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a b s t r a c t

In perfectly matched layer (PML) technique, an artificial layer is introduced in the simula-
tion ofwave propagation as a boundary conditionwhich absorbs all incidentwaveswithout
any reflection. Such a layer is generally thought to be unrealizable due to its complicated
material formulation. In this paper, on the basis of transformation elastodynamics and
complex coordinate transformation, a novel method is proposed to design PMLs for elastic
waves. By applying the conformal transformation technique, the proposed PML is formu-
lated in terms of conventional constitutive parameters and then can be easily realized by
functionally graded viscoelastic materials. We perform numerical simulations to validate
the material realization and performance of this PML.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1994, Berenger [1] proposed a perfectly matched layer (PML) technique to improve the efficiency of wave propagation
simulations. A PML is an artificial layer introduced as boundary conditions in calculation model, which absorbs all incident
waves without any reflection. The key strategy in this technique is to perform a coordinate transformation which maps the
real harmonic wave eik·x in the real space x into the following form in a complex space x̂ = x′

+ ix′′:

eik·x̂
= e−k·x′′

eik·x′

, (1)

where k is the wavevector. Thus the coordinate transformationmakes the wave attenuate in the exponential manner e−k·x′′

.
In the early understanding, the PMLswere thought to be ‘‘nonphysical’’ and ‘‘purelymathematical’’. Later, an alternative for-
mulation of PMLs in electrodynamicswas reported [2,3], known as ‘‘Maxwellian PMLs’’, inwhich the coordinate deformation
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is described by complex material parameters. These works not only revealed the physical interpretation of PMLs but also
showed the possibility of their realization in practical materials.

Coincidentally, the similar idea of equivalence between material distribution and space distortion has been employed in
the transformation method (TM) [4,5], or more specifically, the transformation optics (TO) in the field of electrodynamics,
to design novel wave functional devices, such as ‘‘invisibility cloak’’ [6]. Teixeira et al. [7] investigated the relation between
the PML method and the TM method. They demonstrated that the complex transformation in the former method can be
regarded as a generalization of the latter. It is also noticed that in the field of elastodynamics, there is a similar coincidence.
Thematerial formulation of elastodynamic PMLs [8] has the same form as that derived by transformation elastodynamics [9]
with the stiffness tensorwithoutminor symmetry. Recently, Chang et al. [10,11] designed a simplified formof elastodynamic
PMLs with a symmetric elastic tensor on the basis of an approximate transformation elastodynamic method. This type of
PMLs have been proved by a number of numerical examples to have good absorption property [10,11], but it remains un-
clear how they can be realized in practice. In addition, the TM has been demonstrated as a convenient tool to elucidate the
physical insight of PMLs and to ease the design process of PMLs. For instance, Popa et al. [12] used this technique to design
an electromagnetic PML of arbitrary shape in the context of transformation optics. In the present study, the TMwill be used
to design elastodynamic PMLs and to simplify the designed PMLs to a realizable level.

As PMLs are mathematically formulated in a complex space, their realization by real materials is a technologically im-
portant issue. In elastodynamics, a good absorption ability to incident wave is of great interest in both experimental and
engineering applications. Especially, if there is no effective absorption mechanism, elastic waves could not be measured
in steady state in elastodynamic experiments. Even in transient measurements, the sample has to be very large in order
to avoid the interference of reflected waves from boundaries. For a long time, the PML technique has not been realized in
practice but only used in numerical simulations. The main obstacle to realize the PML technique is that the mathematically
derived PMLs require asymmetric elastic tensors [8], which do not exist in nature. This difficulty will be overcome in the
present paper by applying conformal transformation technique.

In this study, a design method of an elastodynamic PML is proposed on the basis of transformation elastodynamics. We
will show that an elastodynamic PML can be formulated in terms of conventional material parameters and can be fabricated
with conventional viscoelastic materials. The paper is organized as follows. In Section 2, an elastodynamic PML is proposed
on the basis of transformation elastodynamics and validated via a number of numerical simulations. In Section 3, the formu-
lation of the proposed PML is further simplified to make them physically realizable. Especially, a simple prototype of PMLs
is given. Finally, the main results are summarized in Section 4.

