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Abstract A curved gradient deficient shell element
for the Absolute Nodal Coordinate Formulation
(ANCF) is proposed for modeling initially thin curved
structures. Unlike the fully parameterized elements
of ANCF, a full mapping of the gradient vectors be-
tween different configurations is not available for gra-
dient deficient elements, therefore it is cumbersome to
work in a rectangular coordinate system for an initially
curved element. In this study, a curvilinear coordinate
system is adopted as the undeformed Lagrangian coor-
dinates, and the Green–Lagrange strain tensor with re-
spect to the curvilinear frame is utilized to characterize
the deformation energy of the shell element. As a re-
sult, the strain due to the initially curved element shape
is eliminated naturally, and the element formulation is
obtained in a concise mathematical form with a clear
physical interpretation. For thin structures, the simpli-
fied formulations for the evaluation of elastic forces
are also given. Moreover, an approach to deal with
the on-surface slope discontinuity is also proposed for
modeling general curved shell structures. Finally, the
developed element of ANCF is validated by several
numerical examples.
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1 Introduction

Absolute Nodal Coordinate Formulation (ANCF) pro-
posed by Shabana [1] has been of a great interest for
analyzing the dynamics of flexible multibody systems
[2, 3]. For this non-incremental finite-element method,
global position and its gradients are used as nodal De-
grees of Freedom (DOFs) to define element’s config-
uration. This method leads to an exact description of
the motion of rigid body, and it also keeps the element
mass matrix as constant. Therefore it has a great ad-
vantage for dynamic analysis of multibody systems
especially subjected to large deformation and rota-
tion.

A large number of elements of ANCF have been
developed for modeling both beam and shell struc-
tures with various material constitutive models [4, 5].
According to the definition of the nodal gradient co-
ordinates, the ANCF elements can be classified into
two groups: the fully parameterized elements and the
gradient deficient elements. For the fully parameter-
ized elements, the position gradients with respect to
all the coordinate lines are included, which can lead
to a general description of element deformation in-
cluding shear mode [6–9]. Although more element
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deformation modes including the cross-section defor-
mation can be taken into account, the fully param-
eterized elements suffer often from several locking
problems known as curvature thickness locking, shear
locking and Poisson’s locking [10]. Several techniques
have been proposed to circumvent the element lock-
ing problems [10]. On the other hand, gradient defi-
cient elements are proposed for modeling thin flexible
components such as cables, belts or membranes. For
these elements, only an element’s central axis or mid-
surface is described by a reduced set of position gra-
dients to characterize element configuration. The mo-
tion of a material point follows the Kirchhoff assump-
tion and the shear deformation is usually excluded.
For the gradient deficient element, a number of for-
mulations have been proposed for beam [11–13] and
plate structures [14, 15]. Gerstmayr and Irschik [12]
made a geometrically exact correction on the exist-
ing beam formulations, by distinguishing the spatial
and material measure of curvature used to calculate
the bending strain. Dmitrochenko and Pogorelov [14]
proposed several rectangular (48 DOFs or 36 DOFs)
and triangular (27 DOFs) gradient deficient plate el-
ements, where the formulations are similar with the
degenerated continuum approach. Dufva and Shabana
[15] proposed a rectangular gradient deficient thin
plate element, and Green-Lagrange strain defined in
a rectangular coordinate system is employed to evalu-
ate the element elastic forces. Generally, gradient defi-
cient elements show more computational efficiency for
thin structures because of reduced DOFs, better con-
vergence characteristics and elimination of high fre-
quency oscillation due to the transverse gradient com-
ponents [13, 15]. More recently, Sanborn et al. [25] ob-
served that a membrane locking phenomenon caused
by curve-induced distortion can happen for gradient
deficient elements, and proposed a technique to elimi-
nate it.

