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a b s t r a c t

In continuum mechanics, the non-centrosymmetric micropolar theory is usually used to

capture the chirality inherent in materials. However, when reduced to a two dimen-

sional (2D) isotropic problem, the resulting model becomes non-chiral. Therefore,

influence of the chiral effect cannot be properly characterized by existing theories for

2D chiral solids. To circumvent this difficulty, based on reinterpretation of isotropic

tensors in the 2D case, we propose a continuum theory to model the chiral effect for 2D

isotropic chiral solids. A single material parameter related to chirality is introduced to

characterize the coupling between the bulk deformation and the internal rotation,

which is a fundamental feature of 2D chiral solids. Coherently, the proposed continuum

theory is applied for the homogenization of a triangular chiral lattice, from which the

effective material constants of the lattice are analytically determined. The unique

behavior in the chiral lattice is demonstrated through the analyses of a static tension

problem and a plane wave propagation problem. The results, which cannot be predicted

by the non-chiral model, are verified by the exact solution of the discrete model.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An object is said to be chiral, or with handedness, if it cannot be superposed to its mirror image (Kelvin, 1904). Chirality
is encountered in many branches of science, including physics, biology, chemistry and optics. A chiral material should be
described by an adequate constitutive equation with handedness in order to characterize the distinct feature of such
material. In continuum mechanics, chirality is considered in the context of generalized elasticity, e.g. micropolar (Cosserat)
theory (Cosserat and Cosserat, 1909; Eringen, 1966). A general isotropic chiral (also known as non-centrosymmetric,
acentric or hemitropic) micropolar theory introduces three additional material constants compared to the non-chiral
theory to represent the effect of chirality (Nowacki, 1986; Lakes and Benedict, 1982; Lakes, 2001; Natroshvili and Stratis,
2006; Natroshvili et al., 2006; Joumaa and Ostoja-Starzewski, 2011). The additional material parameters change their signs
according to the handedness of the microstructure. This theory provides an efficient tool for modeling the chiral effect
presented in materials and structures, e.g., loading transfer in carbon nanotubes and chiral rods (Chandraseker and
Mukherjee, 2006; Chandraseker et al., 2009; Ies-an, 2010), mechanics of bone (Lakes et al., 1983), chirality transfer in
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nanomaterials (Wang et al., 2011) and wave propagation in chiral solids (Lakhtakia et al., 1988; Ro, 1999; Khurana and
Tomar, 2009). However, when this theory is applied to a planar isotropic case, e.g. a triangular chiral lattice, the variables
describing the chiral effect disappear and the resulting theory becomes basically non-chiral (Spadoni and Ruzzene, 2012).
Therefore the basic characteristic of a planar chiral solid cannot be properly modeled by the existing micropolar theory.
Recently, the chiral-dependent behavior of planar solids is characterized in the context of strain gradient theory by
introducing the high-order elasticity properties (Auffray et al., 2010).

On the other hand, lattice structures can be homogenized as micropolar continuum media (Bazant and Christensen,
1972; Chen et al., 1998; Kumar and McDowell, 2004), the homogenized material constants are derived directly from their
microstructures. This provides a useful tool to explain the observed size effect in lattice structures. Chiral lattice structure
was also proposed by Prall and Lakes (1996) to achieve a material with negative Poisson’s ratio (Lakes, 1987). Among the
candidates of these so-called auxetic materials (Yang et al., 2004), the triangular chiral lattice is the mostly investigated
one since it is isotropic and the geometric pattern can be controlled by a single continuously varying topological
parameter. Its unique mechanical behavior was examined by many researchers under both static (Alderson et al., 2010;
Dirrenberger et al., 2011; Spadoni and Ruzzene, 2012) and dynamic (Spadoni et al., 2009) loading conditions with a
number of targeted applications. The chiral material was recently used in designing elastic metamaterials with the
negative effective bulk modulus (Liu et al., 2011b). Recently Spadoni and Ruzzene (2012) proposed a self-consistent
homogenization scheme for a 2D chiral lattice in the framework of the micropolar theory in order to clarify the
indeterminacy of the effective shear modulus (Liu et al., 2011a, 2011b). However, since the non-centrosymmetric isotropic
micropolar model becomes non-chiral when applied to a planar problem (Spadoni and Ruzzene, 2012), the developed
homogenization method in this framework cannot characterize the chiral effect inherent in the material. Therefore we are
encountering a challenging problem: for planar isotropic chiral materials, e.g. triangular chiral lattices, we do not have a
solid theory either in continuum formulation or in the homogenization method to characterize the chiral effects.