2. Elastodynamic PML

In this section, we first derive the formulation of elastodynamic PMLs by using the TM. The governing equation of elastic
waves, Navier’s equation, is written as [10]

∇ · C : ∇u = −ω2ρ · u, (2)

where C is the fourth-order elastic tensor, u is the wave displacement vector, ρ is the anisotropic mass density tensor,
and ω is the angular frequency. As the core of transformation elastodynamics, the form invariance of Eq. (2) under coordi-
nate transformation has been investigated by various methods [9–11,13,14]. Milton et al. [13] first raised the problem and
showed by so-called ‘‘change of variable’’ approach that Navier’s equation in (2) will not preserve its original form but will
be transformed into Willis’ equation under the prescribed transformation relation of displacement

ū = A−Tu, (3)

where ANn = ∂xN/∂Xn is the Jacobian matrix of space (or coordinate) transformation. This implies the transformation
method can only be available under the condition that the transformed material obeys Willis equation. Later, Brun et al. [9]
demonstrated a precise control of elastic wave by using transformation method with the following transformation relation
of displacement vector

ū = Iu, (4)

where IIi = δIi is the second-order unit tensor. In this method, the transformed material is of Navier’s form, but the asym-
metric elastic tensor is needed to guarantee the form invariance. Furthermore, Norris and Shuvalov [14] developed a general
elastic cloaking theory in which a ‘‘gauge’’ matrix is applied such that both above two works are particular cases of the the-
ory. On the other hand, Chang et al. [10] proposed an alternative method to obtain possible transformation relations which
can keep the form of governing equations (e.g. Maxwell equations for electromagnetic waves and Helmholtz equation for
acoustic waves) during coordinate transformation. They found for elastodynamics, the form invariance of Eq. (2) can be ap-
proximately preserved in case where the gradient of the elastic moduli of the transformed material is small or when wave
frequency is high [11].

By introducing complex coordinate transformation, the above methods can all be applied to accomplish the design of
PMLs. However, for the ease of numerical implementation and further simplification, only Navier’s form of transformed
material is considered in this work.
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In the above specification, only two sets of transformation relations need to be considered. For example, one can use
Brun’s transformation relations [9] (or equivalently Norris and Shuvalov’s with the ‘‘gauge’’ matrix equals to I, see Ref. [14]),

C̄IJKL = J−1AIiIJjAKkILlCijkl,

ρ̄ = J−1ρ,
(5)

where J = det(ANn) is the Jacobian. Using Eq. (5), the material parameters in the initial virtual space Cijkl and ρ are trans-
formed into C̄IJKL and ρ̄ in the physical space, respectively. Correspondingly, the wave displacement vector in the virtual
space is mapped to in the physical space according to Eq. (4). The above relations constitute the basis of such wave control
devices as ‘‘elastodynamic cloak’’ [9]. However, if one follows this path to design a PML for elastic waves, the transformed
elastic tensor C̄IJKL will lose its minor symmetry, making the material realization very difficult.

Another method [11] can also be used with the following material transformation relations:

C̄IJKL = J−1AIiAJjAKkALlCijkl,

ρ̄IJ = J−1AIiAJjδijρ.
(6)

Correspondingly, the wave displacement vector u in the virtual space will be approximately mapped into the physical space
via the relation of Eq. (3). These relations are identical to Milton’s Willis-form-relations [13] (or equivalently Norris and
Shuvalov’s with the ‘‘gauge’’ matrix equals toA, see Ref. [14]). A simplification ismade by neglecting all the terms containing
the partial derivative of A in the Willis’ equation to approximately preserve the form of Eq. (2), this leads to Eq. (6). The
accuracy of this approximate method was evaluated and discussed in [11,15]. The imperfection of this method can also be
observed in later PML design processes. It is noted that when the space mapping is conformal, the designed transformation
deviceswill performwell at anymaterial gradient orwave frequency [16,17]. In addition, the relation in Eq. (6) can guarantee
the symmetry of the elastic tensor, a distinct advantage for PML realization over that in Eq. (5). However, it is still difficult,
if not impossible, to achieve the anisotropic dynamic mass density assumed in Eq. (6).