Many engineering thin structures possess initially
curved shapes, thus curved beam or shell ANCF el-
ements are expected in modeling these thin structures
instead of straight elements. However, contributions to
curved ANCF elements are relatively few in the lit-
erature. For the fully parameterized ANCF, a curved
element can be achieved by using the isoparametric
mapping technique. Along this way, Sugiyama and
Suda [8] proposed a fully parameterized curved beam
element, and Mikkola and Shabana [9] generalized
plate element to shell element. Because a full map-

ping of gradient vectors between different configu-
rations is not available, the generalization of gradi-
ent deficient elements to initially curved ones is not
as straightforward as for the fully parameterized el-
ements. A curved gradient deficient beam element is
proposed by Sugiyama et al. [16], where the strain
caused by the initial curvature is eliminated using one-
dimensional Almansi strain. Liu et al. [17] extended
the straight plate element of ANCF [14] to the cylin-
drical shell element. However, the formulation of a
general irregular curved gradient deficient shell ele-
ment has not been reported. Another problem in dis-
cretizing a general curved surface is the on-surface
slope discontinuity, since a rectangular mesh with uni-
form element size can rarely be achieved. The prob-
lem of the slope discontinuity of ANCF has been
discussed by many authors and different techniques
have been proposed for both fully [18] or gradient de-
ficiently [19, 20] parameterized elements, aiming at
the out-surface type of discontinuities, i.e. sharp cor-
ners, T-sections, etc. The orthogonal transformation
method given in [19] preserves the Kirchhoff assump-
tion at the node where out-surface slope discontinu-
ity takes place, its application is, however, limited to
commutative rotations. For a general motion, Shabana
[20] proposed a method by introducing an extra co-
ordinate line, and as a result shear deformation is al-
lowed at the slope discontinuities. Therefore, unlike
the fully parameterized elements, a strict method for
the out-surface discontinuities under a general mo-
tion is not available yet for the gradient deficient el-
ements.

In this paper, based on Green–Lagrange strain
tensor measured in a curvilinear coordinate system,
a curved gradient deficient shell element is proposed
with the purpose of modeling initially curved thin
structures by using arbitrary mesh of irregular quadri-
lateral elements. In addition, an approach to deal with
on-surface slope discontinuity is also proposed in or-
der to assemble different irregular elements. The pa-
per is organized as follows. In Sect. 2, a new curved
thin shell element is developed, and the formulation
of the element internal energy as well as its compu-
tationally efficient simplification is given. In Sect. 3,
the problem of on-surface slope discontinuity is dis-
cussed. In Sect. 4, five numerical examples are pro-
vided to verify the performance of the proposed ele-
ment. Finally, the main results of the work are con-
cluded in Sect. 5.
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2 Curved gradient deficient thin shell element of
ANCF

In formulation of fully parameterized ANCF elements,
it is always convenient to work in a rectangular coor-
dinate system regardless of straight or initially curved
configuration of the elements [8, 9]. Because there is
a full mapping from a complex initial element config-
uration to a master element, the technique required is
no more than an isoparametric solid element. This is
not the case for a curved gradient deficient ANCF el-
ement, where a curvilinear coordinate system is more
suitable to identify the initial configuration.

Different configurations of a shell element of
ANCF are depicted in Fig. 1. In the initial reference
configuration, the position of an arbitrary point on the
mid-surface of the gradient deficient shell element can
be parameterized by [15]

rC0
(
ξ1, ξ2) = S

(
ξ1, ξ2)e0, (1)

where S(ξ1, ξ2) is the shape function and e0 is the ini-
tial nodal DOFs, with ξ1, ξ2 ∈ [0,1] being the canon-
ical interpolation parameters. It should be noted that
the element adopting such shape function has 36 DOFs
[15], where the second order derivatives of position
vector are not included in the nodal DOFs. Therefore
the continuity of slope vectors is not guaranteed at
the element interface. However, the following devel-
opments are also suitable for the elements with other
shape functions. Here and henceforth, a quantity with
C or 0 appearing in the subscript or superscript rep-
resents that it belongs to the mid-surface or the initial
configuration, respectively. Thus in this curved initial
configuration, the position of a material point labeled
with (ξ1, ξ2, ξ3) is defined by

r0
(
ξ1, ξ2, ξ3) = rC0

(
ξ1, ξ2) + ξ3n0

(
ξ1, ξ2), (2)

where n0 is the unit vector normal to the mid-surface.
The element local coordinate system ξ1–ξ2–ξ3 natu-
rally constitutes a curvilinear Lagrange (material) co-
ordinate system in which the strain should be mea-
sured. The covariant base vectors along the three
curvilinear coordinate lines are defined by

