiral EMM beam from the experimental testing and the FE method. The shade area indicates the bandgap prediction of the
infinite effective EMM beam.
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as shown in Fig. 1, the effective spring constant should be equivalent as keff ¼ 2kreff . Strong vibration attenuation at the low-
frequency regime can be observed from both the FE and experimental results. The vibration attenuation frequency region is
in good agreement with that by the FE simulation, which is also within the bandgap frequency region predicted by the TBT
model (shaded area). As shown in the figure, the FRF amplitude will have a significant drop when the frequency approaches
to the resonant frequency (317 Hz) which is the lower boundary of the predicted bandgap. However, the FRF drop obtained
from the experimental testing is not as sharp as that from the FE simulation. That is because the FE simulation does not
consider damping factor of the rubber coating. It was reported that the vibration attenuation frequency region will be
enlarged and the FRF amplitude will be decreased by including material damping factor in the resonator [25]. In the current
experimental testing, the resonators (rubber coated steel cylinders) are distributed in a block instead of randomly spacing
out through the beam. Numerical simulation has revealed that the resonators can efficiently attenuate vibration if they are
distributed in a block with length more than the half-wavelength of the vibration [14].

As discussed in the previous section, to achieve broadband vibration attenuation, sufficient resonator units in each
section of the finite EMM beam are needed. To experimentally implement the design, the FRF of the EMM beam with
required unit number of the resonator should be first explored. Fig. 12 shows measured FRFs on the finite EMM beam with
different units of the resonator (rubber-coated steel cylinders). For the sake of clear demonstration, the FRF of the chiral
lattice beam without resonators is also plotted in the figure. From the figure, a clear drop in the FRF corresponding to the
local resonance frequency is found for the beam with resonators, while no such FRF drop can be found in the beam without
resonators. In addition, vibration attenuation frequency region increases with the increase of the resonant unit number, as
expected, and finally converges when the resonant column number is larger than seven. Therefore, for the current resonator
(rubber coated steel cylinders), only seven columns are needed to achieve sufficient vibration attenuation in the designed
frequency region. Similarly, experimental testing of the finite EMM beam with another resonator (rubber coated tungsten
cylinders) is conducted and the finite EMM with eleven resonant columns is needed to obtain the desired vibration
attenuation frequency region. The difference in the require column of the resonators is due to the different effective
resonant masses calculated from the beams with steel cylinders and tungsten cylinders. According to the previous
numerical prediction in Fig. 5, the vibration attenuation coefficient of the beam, βn, decreases when the resonant mass
increases. Therefore, more tungsten cylinders are needed due the larger equivalent resonant mass of the tungsten resonator.
This understanding is important since the light weight requirement of a structure is crucial for many engineering
applications.

Fig. 12. Experimentally obtained FRFs of the finite EMM beams with different column numbers.

Fig. 13. The finite broadband EMM beam with two resonator sections.
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Fig. 13 shows the designed EMM beam specimen with two resonator sections for the broadband vibration attenuation. In
the specimen, seven resonant columns made of rubber coated steel cylinders are inserted in the right section of the beam,
and seven resonant columns made of rubber coated tungsten cylinders are inserted into the left section of the beam due to
the beam dimension limitation. The total weight of the EMM beam increases 155 percent compared with the chiral beam
specimen without resonators. The optimization analysis is further needed to make a good trade-off between the weight
increase and efficient vibration attenuation ability. The measured FRF of the EMM beam with two sections in Fig. 13 is
illustrated in Fig. 14a. For a clear demonstration, the measured FRFs from the EMM beams with seven single resonant
columns (rubber-coated steel or tungsten cylinders) are also plotted in the figure. As expected, the vibration attenuation
frequency region of the designed EMM beam is located at the frequency range between 210 Hz and 700 Hz, which is very
close to the linear summation of the measured vibration attenuation frequency regions of the EMM beams with the
individual resonator section. The measured vibration attenuation frequency region is also compared with bandgap
predictions of the infinite EMM beams based on the TBT model. In the figure, yellow shaded area indicates the bandgap
of the EMM beam with periodic rubber-coated tungsten cylinders and gray shaded area indicates the bandgap of the EMM
beam with periodic rubber-coated steel cylinders. It is not surprising that the vibration attenuation frequency region of the
EMM beamwith two sections can be predicted by overlapping their individual bandgaps. After a close inspection, we found
that there is a frequency difference for rubber-coated tungsten cylinders between the measured vibration attenuation

Fig. 14. (a) The measured FRFs of the proposed broadband EMM beam with two sections and the EMM beams with the single section. The shade areas
indicate the bandgap predictions of the infinite effective EMM beams. (b) The vibration modes of the EMM beam with seven tungsten resonant columns
from the FE simulation at different frequencies. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)
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frequency region of the finite EMM beam and the bandgap prediction of the infinite EMM beam. The difference is due to the
lack of sufficient tungsten resonant units in the finite EMM beam to completely attenuate the vibration energy, as we
calculated in the previous section.

To further illustrate this phenomenon, vibration modes of the EMM beam with seven tungsten resonant columns from
the FE simulation are demonstrated in Fig. 14b at frequencies 260 Hz, 410 Hz and 660 Hz. It is noted that the vibration
decays significantly at 260 Hz, which is very close to the local resonance frequency, and all the vibration energy is trapped in
the first two columns of the tungsten resonators. When the frequency approaches to 410 Hz, which is still within the
bandgap regime, the resonators does show the out-of-phase motion with respect to the beam. However the motion in the
finite resonators is not sufficient enough to attenuate the total vibration energy. This fact can be also reflected in the
measured FRF of the EMM beam. A small vibration transmission around the 410 Hz frequency range can be observed as
illustrated in Fig. 14a. For the frequency at 660 Hz, which is outside the bandgap regime, the mode shape shows that the
resonators have nearly no motion therefore they have small effect on the global motion of the beam. Vibration propagation
occurs mostly through the bending deformation of the lattice ribs.