In 2009, Hu et al. [18] proposed a representationmethod of transformation relation, in which the coordinate transforma-
tion is described as space deformation. By applying polar decomposition, the Jacobian matrix can be expressed as A = V ·R.
Here R is an orthogonal tensor describing the rigid rotation of the local infinitesimal element, and V is a symmetric tensor
with eigenvalues λI (I = 1, . . . ,N) denoting the stretch of a local infinitesimal element, where N is the dimension of the
problem under study and λI is the linear principal stretch in the I-direction. Thus in the local principal coordinates êI , V can
be expressed as a diagonal form V =

N
1 λI êI êI . As the rigid rotation does not change the property of infinitesimal elements

during the ‘‘space deformation’’, we rewrite the transformation relations in Eqs. (5) and (6) into simpler forms in terms of
local principal coordinates êI . Then Eq. (5) becomes a very simple form:

C̄IJKL = J−1λIλKCijkl,

ρ̄ = J−1ρ,
(7)

where a capital index in the subscript takes the same value as its corresponding lower index, and J =
N

I=1 λI . As aforemen-
tioned, V is a diagonal matrix in the local principal coordinates, Einstein summation convention is not adopted for a capital
index and its lower counterpart. Similarly, Eq. (6) is rewritten as [11]

C̄IJKL = J−1λIλJλKλLCijkl,

ρ̄IJ = J−1λIλJδijρ.
(8)

This representation has the advantage that the interference of rotation terms has been ruled out, and thus the physical in-
sight during the ‘‘space transformation’’ can be revealed clearly. Particularly, in the case when the local principal coordinate
is identical with the original coordinate (no rotation during the global transformation), Eqs. (7) and (8) can be seen as the
global transformation relations with λI being the stretch function along I direction. In this sense, Eqs. (7) and (8) imply that
we can design transformation devices using λI without considering the specific form of space mapping. This will greatly
simplify the design of PMLs, as we show below.

Now we discuss the design of elastodynamic PMLs. As mentioned above, complex principal stretches are applied to
introduce the attenuation of waves. To create a PML which can absorb the x-component of incident elastic waves in a two-
dimensional (in-plane) problem, as shown in Fig. 1, the local principal directions at position (x, y) should be identical with
the directions of the unit vectors in the global Cartesian coordinate system. Then we choose the principal stretches as

λx = 1 + iβ(x), λy = 1 (9)
where β(x) is a tunable function. One can choose the function β(x) according to the absorption efficiency of the PML. Sub-
stituting Eq. (9) into Eqs. (7) and (8) renders two design methods of elastodynamic PMLs. It is emphasized that the two
methods are different in their impedance match conditions for the following reason. In Eq. (7), β(x) can be arbitrarily cho-
sen, because the impedance matched condition on the wave incident boundary ∂Ω is an intrinsic feature in asymmetric
TM [9]. In contrary, for the approximate method defined by Eq. (8), β(x) should satisfy the C0 continuity on ∂Ω , i.e.,

β(x)|∂Ω = 0, (10)
such that the mapping has the C1 continuity on the boundary. Only in this case, can the designed PML perfectly match the
computational domain [11].
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Fig. 1. Schematic diagramof a PML,where ∂Ω is thewave incidence boundary,λx andλy are the principal stretches in the PMLduring space transformation.

In what follows, we will discuss the numerical implementation of this type of elastodynamic PMLs and show the
difference between the PMLs derived from Eqs. (7) and (8).

For illustration, we consider a 1 m × 1 m square computational domain centroid at (0, 0). Its boundary is surrounded
by eight PML domains with width l = 0.1 m, numbered as I to VIII, respectively. A source of circular shape with the radius
w = 0.01 m and the center at (−0.3, 0.3) is set to emit P- or S-waves, as shown in Fig. 2. For the normalized material pa-
rameters of the computational free space, we set the Lame constants La1 = 2.3 and La2 = 1 and the mass density ρ = 1.
According to Eq. (9), to ensure that the PMLs can absorb incident waves from any directions, the principal stretches in the
eight PML domains should have the following form:

λx = 1 + iβ(x − xwi), λy = 1 (in domains I and II);
λx = 1, λy = 1 + iβ(y − ywi) (in domains III and IV);

λx = 1 + iβ(x − xwi), λy = 1 + iβ(y − ywi) (in domains V–VIII),
(11)

where xwi and ywi are the x and y coordinates at the wave incident boundaries, respectively. For the example shown in Fig. 2,
we have xwi = −0.5 for domains I, V and VII, and xwi = 0.5 for domains II, VI and VIII. Similarly, we have ywi = 0.5 for
domains III, V and VI, and ywi = −0.5 for domains VI, VII and VIII.

For PMLs governed by Eq. (7), we can set β(r − rwi)(r = x, y) in Eq. (11) as a constant, i.e.