G1 = ∂r0

∂ξ1
= ∂rC0

∂ξ1
+ ξ3 ∂n0

∂ξ1
,

G2 = ∂r0

∂ξ2
= ∂rC0

∂ξ2
+ ξ3 ∂n0

∂ξ2
, (3)

G3 = ∂r0

∂ξ3
= n0 = G1 × G2

|G1 × G2| .

Under the Euler–Kirchhoff assumption, the motion of
the material point, i.e. the current configuration, can
be characterized by replacing the nodal DOF vector in
Eqs. (1) and (2) with the current vector e, that is,

rC
(
ξ1, ξ2) = S

(
ξ1, ξ2)e, (4)

r
(
ξ1, ξ2, ξ3) = rC

(
ξ1, ξ2) + ξ3n

(
ξ1, ξ2), (5)

where n is the unit normal vector of the element mid-
surface in the current configuration.

In analogy, the covariant base vectors along the ma-
terial coordinate lines in the current configuration are
given by

g1 = ∂r
∂ξ1

= ∂rC

∂ξ1
+ ξ3 ∂n

∂ξ1
,

g2 = ∂r
∂ξ2

= ∂rC

∂ξ2
+ ξ3 ∂n

∂ξ2
, (6)

g3 = ∂r
∂ξ3

= n = g1 × g2

|g1 × g2| .

According to the non-linear continuum mechanics
[21], the Green strain tensor defined in the reference
curvilinear coordinate system can be written as

EIJ = 1

2

(
CIJ − C0

IJ

)
, (7)

where CIJ = gI · gJ is the Green deformation ten-
sor and C0

IJ = GI · GJ , with subscripts I, J = 1,2,3.
Actually, due to the assumed mode of motion, the
strain tensor described by Eq. (7) is of locally pla-
nar state in the tangent plane of the curved surface,
i.e. the components related to ξ3-direction are zero.
It should be noted that the Green strain tensor is de-
fined within the curvilinear coordinate system with the
non-orthonormal bases in Eq. (3), which is generally
not ready to be correlated by a constitutive equation.
To this end, an orthonormal nonholonomic coordinate
frame is constructed point-wise, with three orthonor-
mal base vectors ai (i = 1,2,3) defined as

a1 = G1

|G1| , a3 = n0, a2 = a3 × a1. (8)

The Green strain tensor is then regularized to this or-
thonormal frame by the following transformation:

εij = βI
i βJ

j EIJ , (9)

with subscripts i, j = 1,2,3, where the Jacobian be-
tween the two frames is defined as [26]

βI
i = ai · GI , (10)
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Fig. 1 Different
configurations of a shell
element of ANCF

and GI is the contravariant base vector of the refer-
ence system defined by GI · GJ = δI

J with δI
J being

the Kronecker Delta. For convenience, Eq. (9) can be
expressed in a matrix form as
[

ε11 ε12

ε12 ε22

]
= T

[
E11 E12

E12 E22

]
TT, (11)

where

T =
[

β1
1 β2

1

β1
2 β2

2

]
(12)

is the transformation matrix. In Eq. (11) only the non-
zero entries, i.e. the membrane part of the strain com-
ponent are kept. Adopting the linear elastic constitu-
tive relation and expressing the strain tensor as the vec-
tor of Voigt form

ε = [ε11 ε22 2ε12]T, (13)

the deformation energy of the curved shell element can
then be expressed as the following:

U = 1

2

∫

V0

εTDε dV, (14)

where

D = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤

⎦ (15)

is the constitutive matrix under the plane stress state
with E and ν being the Young modulus and Poisson
ratio, respectively.