5. Conclusion

In this paper, a design of chiral-lattice-based elastic EMM beam with multiple resonators is suggested for the broadband
vibration suppression by utilizing their individual bandgaps. First, a theoretical vibration modeling of the EMM beam with
multiple local resonators is implemented based on the TBT model. To achieve broadband vibration attenuation, an EMM
beamwith distributed section resonators is suggested by eliminating dynamic interaction between different resonators and
its resulting passbands. Attention is paid on quantitative determination of required unit number of the resonator to achieve
desired vibration suppression. Finally, the chiral-lattice-based EMM beam is fabricated and experimental testing of the
proposed structure is conducted to validate the design.
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Appendix A. Effective bending stiffness and effective transverse shear stiffness of the homogenized sandwich beam

The finite sandwich beam consists of two face sheets which are made of Al and a core layer made of the chiral lattice, as
shown in Fig. A1. The core layer can be represented by an effective isotropic medium with three effective material
parameters: ρeff, Eeff, and υeff through the effective formulation approach [16]. With the equivalent core layer, all three layers
in the sandwich beam are isotropic materials and the in plane stress–strain relation in each layer can be expressed as

sx
sy
sxy

8><
>:

9>=
>;¼

Q11 Q12 0
Q12 Q11 0
0 0 Q66

2
64

3
75

εx

εy

εxy

8><
>:

9>=
>;; (A.1)

where

Q11 ¼
Eð1�υÞ

1þυð Þð1�2υÞ ; Q12 ¼
Eυ

1þυð Þð1�2υÞ ; and Q66 ¼
E

2ð1þυÞ :

Integrating Eq. (A.1) through the thickness of the beam results in the following relation between the resultant forces and
moments and the strains and curvatures:

N
M

� �
¼ A B

B D

� �
ε

κ

� �
; (A.2)

where A is the extensional stiffness matrix, B is the bending–extension coupling stiffness matrix and D is the bending
stiffness matrix. Since the homogenized sandwich beam is symmetric with respect to the middle surface, the components in
the bending–extension coupling stiffness matrix B are zero. The components of the bending stiffness matrix D for a

Fig. A1. The homogenized sandwich beam.
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sandwich beam can be obtained as follows:

D11 ¼D22 ¼ 1
12 Qf

11ðH3
B�H3

CÞþQc
11H

3
C

h i
;

D12 ¼ 1
12 Qf

12ðH3
B�H3

CÞþQc
12H

3
C

h i
;

D66 ¼ 1
12 Qf

66ðH3
B�H3

CÞþQc
66H

3
C

h i
: (A.3)

where the superscript ‘f’ and ‘c’ represent the face sheet and core layer, respectively. Then, the compliance equations can be
obtained by inverting the matrices in Eq. (A.2),

ε

κ

� �
¼ α 0

0 δ

� �
N
M

� �
; (A.4)

where

δ11 ¼ δ22 ¼
D11

ðD2
11�D2

12Þ
; δ12 ¼

�D12

ðD2
11�D2

12Þ
; δ66 ¼

1
D66

: (A.5)

Using the equilibrium equation for the stresses in xz plane in the absence of body forces and integrating through the
thickness, the shear stress expression becomes

sxz ¼ �
Z z

�HB=2
sx;xdz: (A.6)

Considering only the resultant component in x direction, Qx, then, Nx,x¼0 and Mx,x¼�Qx. Substituting Eqs. (A.1) and (A.4)
into (A.6) yields

sxz ¼ �
Z z

�HB=2
QxzðQ11δ11þQ12δ12Þdz: (A.7)

Notice that the constitutive relations for transverse shear stresses are

sxz
syz

( )
¼

Q55 0
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" #
γxz
γyz

( )
: (A.8)

The shear strain energy per unit length can be obtained as

U ¼ WB
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where WB is the width of the beam. For the sandwich beam consisting of two face sheets and a core layer, the shear strain
energy can be rewritten according to the materials of each layer in the sandwich beam:
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Assuming a constant transverse shear strain through the beam thickness, the constitute relation for the transverse shear
resultant can be rewritten as

Qx ¼ ðkGAÞγxz; (A.11)

where ðkGAÞ is the effective transverse shear stiffness. Thus, using Eq. (A.11), we can obtain an alternative form of shear
strain energy:

U ¼ 1
2

Q2
x

ðkGAÞ
: (A.12)

By equating the strain energy given by Eqs. (A.10) and (A.12), the effective transverse shear stiffness can be expressed as a
function of the materials properties of each layer in the sandwich beam:
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In order to obtain the effective bending stiffness from Eq. (A.4), in accordance with the assumption by Whitney et al. [26],
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only Nx and Mx are retained. Hence, the compliance matrix in Eq. (A.4) can be simplified as

εx

κx

( )
¼

α11 0
0 δ11

" #
Nx

Mx

( )
; (A.14)

and the expression for the force resultant of the sandwich can be obtained by inverting Eq. (A.14),

Nx

Mx

( )
¼ A 0

0 D

" #
εx

κx

( )
; (A.15)

where A ¼ ðA11A22�A2
12Þ=A22 and D ¼ 1=δ11 ¼ ðD11D22�D2

12Þ=D22. Aij and Dij (i, j¼1, 2) are the components of the extensional
stiffness matrix and the bending stiffness matrix, respectively. Therefore, the effective bending stiffness can be obtained as

ðEIÞ ¼WBD ¼ WBðD11D22�D2
12Þ

D22
: (A.16)
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