β(r − rwi) = 1. (12)

With the material parameters of free space, together with principal stretches expressed by Eqs. (11) and (12), the material
parameters of the PML domains can be derived from Eq. (7). It is interesting to find that in this case, all designed PMLs have
homogeneous material parameters. We simulate the PMLs using the weak form PDE module of finite element software,
COMSOL Multiphysics. The results show that the PMLs can perfectly absorb the incident P- and S-waves from any angle,
as illustrated in Fig. 3(a) and (b), respectively, where the waves emitted from the source have the angular frequency of
ω = 200 Hz and amplitude B = 100 µm.

A similar manipulation can be made to the PMLs expressed by Eq. (8) except that more constraints should be considered
in the selection of β(r − rwi), where r = x, y. Considering the continuity condition in Eq. (10), we may choose

β(r − rwi) = 10 |r − rwi| . (13)

Correspondingly, with the material parameters of free space, together with principal stretches expressed by Eqs. (11) and
(13), the material parameters of the PML domains can be derived from Eq. (8). The numerical simulations show the PMLs
also exhibit good absorbing performance for both P- and S-waves, as shown in Fig. 3(c) and (d). However, since the TM ap-
plied here is an approximate one, some slight scattering can be observed near the boundaries of the computational domain
(Fig. 3(c) and (d)). To clearly indicate this imperfection, the absolute values of total displacement

u2
x + u2

y

 on two auxil-
iary segments L1 and L2 (see Fig. 2) are illustrated in Fig. 5(a) and (b), respectively. It is shown in Fig. 5(a) that for both P- and
S-waves, the total displacement quickly decays in PML domains derived from both asymmetric (labeled as Case 1 in Fig. 5)
and symmetric (labeled as Case 2 in Fig. 5) transformation relations. However, for the case of the symmetric transformation
relations (Case 2), wave pattern (scattering) can be found in free space domain, which displays the imperfection of the cor-
responding PML. This imperfection can be more clearly illustrated in Fig. 5(b), which shows that the scattered wave on L2 is
much larger for symmetric transformation relations (Case 2) than that of asymmetric transformation relations (Case 1),
although it can hardly be noticed in Fig. 3. A simple method to further reduce the scattering resulted from symmetric
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Fig. 2. Model of the PML numerical simulation. I–VIII denote the eight PML domains surrounding the computational domain, and the circular source in
the free space emits P- or S-waves. L1 and L2 are two auxiliary segments to probe the total displacement, so as to illustrate the effectiveness of the PMLs.

transformation relations is to increase the PML thickness and, simultaneously, reduce the varying gradient of the principal
stretches. For example, if we double the thickness of the PML by taking l = 0.2 m, the function β(r − rwi) can be chosen as

β(r − rwi) = 10 |r − rwi|
2 . (14)

In this case, no scattering is observed in the simulation results, as shown in Fig. 4(a) and (b) for P- and S-wave cases, re-
spectively. The good performance of the proposed PMLs is also demonstrated in Fig. 5 (labeled Case 3). It is shown that the
scattering of the modified symmetric PMLs is reduced to the same level as that of the asymmetric PMLs (Case 1).

3. Elastodynamic PMLs with realizable material parameters

Now we address the realization of the proposed PMLs. By substituting Eqs. (11) and (12) into (7), it is found that the
formulation of the homogeneous PML contains both positive and negative imaginary parts in C̄IJKL. In contrast to the positive
imaginary part, the negative imaginary part indicates a gain characteristic of the adopted material, which typically does
not exist in conventional materials. Therefore, though the PML proposed in Section 2 is efficient in the numerical simula-
tions of elastic waves, it is still hard to be realized in experiments or measurements. This issue will undoubtedly make the
implementation of the PML in practical application difficult.

To solve this problem, the conformal transformation technique is utilized to simplify the material formulation of the
proposed PMLs. As demonstrated in Ref. [5], a specific conformal transformation in TM can yield the isotropy of the trans-
formed material parameters. Also importantly, one may choose different transformation relations for a conformal trans-
formation [16]. We will utilize this feature to adjust the transformation relation such that the constitutive parameters of
the PMLs can be realized in real materials. Furthermore, the conformal transformation is equivalent to Cauchy–Riemann
condition. In terms of the above representation method suggested by Hu et al. [18], this condition can be simplified as

λx = λy = λ, (15)

meaning that the infinitesimal element experiences the same stretch in all principal directions. It is interesting to see that
with Eq. (15), the material transformation relations in Eqs. (7) and (8) are expressed in an identical form [16]:

C̄IJKL = λ−1
III Cijkl,

ρ̄ = J−1λ−1
III ρ,

(16)

where λIII is a tunable parameter. λIII = 1 and λIII = λ−2 correspond to Eqs. (7) and (8), respectively. In two-dimensional
problems, the tunable parameter λIII can be seen as a virtual principal stretch in the out-of-plane direction. This parameter
has been adopted in transformation acoustics [19] to eliminate the material singularity at the inner layer of acoustic cloaks.