The energy expression given by Eq. (14) is com-
putational expensive since numerical integration over
element volume is involved. For thin shell structures,

simplification can be made by neglecting the quadratic
terms of the ξ3 coordinate in the thickness direction.
With this simplification, the Green strain tensor in
Eq. (7) can be separated into the membrane part El

IJ

and the bending part Eb
IJ as

ẼIJ = El
IJ + Eb

IJ , (16)

El
IJ = 1

2

(
∂rC

∂ξI
· ∂rC

∂ξJ
− ∂rC0

∂ξI
· ∂rC0

∂ξJ

)
, (17)

Eb
IJ = ξ3

(
∂rC

∂ξI
· ∂n
∂ξJ

− ∂rC0

∂ξI
· ∂n0

∂ξJ

)

= −ξ3
(

∂2rC

∂ξI ∂ξJ
· n − ∂2rC0

∂ξI ∂ξJ
· n0

)

= −ξ3(KIJ − K0
IJ

)
, (18)

where KIJ = ∂2rC
∂ξI ∂ξJ · n and K0

IJ = ∂2rC0
∂ξI ∂ξJ · n0 are

the material measures of curvature [12, 15] of the de-
formed and initial curved mid-surface, respectively.
In addition, the transformation defined in Eq. (9) can
also be approximated to be ξ3 irrelevant, i.e. the trans-
formation corresponding to the point on mid-surface
is used for all the points of the fiber with the same
(ξ1, ξ2)

TC =
[

β1
1C β2

1C

β1
2C β2

2C

]
, (19)

where βI
iC represents βI

i on the mid-surface. The cor-
responding regularized strains are expressed as

εl
ij = βI

iCβJ
jCEl

IJ , (20)

εb
ij = −ξ3(βI

iCβJ
jCKIJ − βI

iCβJ
jCK0

IJ

)

= −ξ3(κij − κ0
ij

)
, (21)
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where κij = βI
iCβJ

jCKIJ and κ0
ij = βI

iCβJ
jCK0

IJ are, re-
spectively, the current and initial material curvatures
expressed in the orthonormal nonholonomic coordi-
nate frame defined in Eq. (8).

Then the deformation energy of the element is sim-
plified as

Ũ = Ul + Ub, (22)

where

Ul = h

2

∫ 1

0

∫ 1

0
εlTDεl |G1C × G2C|dξ1 dξ2, (23)

Ub = h3

24

∫ 1

0

∫ 1

0
κTDκ|G1C × G2C|dξ1 dξ2, (24)

εl = [
εl

11 εl
22 2εl

12

]T
, (25)

κ = [
κ11 − κ0

11 κ22 − κ0
22 2

(
κ12 − κ0

12

)]T
, (26)

and h is the thickness of the shell element. The elastic
force vector and the mass matrix can be calculated by

Q = ∂Ũ

∂e
, (27)

M = h

∫ 1

0

∫ 1

0
ρSTS|G1C × G2C|dξ1 dξ2, (28)

where ρ is the material density of the shell element.
The proposed formulas could be easily degenerated

to the 2D curved gradient deficient thin beam element.
In this situation, ξ1–ξ2 coordinate system is used and
ξ1 and ξ2 are the central-axis direction and the thick-
ness direction, respectively. The only non-zero regu-
larized Green strain component is the axial one and
can be expressed by

ε11 = 1

2G1 · G1
[g1 · g1 − G1 · G1]. (29)

The above strain can adopt a simplified formulation
from which only numerical integration along the cen-
tral axis is necessary in the elastic force evaluation.
The simplified strain can also be separated as axial and
bending part as

ε11 ≈ εl + εb

= 1

2

1

| ∂rC0
∂ξ1 |2

(
∂rC

∂ξ1
· ∂rC

∂ξ1
− ∂rC0

∂ξ1
· ∂rC0

∂ξ1

)

− ξ2

| ∂rC0
∂ξ1 |2 (κ − κ0), (30)

where

κ =
| ∂rC
∂ξ1 × ∂2rC

∂ξ1∂ξ1 |
| ∂rC
∂ξ1 | (31)

is the material measure of curvature of the beam cen-
tral axis in the current configuration, and κ0 is the ini-
tial curvature. The strain measure in Eq. (30) agrees
with the previous work in [16], where the strain is de-
rived in a different way.

