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By considering the elastic membrane’s dissipation, the membrane-type acoustic metamaterial

(MAM) has been demonstrated to be a super absorber for low-frequency sound. In the paper, a

theoretical vibroacoustic plate model is developed to reveal the sound energy absorption

mechanism within the MAM under a plane normal incidence. Based on the plate model in

conjunction with the point matching method, the in-plane strain energy of the membrane due to the

resonant and antiresonant motion of the attached masses can be accurately captured by solving the

coupled vibroacoustic integrodifferential equation. The sound absorption ability of the MAM is

quantitatively determined, which is also in good agreement with the prediction from the finite

element method. In particular, microstructure effects including eccentricity of the attached masses,

the depth, thickness, and loss factor of the membrane on sound absorption peak values are

discussed. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4901706]

PACS number(s): 43.20.El, 43.20.Ks, 43.40.Dx, 43.50.Gf [ANN] Pages: 2926–2934

I. INTRODUCTION

The attenuation/absorption of low frequency sound is of

great interest for noise control. Common homogeneous

materials, such as foam and composite panels, usually

exhibit weak absorptions in the low frequency range, due to

their dissipative power being quadratic in material velocities.

Recently, membrane-type acoustic metamaterials (MAMs)

have been suggested to possess excellent acoustic properties

for sound insulation at the 100–1000 Hz frequency regime,

the most difficult regime as dictated by the mass density

law.1,2 This MAM comprises a pre-tensioned elastic rubber

membrane attached with only one rigid circular mass.

Nearly total reflection of low-frequency sound has been

achieved.1–5 To realize broadband wave attenuation and

enhance the wave dissipation, it is usually necessary to

increase the energy density inside the MAM through multi-

ple resonators. Motivated by this idea, a thin elastic mem-

brane decorated with designed patterns of multiple rigid

platelets was further suggested.6 The basic microstructure of

this MAM consists of a membrane with multiple attached

small heterogeneous masses acting as resonators with fixed

boundaries imposed by a relatively rigid grid. It was reported

that the one-layer of MAM can absorb 86% of the acoustic

waves at �170 Hz and can absorb 99% with two layers at

the lowest resonant frequency. However, the wave

attenuation/absorption mechanism is not well interpreted

and understood yet.

Issues about sound transmissions through membranes and

partitions have been intensively investigated for decades.7–10

The classical membrane theory has been used to approximately

govern the motion of the pre-stressed thin elastic membrane.11

However, the dissipative/absorbed sound power, which is pro-

portional to the total strain energy of the membrane,6 cannot

properly be calculated by the classical membrane theory,

because effects of the bending stiffness are neglected.

Therefore, the flexural plate theory for the MAM will be highly

needed for the purpose of the energy absorption calculation.

For vibrations of thin plates combining with varies

boundary conditions, governing equations and the Galerkin

procedure with several approximate series solutions have

been suggested.12,13 The problem of sound transmission

through a thin plate based on vibroacoustic plate model has

been solved with integrals of Green’s functions.14 Whereas,

modeling vibrations and sound dissipations of the MAMs

would address a challenging issue, in which a pre-stressed

clamped thin plate carrying finite attached masses of arbi-

trary shapes needs to be solved. Galerkin procedure and

Rayleigh–Ritz method are the most commonly used system-

atic approaches to study vibrations of plates with attached

masses, in which the bending stiffness of the attached mass

is usually ignored.15,16 However, different from those stud-

ies, bending stiffness of attached masses on MAMs cannot

be neglected. Instead, such attached masses would be rigid

compared with the thin rubber membrane. To properly cap-

ture effects of finite masses on the small deformation of the

membrane, the point matching scheme17 can be applied by
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using distributed point forces along the interfacial boundary

between masses and the membrane.11 Another issue about

the MAM is geometric nonlinearities of the rubber mem-

brane, in which in-plane pre-stresses are usually comparable

with the Young’s modulus. A plate theory considering incre-

mental deformation and initial stress has been developed for

orthotropic laminated plates.18

In this paper, to investigate sound absorptions of

MAMs, we will develop a vibroacoustic plate model to accu-

rately capture strain energy within the membrane. The initial

tension effect on the effective bending stiffness of the MAM

is determined by using the incremental energy method.

Eigenfrequencies and eigenmodes of the MAM are solved

by using point matching scheme, where the Galerkin proce-

dure with double cosine series expansions is selected.