In this study, we apply the similar idea to simplify the material parameters of the designed elastodynamic PMLs shown
in Fig. 1. To introduce the attenuation of waves, we set

λ = 1 + iβ(x). (17)

Here, the function β(x) should satisfy the following condition

β(x)|∂Ω = 0, (18)

such that the material parameters are continuous across the interface between the computational/experimental domain
and the PMLs.
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Fig. 3. Simulation results for the total wave displacement field

u2
x + u2

y in the computational domain and the PML domains for different cases: (a) PML
designed with asymmetric TM, P-wave, (b) PML designed with asymmetric TM, S-wave, (c) PML designed with symmetric TM, P-wave, (d) PML designed
with symmetric TM, S-wave.

Fig. 4. Simulation results for the total wave displacement field

u2
x + u2

y in the computational domain and the PMLs designed with symmetric TM:
(a) P-wave, (b) S-wave. Here, the width of the PML domains is doubled, while the imaginary part of the principal stretches is decreased of that in Fig. 3(c)
and (d).

To further simplify the transformation relation, as aforementioned, one can choose λIII = 1 or λ−2 in Eq. (16), by which
the attenuation characteristic will be ascribed to only a single material parameter, ρ̄ or C̄ . First, we prefer the selection of
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Fig. 5. Absolute values of total displacement
u2

x + u2
y

 on auxiliary segments (a) L1 and (b) L2 for different cases. Case 1: PMLs designedwith asymmetric
transformation relations (corresponding to Fig. 3(a) and (b)). Case 2: PMLs designed with symmetric transformation relations (corresponding to Fig. 3(c)
and (d)). Case 3: PMLs designed with symmetric transformation relations, but larger PML domains and smaller varying gradient of principal stretches than
that of Case 2 (corresponding to Fig. 4(a) and (b)).

λIII = λ−2, because following this selection, the obtained material parameters

Ē =

1 − β2(x)


E + 2iβ(x)E, ῡ = υ, ρ̄ = ρ (19)

have the same material formulation as that for isotropic viscoelastic materials, in which E is the Young’s modulus and υ
the Poisson’s ratio. On the other hand, if we choose λIII = 1, the dissipation term will be ascribed into the mass density, ρ̄,
which is not as easy as that in Eq. (19) in practical realization.

Eq. (19) provides a rather simplematerial formulation of a PML.However, its realization has two further difficulties. One is
the simultaneous control of the four parameters of real(Ē), imag(Ē), ῡ and ρ̄, and the other is the production of a viscoelastic
material with graded distribution E but constant υ and ρ. We found these two difficulties can be easily overcome by
considering the constraints ofmaterial parameters in the initial virtual space. In conventional TMs, the virtual space is usually
assumed as a free space with isotropic and homogeneous material parameters. In fact, this assumption is unnecessary and
can be eliminated because the transformation relation is applicable to an initial space with arbitrary distribution of material
parameters [10]. In recognition of this important property of TM, therefore, the initial virtual space of the PML domain is
here specifiedwithmaterial properties which smoothly vary along the x-direction, (i.e. substitute E, υ and ρ in Eq. (19) with
E(x), υ(x) and ρ(x)) and are continuous with the computational/ experimental domain at the interface ∂Ω (e.g. E(x)|∂Ω =

E). In this case, if we define Ẽ(x) =

1 − β2(x)


E(x), G̃(x) = 2β(x)E(x), υ̃(x) = υ(x) and ρ̃(x) = ρ(x), respectively, the

specific form of β(x) becomes unimportant and the material parameters of the PML, Eq. (19), can be re-expressed as