3 Element assembling with on-surface slope
discontinuity

Despite of the advantages of ANCF element, an ob-
vious deficiency is the complexity in dealing with the
connectivity of the mesh, in particular, the disconti-
nuities of the slope vectors between elements. There
are a number of works devoted to the problem of slope
discontinuity [18–20] for both fully and deficiently pa-
rameterized formulations, where efforts are made to-
wards the out-surface slope discontinuity in the sharp
corners, T-section etc. in the structure, while preserv-
ing the outstanding feature of constant mass matrix of
ANCF.

Actually, even for meshing a smooth surface, the
on-surface discontinuity of slope vector can take place
constantly whenever irregular elements meet at a com-
mon node, or even the adjacent elements have differ-
ent sizes, since it is preferable to interpolate the ele-
ment geometry over a canonical master element. When
a general curved surface is modeled, uniform rect-
angular mesh lines are seldom available, therefore at
these on-surface slope discontinuities transformation
is necessary before the element mass matrix and elas-
tic force vector are assembled into the global ones. For
the fully parameterized elements, the method given by
[18] is a general one which can deal with on-surface
or out-surface slope discontinuities. On the standing
point of the 2D curvilinear local and global coordinate
system on the surface, a constant transformation can
be achieved towards the on-surface slope discontinu-
ity for the gradient deficient elements.

As shown in Fig. 2, considering a smooth shell
structure, at the node N on the mid-surface with the
position vector of rC, a pair of arbitrary coordinate
lines (s, t) in the tangent plane can be chosen to de-
fine the gradient vectors, ∂rC/∂s and ∂rC/∂t , which
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Fig. 2 Transformation between local nodal vector and global
nodal vector

together with the position vector constitute the global
nodal DOF vector

p = [rC ∂rC/∂s ∂rC/∂t]T. (32)

In analogy with the concept used in the treatment of
slope discontinuity for the fully parameterized ele-
ment, the nodal vector e(k) defined in the kth-element
local coordinate system can be transformed from the
global nodal vector through the following equation:

e(k) =
⎡

⎣
rC
∂rC

∂ξ1(k)

∂rC
∂ξ2(k)

⎤

⎦ =
⎡

⎣
I 0 0
0 ∂s

∂ξ1(k) I ∂t

∂ξ1(k) I

0 ∂s

∂ξ2(k) I ∂t

∂ξ2(k) I

⎤

⎦

⎡

⎣
rC
∂rC
∂s
∂rC
∂t

⎤

⎦

= Rp, (33)

where the transformation matrix R remains constant
during the deformation. Consequently all the impor-
tant features of ANCF, particularly the property of the
constant mass matrix, are kept. It should be mentioned
that the transformation proposed here is restricted only
to the on-surface one, i.e. the objective is to the as-
sembling of an arbitrary irregular mesh of a smooth
surface. The transformation of the deficient gradient
vectors occurs in the tangent plane of a surface. It
should be noted that Eq. (33) is essentially different
with the constant orthogonal transformation given in
[19] for gradient deficient elements. Actually, Eq. (33)
has similar interpretation with the transformation de-
veloped in [18] for fully parameterized elements, ex-
cept that the concept is extended here to the tangent
plane of a curved surface for the deficient slope vec-
tors.