Finally, the dissipative power is calculated through solving

the coupled vibroacoustic integrodifferential equation with

complex Young’s modulus and the modal superposition

method. Specifically, microstructure effects on sound

absorptions are quantitatively investigated, which include

eccentricities and numbers of masses, depth, and thickness

of the membrane and the membrane’s loss factor.

II. THEORETICAL PLATE MODEL

Consider now the unit cell of an MAM in a global

Cartesian coordinate system (x,y) with the origin O on the

lower left corner of the rectangular membrane, as shown in

Fig. 1(a), where the membrane is symmetrically attached by

several masses with respect to the central line of the mem-

brane along the x direction. Masses can be of arbitrary sym-

metric shapes with respect to the central line of the

membrane along the y direction. The number of masses is

denoted as S, and there are Is collocation points, applied with

point forces along edges of the sth mass. In the figure, the

membrane is subject to initial tension T per unit length

uniformly in both x and y directions. The thickness, width,

depth, and density per unit area of the membrane are denoted

as h, Lx, Ly, and qm, respectively. The ith collocation point on

the inner boundaries between the sth mass and the membrane

is denoted as [X
ðsÞ
i , Y

ðsÞ
i ] in the global Cartesian coordinate

system (x,y). In the study, we focus on the sound absorption of

the stretched MAM in a tube subject to a normally incident

plane sound wave, as shown in Fig. 1(b). Perfectly absorbing

boundary conditions are assumed in both ends of the tube so

that there will be no multiple reflected waves to the MAM.

A. Eigenvalue problem of the MAM

The attached masses are assumed to be rigid and

perfectly bonded to the rectangular membrane. To properly

capture effects of those masses on the deformation of the

membrane, the point matching scheme is applied such that

each mass can be represented by several point loadings on

the membrane along their interfacial boundaries.11 The

incremental energy method is used to consider the initial

stress effect, and the governing equation of the rectangular

membrane can be written as

D�r4w x; y; tð Þ � Tr2w x; y; tð Þ þ qm

@2w x; y; tð Þ
@2t

¼
XS

s¼1

XIs

i¼1

F
sð Þ

i tð Þdðx� X
sð Þ

i Þdðy� Y
sð Þ

i Þ ; (1)

where D� ¼ Dþ ðr0h3=12Þ is the effective bending stiffness

with D and r0 being the bending stiffness and initial stress of

the membrane, which is derived in the Appendix, F
ðsÞ
i in the

right-hand side is the force loading at the ith collocation

points from the sth attached mass along sth inner boundaries,

and d is the Dirac delta function. Since only the steady-state

response field will be considered, the time factor eixt, which

applies to all the field variables, will be suppressed in the

paper. Then, F
ðsÞ
i becomes a constant to be determined. For a

clamped plate, the boundary conditions are

w ¼ @w

@x
¼ 0; on x ¼ 0; x ¼ Lx; (2)

w ¼ @w

@y
¼ 0; on y ¼ 0; y ¼ Ly: (3)

To solve Eq. (1), the Galerkin procedure is applied to seek

an approximate solution.13 Since a plane sound wave can

only induce symmetric modes on the MAM, we choose the

double cosine series expansion to satisfy boundary condi-

tions in Eqs. (2) and (3) as12,13

w ¼
X1
m¼1

X1
n¼1

Wmnqmn; (4)

Wmn ¼ 1� cos
2mpx

Lx

� �
1� cos

2npy

Ly

� �
: (5)

Substituting Eq. (4) into Eq. (1), multiplying each term by

Wmn, and integrating all terms over the domain (0 � x � Lx;

(a)

(b)

FIG. 1. (Color online) (a) The MAM symmetrically attached with multiple

masses of arbitrary symmetric shapes. (b) The MAM subjected to a normal

acoustic loading in a tube.

J. Acoust. Soc. Am., Vol. 136, No. 6, December 2014 Chen et al.: Modeling of membrane acoustic metamaterials 2927



0 � y � Ly), lead to a linear system of equations for qmn.13

Solutions of qmn can be expressed by the summation of

Fi
(s)qmni

(s) from all the point loadings, where qmni
(s) is the so-

lution of the linear system of equations with dðx� X
ðsÞ
i Þ

dðy� Y
ðsÞ
i Þ in the right-hand side. Then, the solution to Eq.