Ē = Ẽ(x) + iG̃(x), ῡ = υ̃(x), ρ̄ = ρ̃(x), (20)

which correspond to a functionally graded viscoelastic material.
The utilization of the functionally graded property in Eq. (20) makes the implementation of PMLsmuch easier. For exam-

ple, the PML can be made by a viscoelastic material containing inclusions with a specific distribution in space. Its effective
constitutive parameters can be predicted by such micromechanics methods as Mori–Tanaka method or the self-consistent
method. Inwhat follows, a simple prototype of such a PMLwill be given for illustration. For thematrix phase of the proposed
PML and also for thematerial in the computational/experimental domain, we chose a structural steel, since steels arewidely
used in elastic wave experiments. Its mechanical parameters are taken as: mass density ρ = 7850 kg/m3, Young’s modulus
E = 200 GPa, Poisson’s ratio υ = 0.33, and loss tangent δ = arctan(G/E) ≈ 0 [20]. Silicone is used as the viscoelastic
inclusion phase in the PML, which has ρ = 2.3 kg/m3, E = 0.05 GPa, υ = 0.47 and δ = 1.6 [20]. The larger value of
δ is beneficial to the design of a viscoelastic material with specific functionally graded properties. For example, consider a
PML with the size 1 m × 0.2 m, as shown in Fig. 6(a). We discrete it into 20 layers with the same height (0.01 m) along
the y-direction. Circular inclusions are added in the prototype. The radius of inclusions, rinc, linearly varies from 0.001 m
to 0.0048 m along the y-direction. Along the x-direction, the inclusions are uniformly distributed with distance of 0.01 m
between adjacent ones, as shown in Fig. 6(a). Finite element simulations are carried out to examine the effectiveness of
the proposed PML prototype. Fig. 6(b) and (c) give the calculation results for two S-wave Gaussian beams with the angular
frequency ω = 300π kHz, maximum amplitude B = 100 µm and the incident angles 90° and 45°, respectively. As can be
seen from the figures, both waves are absorbed well by the proposed PML except the slight scattering in the case of oblique
incidence, which is caused by the assumed square arrangement of the inclusions in this prototype. The efficiency of the PML
can be further improved by dividing it into more layers and using smaller viscoelastic inclusions.

The above results show that the proposed PML can be easily fabricated and can effectively absorb elastic waves of any
incident directions. At the design level, the PML is broadband provided that the quasi-static limit can be guaranteed. The
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Fig. 6. (a) A simple PML prototype made of a viscoelastic material. (b) and (c) give the simulation results for the total wave displacement field

u2
x + u2

y ,
where a S-wave with ω = 300π kHz impinging on the PML with incident angle 90° and 45°, respectively.

bandwidth of a PML is also limited by the selection of the viscoelastic material because of their dispersive nature of damp-
ing. The relation between the bandwidth and the viscoelastic property deserves further deep research but is omitted in this
paper.

It has been reported [21,22] that the conventional PMLs will suffer from intrinsic stability problems in case the back-
ground medium is anisotropic and when ‘‘the projections of the slowness vector and of the group velocity vector have
opposite signs’’ [22]. It is worthy to note that for the realizable PML proposed in this work, the medium of both the exper-
imental domain and PML domains are isotropic. In this sense, the proposed PML will not suffer from the above mentioned
stability problems, and long-time reliability of the proposed PML can thus be expected.

Finally, it is pointed out that the basic idea for the design of elastodynamic PMLs in this study may also be applied for
some other problems where the TM holds. Take flexural (out-of-plane) waves in a thin plate as an example. In the case, the
governing equation reads [23]

ρ−1/2
∇ · {E1/2

∇[ρ−1/2
∇ · (E1/2

∇uz)]} = β4
0uz, (21)

where β0 = ω2ρ0h/D0,D0, ρ0 and h are the flexural rigidity, normalized mass density and thickness of the plate, respec-
tively. Eq. (21) has the property of form invariance under space transformation [23], and thus the TM can be applied. One
can design realizable PMLs for out-of-plane waves in thin plates by using the above method for in-plane elastic waves.

4. Conclusion

Based on transformation elastodynamics, a new method has been proposed to design practically realizable elastody-
namic PMLs. By applying conformal transformation technique, the elastodynamic PML is demonstrated to be realizable by
using functionally graded viscoelastic materials. A prototype of such realizable PML is proposed and verified by numerical
simulations. In next step, further effort will be directed to experimental validation of the proposed elastodynamic PML and
its engineering applications. In addition, it will be of great interest to design more functional devices for wave manipulation
or energy harvesting by integrating TM and energy conversion technique.
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