In practice, the global coordinate lines across a
node can be chosen arbitrarily in the tangent plane
on the reference configuration, while for convenience
they can be set to overlap with the local coordinates
of a certain element k among the elements meet at the
sharing node, i.e. s = ξ1(k) and t = ξ2(k). Hence the
covariant bases of the global system are

F1 ≡ ∂rC0

∂s
= ∂rC0

∂ξ1(k)
,

F2 ≡ ∂rC0

∂t
= ∂rC0

∂ξ2(k)
.

(34)

In another element l, the corresponding transformation
items in Eq. (33) can be determined in a straightfor-
ward manner

∂s

∂ξ1(l)
= F1 · ∂rC0

∂ξ1(l)
,

∂s

∂ξ2(l)
= F1 · ∂rC0

∂ξ2(l)
,

∂t

∂ξ1(l)
= F2 · ∂rC0

∂ξ1(l)
,

∂t

∂ξ2(l)
= F2 · ∂rC0

∂ξ2(l)
,

(35)

where F1 and F2 are the corresponding contravariant
bases of the global system. The transformation ma-
trix is prepared in the preprocessing stage and remains
constant during the time marching of the structure mo-
tion. The validity of the proposed curved thin shell for-
mulation with arbitrary quadrilateral mesh discretiza-
tion will be verified by several case studies in the fol-
lowing section.

4 Numerical examples

In this section, five static and dynamic numerical ex-
amples are provided to validate the performance of
the proposed gradient deficient curved thin shell ele-
ment. The element shape function proposed by Dufva
and Shabana [15] is adopted. All the results from stat-
ics analysis are validated by the commercial software
ABAQUS. SI units are adopted for the parameters in
the following examples.

4.1 Simple cantilever rectangular plate

A simple rectangular cantilever plate is subjected to
two force components at the free end as shown in
Fig. 3a. Previous works [15, 17] have used this test
as a benchmark. The cantilever plate has dimensions
of 0.5, 0.15, and 0.001, respectively for the length l,
width w, and thickness h. The Young modulus and
Poisson ratio are, respectively, 2.07 × 1011 and 0.3,
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and the applied force P is 15. As shown in Fig. 3
calculations are performed with three different mesh
patterns: Pattern 1 (regular rectangular mesh), Pattern
2 (rectangular mesh with different size) and Pattern 3
(mesh with irregular quadrilateral elements). a and b

are the length and width of the regular element in Pat-
tern 1, respectively. For the last two cases, on-surface
discontinuities present at the sharing nodes. The de-
flections of the end tip for the three mesh patterns are
shown in Table 1. It can be clearly observed that all the
three mesh ways give convergent results, while the ir-

Fig. 3 (a) Rectangular cantilever plate with different meshes of
(b) Pattern 1, (c) Pattern 2 and (d) Pattern 3

regular mesh deviates slightly from the standard. This
example confirms that the proposed method can deal
with on-surface slope discontinuity caused by the as-
sembling of the shell elements with irregular shapes.
To shed a light on the performance of the element,
eigenvalue analysis for a single element with typical
configurations in accordance with the present rectan-
gular plate and the following three static examples is
performed, and the eigenvalues are listed in Table 2.
It is observed that, for all cases, six and only six near-
zero values corresponding to six rigid-body modes are
observed.

4.2 Slit annular plate under transverse line load

A clamped slit annular plate subjected to a distributed
transverse load is shown in Fig. 4. This example is
considered to test non-linear finite-element formula-
tions for thin walled shell structures and has been ex-
tensively used by many investigators [22, 23]. The ge-
ometry and elastic material properties are listed as fol-
lows: Young modulus of 2.1 × 107, Poisson ratio of
0.0, outer radius of 10, inner radius of 6, thickness of
0.03 and a maximum distributed load q of 0.8. Tests
are made with meshes 6 (circumferential direction)
× 1 (radial direction), 18 × 3, 30 × 5, 60 × 10, and
90 × 15. Displacements of points A and B under dis-
tributed load q = 0.8 are shown in Fig. 5, as a func-
tion of the number of elements. It can be observed
that the enough accuracy and converged result are pro-
duced up to 30 × 5 mesh. In Fig. 6, the results ob-
tained by 90 × 15 mesh are compared with the S4R
element in ABAQUS, where good agreement can be
found. The deformed configuration under load q = 0.8
with 60 × 10 mesh is plotted in Fig. 7.