(1) can be expressed as

w ¼
XS

s¼1

XI

i¼1

F
ðsÞ
i Q

ðsÞ
i ; (6)

where Q
ðsÞ
i ¼

P1
m¼1

P1
n¼1 q

ðsÞ
mni½1� cos ð2mpx=LxÞ�½1

� cos ð2npy=LyÞ�.
The unknown loading Fi

(s) can be determined through

the inner boundary conditions between the membrane and

masses. The natural frequencies and mode shape functions

of the MAM can be determined by using the same techni-

ques in Ref. 11.

B. Vibroacoustic modeling of the MAM

Consider a plane sound wave is normally incident on

the MAM. According to the fact that the thickness of the

MAM is extremely small compared with the wavelength of

low-frequency sound in air, thickness effects of the MAM

can be ignored. The objective is to determine the dissipated

power within the MAM. The governing equation of the

acoustic excited membrane based on the plate theory can be

expressed as

D�r4w�Tr2w�x2qmw

¼p1jðz¼0Þ �p2jðz¼0Þ þ
XS

s¼1

XIs

i¼1

F
ðsÞ
i dðx�X

ðsÞ
i Þdðy�Y

ðsÞ
i Þ ;

(7)

where p1 and p2 are pressures on the left and right surfaces

of the MAM. It should be noted that damping effects in

forced vibration analyses are considered by assuming the

Young’s modulus of the membrane to be a complex number.

Then, D� is a complex number in Eq. (7).

By combining equations in the acoustic field,11 Eq. (7)

can be rewritten as

D�r4w� Tr2w� x2qmwþ 2ixqacahwi

� 2x2qa

ðLx

0

ðLy

0

Gdwdx�dy�

¼ 2PI þ
XS

s¼1

XIs

i¼1

F
ðsÞ
i dðx� X

ðsÞ
i Þdðy� Y

ðsÞ
i Þ ; (8)

in which the Green function G ¼ eikaS=4pSþ eikaS1=4pS1

with S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x�Þ2 þ ðy� y�Þ2 þ ðz� z�Þ2

q
, S1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x�Þ2 þ ðy� y�Þ2 þ ðzþ z�Þ2

q
; h�i denotes the aver-

age of the parameter; dw ¼ w� hwi; qa, ca, and ka are the

density of air, sound speed, and wave number of acoustic

waves in air, respectively. The displacement field in Eq. (8)

can then be solved by modal superposition method.11

For the application of the MAM, the acoustic

wavelength (k) for low frequency sound (50 to 1000 Hz) is

usually much larger than the dimension of the membrane

(k� Lx; Ly). According to Ref. 11, the higher order scat-

tered waves are caused by the deviation of the out-of-plane

displacement, and the longest wavelength along lateral direc-

tion is ðkkÞmax ¼ðLx; LyÞmax. Consequently, the lateral com-

ponent of the wave number of higher order scattered waves,

kk ¼ 2p=Lx, would be much greater than the maximum total

wave number, ðkaÞmax ¼ xmax=ca. As a result, the normal

component of the wave number (along the z direction) of

higher order scattered waves, kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

a � k2
k

q
, is always an

imaginary number. Therefore, the higher order scattered

waves are eventually evanescent waves because the normal

(z) component of wave number is an imaginary number, and

their amplitude will decay exponentially along the normal

(z) direction.

Therefore, the far field transmission and reflection

coefficients for radiated plane waves of the MAM can be

expressed as11

~T ¼ PT

PI
¼ ixqacahwi

PI
; (9)

~R ¼ PR

PI
; (10)

with the relation being

~R ¼ 1� ~T ; (11)

with PI, PR, and PT being complex amplitudes of incident,

reflected, and transmitted plane waves.

The intensity transmission and reflection coefficients

are11

TI ¼ j ~T j2; (12)

RI ¼ j ~Rj2: (13)

Therefore, the dissipated power of the MAM can be calcu-

lated as

AI ¼ 1�TI�RI ¼ 2ðReð ~TÞ�Reð ~TÞ2� Imð ~TÞ2Þ; (14)

where jReð ~TÞj � 1 and j Imð ~TÞj � 1 according to the defini-

tion of acoustic transmission and reflection coefficients.

Therefore, it can be easily derived that the maximum dissi-

pated power AI cannot be greater than 50% for any thin

MAM. It is noted that the air viscosity for the energy absorp-

tion are not taken into account in the current model.

III. VALIDATION OF THE THEORETICAL MODELING

To verify the developed vibroacoustic plate model,

acoustic and vibration properties of the MAM from the

current model are compared with those from the commercial

finite element software, COMSOL Multiphysics, in which

the acoustic-solid interaction with geometric nonlinearities

is selected. The MAM consists of a membrane
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symmetrically attached with two semicircular platelets, as

shown in Fig. 2. It is sandwiched between two air blocks.

Fixed boundary conditions are applied on all edge surfaces

of the membrane, and the rigid wall boundary condition is

used for the side boundary of the air. Two acoustic radiation

boundaries are assumed on both ends of the system. A plane

incident wave is applied on the left end of the tube.

Acoustic-structure interface boundaries are selected on the

MAM. The elements used for the system are 3-D solid ele-

ments. Transmitted pressure is calculated by averaging the

surface pressure on the right end of the system, and reflected

pressure is calculated by subtracting the incident pressure

from the average of the surface pressure on the left end of

the system. The intensity coefficients and absorptions of the

MAM can then be obtained from Eqs. (9)–(14). Material

properties and geometrical dimensions of the membrane and

attached masses are given in Table I. The loss factor of the

rubber is set to be v0x with v0 ¼ 4:2	 10�4 s. For proper-

ties of air, q1 ¼ 1.29 kg/m3 and c1 ¼ 340 m/s. The conver-

gence of the finite element analysis is first conducted

through analysis of absorption coefficients and displacement

amplitudes at the first absorption peak frequency with differ-

ent meshes, as shown in Figs. 3(a) and 3(b), respectively. It

can be found that the numerical results are convergent when

the number of total degree of freedoms (DOFs) of the system

approaches 600 thousands.

Figure 4 shows the comparison of intensity transmis-

sion, reflection, and absorption coefficients of the MAM

from both the theoretical model, the finite element analysis

and the experiment by Mei et al.6 (absorption only). For the

metamaterial device application, we also calculated the

sound absorption of an MAM panel composed with four unit

cells based on the finite element simulation. In the theoreti-

cal model, the number of collocation points for one half

of the semicircular mass is set as I ¼ 20, and the number of

cosine series expansions are truncated as M ¼ N ¼ 40 to

make the result convergent. It can be seen that our analytical

results (solid line) agree well with those from the finite ele-

ment method (dash line). Three absorption peaks, located in

190, 356, and 727 Hz from the analytical model and 190,

344, and 710 Hz from the finite element method, together

with three transmission peaks are observed near resonant fre-

quencies, which are 189, 356, and 733 Hz from the analytical

model and 191, 337, and 738 Hz from the finite element

method. The three transmission peaks are due to the resonant

motion of the MAM at three lowest symmetric modes, while

two transmission dips are caused by the antiresonant motion

of the MAM. Based on discussions in Ref. 11, the sound

transmission is proportional to the averaged velocity of the

membrane. The dissipated power (absorption coefficient) at

the three absorption peaks is calculated to be 37%, 31%, and

26% from the theoretical model and 41%, 22%, and 29%

from the finite element method. In addition, it is worth notic-

ing that acoustic absorption of the MAM with multi-celled

partitions is almost the same as those predicted from the

MAM with a single cell. Therefore, the developed

FIG. 2. (Color online) The MAM symmetrically attached with two semicir-

cular masses.

TABLE I. Material properties and geometric parameters (2 masses).

Membrane Mass

Mass Density (kg/m3) 980 7870

Young’s modulus (Pa) 1.9 	 106 2 	 1011

Poisson ratio 0.48 0.30

Thickness (mm) 0.2 1

Width (mm) 31 -

Height (mm) 15 -

Radius (mm) - 6

Eccentricity d (mm) - 7.5

Pretension (N/m) 44.0 0

FIG. 3. (Color online) (a) Convergence analysis of the finite element method:

Absorption coefficient. (b) Convergence analysis of the finite element method:

Displacement amplitudes at the first absorption peak frequency.
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theoretical model can be applied for the vibroacoustic analy-

sis of the metamaterial device with multi-cells.

The loss factor is usually determined by fitting theoreti-

cal absorptions with experimental absorptions. Effects of

loss factors will be discussed in the next section. However,

as illustrated in Eq. (14), dissipations would not be greater

than 50% with any loss factors. The comparison of wave

absorption predicted from theoretical model, finite element

method, and experimental measurements is added in Fig. 4.