4.3 Hemispherical shell with 18◦ hole

This test is a classical double-curved shell prob-
lem commonly used to assess the element’s ability
to reproduce a correct membrane and bending state

Table 1 Comparison of the
deflections of the end tip for
the three mesh patterns

Element type Mesh size Mesh pattern Deflection of the end tip

Curved shell element of ANCF 20 × 6 1 0.2866

Curved shell element of ANCF 20 × 6 2 0.2867

Curved shell element of ANCF 20 × 6 3 0.2882

S4R element in ABAQUS 20× 6 1 0.2866
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Table 2 Eigenvalues of one element with the configurations conforming with the four static examples: 1 rectangular plate, 2 slit
annular plate, 3 hemispherical shell with 18◦ hole and 4 hemispherical shell without hole

Number 1 2 3 4 5 6 7 . . . 36

Example 1 6.00e–12 2.21e–9 2.21e–9 1.22e–8 1.22e–8 1.67e–7 5.13 . . . 9.20e+8

Example 2 1.73e–11 6.25e–11 9.76e–11 1.64e–10 1.64e–10 2.33e–10 7.03 . . . 1.23e+7

Example 3 3.27e–10 3.27e–10 4.46e–10 4.46e–10 1.90e–9 3.07e–9 1.64e+3 . . . 6.69e+7

Example 4 5.81e–11 1.98e–10 3.78e–10 5.91e–10 5.91e–10 6.34e–10 2.19e+2 . . . 1.44e+7

Fig. 4 Clamped slit annular plate (60 × 10 mesh)

Fig. 5 Transverse displacements of points A and B under load
q = 0.8 versus number of elements for the clamped slit annular
plate

[22, 24], which is not modeled by ANCF element be-
fore because of its initially curved shape. The whole
hemispherical shell with 18◦ hole has radius of 10 and
thickness of 0.04, and only one quarter of the shell is
modeled owing to its symmetry, shown in Fig. 8. The
Young’s modulus and Poisson’s ratio are 6.825 × 107

and 0.3, respectively. For convergence test shown in
Fig. 9, the displacements of points A and B (Fig. 8)
under P = 400 are plotted as a function of the number

Fig. 6 Transverse displacements of points A and B versus load
for the clamped slit annular plate (90 × 15 mesh)

Fig. 7 Deformed configuration of the clamped slit annular plate
under load q = 0.8 (60 × 10 mesh)

of elements, 1 (latitude direction) × 1 (longitude di-
rection), 8 × 6, 15 × 12, 24 × 18 and 30 × 24. The
deflection curves of the two measuring points ver-
sus applied force are shown in Fig. 10, where the
results of the proposed element are in good agree-
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Fig. 8 (a) Hemispherical shell with 18◦ hole, (b) one quarter
finite-element model (15 × 12 mesh)

Fig. 9 Displacements (absolute value) of points A and B under
P = 400 versus number of elements for the hemispherical shell
with 18◦ hole

ment with those of the S4R element in ABAQUS. The
deformed configuration at P = 400 are visualized in
Fig. 11.