The main trend of the experimental measurement is almost

the same as those from theoretical model and finite element

simulations. For example, the frequencies of the three sound

absorption peaks predicted from the theoretical model and

experimental testing are in very good agreement. However,

difference of wave absorption magnitude prediction of the

metamaterial from the theoretical model and experimental

testing can also be obviously observed, which needs to be

studied further. The difference may be attributed to the fol-

lowing two facts. First, the higher experimentally measured

sound absorption could be caused by multi-reflections

between the sound speaker and the MAM in the left tube,

which is not considered in the current model. Another reason

of the higher sound absorption in the experiment could be

the imperfect symmetry of attached masses, which can

excite asymmetric modes. However, these asymmetric-

induced modes are not taken into account in both the analyti-

cal model and the finite element method.

To validate the capacity of the current model for the

energy absorption, the displacement amplitude and strain

energy density within the mid-plane of the membrane at

three absorption peak frequencies predicted from the current

model and the finite element method are compared at Fig. 5

and Fig. 6. The images in Fig. 5(a) and Fig. 6(a) are from the

analytical model, and the images in Fig. 5(b) and Fig. 6(b)

are from the finite element method. The strain energy density

within the mid-plane of the membrane in the 2-D theoretical

model is calculated by averaging the strain energy density

within the plate through the thickness. The color bar in the

figure represents a logarithmic scale for the strain energy

density. Good agreement between the analytical and numeri-

cal results is observed in both Figs. 5 and 6. As shown in

Fig. 5, for the MAM with two attached semicircular masses,

the first absorption peak is caused by both the translational

and rotational motion of the masses, whereas the second

peak is mainly caused by the rotational motion of the

masses. The third peak is caused by the strong vibration of

the partial membrane between the two masses. From Fig. 6,

it can be seen that the strain energy density in the perimeter

FIG. 4. (Color online) Comparison of intensity transmission, reflection and

absorption coefficients of the MAM with two semicircular masses between

analytical, finite element (one unit cell and four unit cell panel) and experi-

mental results (absorption only).

FIG. 5. (Color online) Validation of

displacement amplitude at absorption

peak frequencies of the MAM with

two semicircular masses.
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and clamped regions of the membrane is extremely much

higher than the other regions by about three orders of magni-

tude at all the three absorption peaks. According to the fact

that the local dissipated power is proportional to the strain

energy density, most of the absorbed sound energy would be

dissipated in these regions. The largest absolute discrepancy

(around 10%) of the absorption at the second peak can be

attributed to the approximation of the Kirchhoff hypothesis,

which assumes that in-plane shear stains are dependent on

out-of-plane displacement. Overall, it is clearly evident that

the proposed model can accurately capture the sound energy

dissipation behavior of the MAM as those in the finite ele-

ment method.

IV. RESULTS AND DISCUSSIONS

Based on the developed analytical model, we will inves-

tigate effects of the eccentricity of masses, the width and

thickness of the membrane and loss factors on the sound

absorption behavior of the above MAM. The MAM attached

with multiple semicircular masses will be also considered.

The purpose of this study is to develop an accurate and

highly effective analytical tool to optimize the design of

MAMs on sound dissipations.

A. The MAM with two semicircular masses

In practice, eccentricity of attached masses is a critical

parameter that can be easily changed to fulfill design require-

ment of an MAM. Figure 7 shows effects of eccentricities of

two symmetric semicircular masses on sound absorptions of

the MAM. In the figure, the material and geometric proper-

ties of the MAM are the same as listed in Table I with

v0 ¼ 4:2	 10�4 s, and only the eccentricity of attached

masses is changed. It can be found that the first absorption

peak value is increased with the increase of the eccentricity.

However, the third absorption peak value is decreased with

the increase of the eccentricity. It is understandable that

when the eccentricity is increased, the membrane curvature

around circular edges of attached masses and two vertically

clamped edges will become larger at the first resonant fre-

quency, where masses vibrate strongly with both transla-

tional and rotational motion. The strain energy density in

these regions will then become higher, therefore, the total

absorption will increase at the first resonance frequency. The

decrease of the third peak is caused by the reduced mem-

brane curvature along straight edges of masses, in which the

highest strain energy density concentrates by a strong vibra-

tion of the membrane. The second peak is increased slightly,

when d is changed from 6.5 to 7.5 mm, and is reduced from

31% to 18%, when d is changed from 7.5 to 8.5 mm. The

sharp drop of the second peak is due to the decrease of rota-

tional displacement amplitudes of attached masses and mem-

brane curvatures in parameter regions. It should be

mentioned that the eccentricity can also affect the resonant

frequencies of the MAM.