Fig. 10 Displacements (absolute value) of points A and B ver-
sus load for the hemispherical shell with 18◦ hole (30 × 24
mesh)

Fig. 11 Deformed configuration of the hemispherical shell with
18◦ hole when P is 400 (15 × 12 mesh)

4.4 Hemispherical shell without hole

In this subsection, a full hemispherical shell without
the hole is calculated. The mesh lines are not smooth
when only quadrilateral elements are used, and ob-
vious on-surface slope discontinuities are present, as
shown in Fig. 12. This case is intended to examine
the validity of the formulation given in Sects. 2 and 3.
The geometry and material parameters as well as the
load are the same as those of the previous subsec-
tion. In Fig. 13, the displacements of points A and
B (Fig. 12) under P = 400 are plotted as a function
of the number of elements (1 × 1 × 3, 4 × 4 × 3,
8 × 8 × 3, 12 × 12 × 3, 16 × 16 × 3). The deflec-
tion curves of the two measuring points versus applied
force are compared with the results of S4R element
of ABAQUS in Fig. 14, where good agreements are
observed. The deformed configuration at P = 400 are
plotted in Fig. 15.
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Fig. 12 (a) Full hemispherical shell, (b) one quarter finite-ele-
ment model (8 × 8 × 3 mesh)

Fig. 13 Displacements (absolute value) of points A and B un-
der P = 400 versus number of elements for the hemispherical
shell without hole

4.5 Octant spherical shell pendulum

In this case, a free falling of an octant spherical shell
pendulum is simulated to examine the capacity for
modeling dynamics with the proposed curved shell

Fig. 14 Displacements (absolute value) of points A and B ver-
sus load for the hemispherical shell without hole (16 × 16 × 3
mesh)

Fig. 15 Deformed configuration of the hemispherical shell
without hole when P is 400 (8 × 8 × 3 mesh)

element, where the on-surface slope discontinuities
are included. The Young modulus of the material is
6.825 × 107, material density is 7810, and Poisson ra-
tio is 0.3. The geometry properties are radius of 0.5
and thickness of 0.01. The three corners of the shell
are initially placed on the horizontal plane with the
concave side upward. One corner point is restrained to
ground via a spherical joint, in which all the translation
displacements of the node are fixed and the rotations
are free, as shown in Fig. 16.

The Z-coordinate of point A on the pendulum
(Fig. 16) is graphed as a function of time in Fig. 17
within the simulation time of 1 second, where cases of
four mesh densities (1 × 1 × 3, 4 × 4 × 3, 8 × 8 × 3,
16 × 16 × 3) are examined. It can be seen from Fig. 17
that considerable convergent result is obtained up to
the 8 × 8 × 3 mesh. To ensure the correctness of the
simulated physics, the global energy balance of the
system is monitored, and graphed in Fig. 18 with re-
spect to the time, where T , V and U are kinetic energy,
deformation energy and potential energy of the octant
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Fig. 16 Octant spherical shell pendulum (8 × 8 × 3 mesh)

Fig. 17 The motion of point A in Z-direction of the octant
spherical shell pendulum with different mesh densities

spherical shell, respectively. Since the falling pendu-
lum is a conservative system, the sum of the energy
should conserve all the time. From Fig. 18, the conser-
vation of the system energy is observed at each time
point, where a 16 × 16 × 3 mesh is used for the calcu-
lation. Finally, Fig. 19 shows several snapshots of the
deformed configuration with 16 × 16 × 3 mesh.

5 Conclusions

In this paper, a curved gradient deficient shell element
is proposed based on the Green–Lagrange strain mea-
sured with respect to the curvilinear coordinate sys-
tem characterizing the reference configuration. The
element formulation and its simplified form of thin
curved gradient deficient shell element are derived,
and the initial strain due to the initial curved config-

Fig. 18 Energy balance of the free falling octant spherical shell
pendulum (16 × 16 × 3 mesh)

Fig. 19 Dynamic deformed configurations of the octant spher-
ical shell pendulum (16 × 16 × 3 mesh)

uration is naturally eliminated. The degenerated 2D
version is identical with the 2D curved beam element
in the previous work. In the discretization of a general
curved thin structure regular mesh can seldom be ob-
tained, therefore on-surface slope discontinuities usu-
ally occur even if the surface is smooth. A constant on-
surface transformation is provided for the modeling of
curved surface with irregular mesh, hence the feature
of constant mass matrix of ANCF is maintained. The
performance of the developed element is verified by
numerical examples.
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