The membrane’s width effects on sound absorption of

the MAM are illustrated in Fig. 8. In the figure, the material

and geometric properties of the MAM are the same as listed

in Table I with v0 ¼ 4:2	 10�4 s, and only the width of the

FIG. 6. (Color online) Validation of

strain energy density at absorption

peak frequencies of the MAM with

two semicircular masses.

FIG. 7. (Color online) Effects of masses’ eccentricities to sound absorption

of the MAM with two semicircular masses.
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membrane is changed. As shown in the figure, when the

width is reduced from 16 to 14 mm, the first absorption peak

is raised from 28% to 47%, and the third peak is increased

from 25% to 29%, whereas the second peak is decreased

from 34% to 27%. All of the three resonant frequencies will

also be increased slightly. The increased absorption values at

the first and third resonant frequencies are caused by the

increased curvature in sharp corners of masses. The

decreased absorption is due to the reduced rotational dis-

placement amplitudes of attached masses at the second reso-

nant frequency.

Figure 9 shows effects of membrane’s thickness on sound

absorption of the MAM. In the figure, the material and geo-

metric properties of the AM are the same as listed in Table I

with v0 ¼ 4:2	 10�4 s, only the thickness of the membrane

is changed. It can be seen that the first and third sound absorp-

tion peaks are increased when the membrane becomes thicker.

The second sound absorption peak, however, is reduced. The

increased absorptions can be attributed to the increase of the

bending stiffness of the plate, which is proportional to the

strain energy density of the plate. Nevertheless, the thicker

membrane would confine rotational motion of attached

masses, and eventually the sound absorption of the MAM will

be reduced at the second resonant frequency.

Figure 10 illustrates effects of v0, a constant of the loss

factor, on sound absorption of the MAM. In the figure,

material and geometric properties of the MAM are the same

as listed in Table I, only v0 is changed. It can be easily

observed that the 50% limit of sound absorption of the

MAM is further verified numerically. As expected, absorp-

tion at most of the frequency range can be increased by rais-

ing the value of v0, until the absorption reaches its limit. It is

understandable that the larger loss factor usually means

more energy can be damped and absorbed within the mem-

brane. However, when the dissipated power has reached the

limit with the increase of v0, it cannot be increased anymore,

and it will be decreased instead with the increase of v0.

B. The MAM with four semicircular masses

Sound absorption of the MAM attached with four semi-

circular masses, as shown in Fig. 11, are investigated by the

developed vibroacoustic plate model. In the figure, the

eccentricities of inner and outer masses, d1 and d2 and the

length of the membrane are selected as 7.5, 16.5, and

49.0 mm, respectively. Other material and geometric proper-

ties of the MAM are the same as listed in Table I. Sound

absorptions of the MAM are plotted in Fig. 12 in function of

v0. When four attached masses are used, two additional

absorption peaks are obviously observed for

v0 ¼ 2:1	 10�4 s. It should be mentioned that the second

peak becomes less distinct when v0 is above 4.2E-4 s.

Effects of v0 on the other peaks are similar as those of the

MAM with two attached masses. The displacement ampli-

tude fields in the MAM at the five peak frequencies are

shown in Fig. 13. It can be found that the first four absorp-

tion peaks of the MAM are caused by both translational and

FIG. 8. (Color online) Effects of membrane’s width to sound absorption of

the MAM with two semicircular masses.

FIG. 9. (Color online) Effects of membrane’s thickness to sound absorption

of the MAM with two semicircular masses.

FIG. 10. (Color online) Effects of membrane’s loss factors to sound absorp-

tion of the MAM with two semicircular masses.

FIG. 11. (Color online) The MAM symmetrically attached with four semi-

circular masses.
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rotational motions of the attached masses, whereby the fifth

absorption peak is caused by a strong vibration of the mem-

brane. It can be concluded that the more masses the MAM

attached, the more resonant frequencies can be found in the

low frequency range, which can produce more sound absorp-

tion peaks and make the spectrum of sound absorptions

broader eventually.

V. CONCLUSIONS

The vibroacoustic plate model is first developed to study

sound absorptions and energy dissipations within MAMs

under a normal incidence. The incremental energy method is

applied to derive the effective bending stiffness of plates

with initial in-plane stresses. Based on the plate model in

conjunction with the point matching method, the in-plane

strain energy of the membrane due to the resonant and anti-

resonant motion of the attached masses can be accurately

captured by solving the coupled vibroacoustic integrodiffer-

ential equation. Therefore, the sound absorption of the

MAM is obtained and discussed. The accuracy of the model

is verified by comparison with the finite element method.

Finally, parameter studies including masses’ eccentricities

and the width, thickness and the loss factor of the membrane

on the sound absorption behaviors of the MAM with multi-

ple attached masses are initially demonstrated.
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APPENDIX: EFFECTIVE BENDING STIFFNESS OF THE
PLATE WITH INITIAL STRESS

The flexural motion of a pre-tensioned elastic rubber

membrane is described by a thin plate model with uniform

in-plane initial stress, r0 ¼ T=h, in both x and y directions,

and the magnitude of initial stresses are comparable with the

Young’s modulus of the rubber membrane. According to the

Kirchhoff hypothesis,13 displacement fields in x and y direc-

tions can be expressed, respectively, as

u x; y; z; tð Þ ¼ �z
@w x; y; tð Þ

@x
; (A1)

v x; y; z; tð Þ ¼ �z
@w x; y; tð Þ

@y
; (A2)

where z denotes the coordinate measured from the neutral

plane of the membrane, and w is the out-of-plane displace-

ment of this neutral plane. Green-Lagrangian in-plane strains

are considered and expressed by18

FIG. 12. (Color online) Sound absorption of the MAM with four semicircu-

lar masses with different loss factors.

FIG. 13. (Color online) Displacement amplitude at absorption peak frequen-

cies of the MAM with four semicircular masses.
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The out-of-plane shear strains and stresses are neglected.

Because of the free surfaces of the plate, we have rz ¼ 0. If

we assume the incremental deformation is infinitesimal, the

final state of stress can be given by the Trefftz stress compo-

nents as18,19

rx ¼ r0 þ
E

1� �2ð Þ ex þ �eyð Þ; (A6)

ry ¼ r0 þ
E

1� �2ð Þ ey þ �exð Þ; (A7)

rxy ¼ Gexy; (A8)

in which G ¼ E=2ð1þ �Þ with E and � being the Young’s

modulus and Poisson’s ratio of the stretched elastic membrane.

Based on the linear constitutive relation in Eqs.

(A6)–(A8), the strain energy per unit initial volume is13

PE¼r0 exþeyð Þ

þ E

2 1��2ð Þ e2
xþe2

yþ2�exeyþ2 1��ð Þe2
xy

h i
: (A9)

The incremental strain energy is

DPE ¼ PE� r0ð�ex þ �eyÞ; (A10)

where �ex ¼ @u=@x and �ey ¼ @v=@y are usual linear strains.19

Substituting Eqs. (A3)–(A5) and Eq. (A9) into Eq.

(A10), the total incremental strain energy per unit initial area

can be obtained by integrating DPE over the plate thickness

and neglecting terms with three or higher order powers in

displacement-gradients as

U¼1

2

r0h3

12

@2w

@x2

� �2

þ @2w

@y2
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@2w

@x@y

 !2
2
4

3
5
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þ @w

@y
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" #

þD r2wð Þ2�2 1�vð Þ @
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@x2

@2w

@y2
� @2w
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 !2
2
4

3
5

8<
:
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;;

(A11)

in which D ¼ Eh3=½12ð1� �2Þ�. The kinetic energy per unit

initial area of the membrane is expressed as18

K ¼ 1

2
qm

@w

@t

� �2

: (A12)

By applying Hamilton’s principle on Eq. (A11) and Eq.

(A12), the governing equation of flexural motion of pre-

stressed plate can be written as

D�r4w� Tr2wþ qm

@2w

@t2
¼ 0; (A13)

where r4 ¼ r2ðr2Þ, r2 ¼ ð@2=@x2Þ þ ð@2=@y2Þ, and

D� ¼ Dþ ðr0h3=12Þ, which is the effective bending stiff-

ness of the plate.
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