The objective of the paper is to propose a continuum model to capture the chiral effect in planar isotropic chiral solids,
and the corresponding effective material constants will be derived for a planar triangular chiral lattice. Some typical
examples are conducted to demonstrate the necessity and consistency of the theory in characterizing the chiral effect. The
manuscript is organized as follows: in Section 2, a new constitutive relation for a 2D isotropic chiral solid is proposed
based on a continuum formulation. In Section 3, a triangular chiral lattice structure is homogenized in the framework of
the proposed theory and the effective material constants are derived. In Section 4, a tension and plane wave propagation
problems are examined for a planar chiral lattice by the proposed theory. In Section 5 the main result of this work is
concluded.

2. Planar isotropic micropolar model with chirality

Characterization of material chirality is closely related to the concept of pseudo (or axial) tensors, they alternate the
sign with a mirror reflecting transformation or the handedness change of the underlying coordinate system, and ordinary
(or polar) tensors are not affected by such actions (Borisenko and Tarapov, 1979). Both types of tensors coexist in various
elastic formulations, but strain energy density must be independent of handedness.

Classical elasticity theory excludes chirality (Lakes and Benedict, 1982), since in the energy density

w¼ 1
2eijCijklekl ð1Þ

the strain e is an ordinary tensor. To maintain w as an ordinary scalar, the elastic tensor C cannot be pseudo. In this paper,
micropolar theory (Eringen, 1999) is considered to include chirality. In the micropolar theory, rotational degree of freedom
(DOF) fi is introduced in addition to the displacement ui on a material point. The strain and curvature play as deformation
measures

ekl ¼ ul,kþelkmfm ð2aÞ

kkl ¼fk,l ð2bÞ

and the balance of stress sji and couple stress mji are governed by

sji,j ¼ r@2ui=@t2 ð3aÞ

mji,jþeiklskl ¼ j@2fi=@t2 ð3bÞ

where eijk is the Levi-Civita tensor, r and j are the density and micro-inertia, respectively. In this paper, the Einstein’s
summation convention is used and the comma in subscript denotes partial differentiation with respect to spatial
coordinates. The strain energy density for a general linear elastic micropolar medium is expressed as a quadratic form in
terms of asymmetric strain and curvature tensors

w¼ 1
2 eijCijkleklþ

1
2kijDijklkklþeijBijklkkl ð4Þ
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where C, D and B are elastic tensors of rank four. Then the constitutive relation can be derived as

sij ¼ CijkleklþBijklfk,l ð5aÞ

mij ¼ BijkleklþDijklfk,l ð5bÞ

It should be noted that the microrotation vector fi and curvature tensor kij are pseudo, thus in Eq. (4), Bijkl must be a
pseudo tensor and thus represent the chirality. A micropolar solid with Bijkla0 is usually referred as a non-centrosym-
metric medium. Let us consider the isotropic case and focus only the chiral part of Eq. (5). A general isotropic tensor of rank
four takes the form as

Bijkl ¼ B1dijdklþB2dikdjlþB3dildjk ð6Þ

where djk is Kronecker delta. The chiral part of Eq. (5) then reads

sij ¼ B1dijfk,kþB2fi,jþB3fj,i ð7aÞ

mij ¼ B1dijekkþB2eijþB3eji ð7bÞ

A planar micropolar problem in x1�x2 plane is defined by u3¼f1¼f2¼@/@x3¼0, while the non-zero quantities are ua,
f3, f3,a, eab, sab and ma3, respectively, with Greek subscripts ranging from 1 to 2. In the 2D case, it is easy to verify that
Eq. (7) is trivial, as a result, chirality represented by the isotropic Bijkl disappears. However, for 2D isotropic chiral solids,
e.g., planar triangular chiral lattices, chirality is a basic feature of such structures and should be characterized by a correct
constitutive modeling. Therefore there should be something missing in Eqs. (5) and (6) when the theory is reduced to the
2D case.

To circumvent this problem, we first discuss some basic properties of isotropic tensors. The basic forms of isotropic
tensors of rank 0, 2 and 3 are just the scalar, Kronecker delta djk and Levi-Civita tensor eijk, respectively. A vector which is a
tensor of rank one cannot be isotropic, and eijk is a pseudo tensor. An isotropic tensor with rank greater than three can be
constructed by scalar, djk and eijk, just as Eq. (6) for an isotropic tensor of rank four. However, in the 2D case, the Levi-Civita
tensor eijk is restricted to the form eijk�e3ab, which is in-plane isotropic and equivalent to an isotropic tensor of rank two.
For the same reason, there is no in-plane third order isotropic tensor in the current 2D situation. The isotropic B tensor also
vanishes, since the strain energy density of the 2D case can be rewritten as

w¼ 1
2 eabCabgregrþ1

2f3,aDabf3,bþeabBabgf3,g ð8Þ

where B reduces to the tensor of rank three and cannot be isotropic except zero. However, with e3ab and dab, we have more
choices to construct a 2D isotropic tensor of rank four. In particular, we have

Cabgr ¼ C1dabdgrþC2dagdbrþC3dardbg ð9aÞ

~Cabgr ¼
~C 1dabe3grþ ~C 2dgre3abþ

~C 3dage3brþ
~C 4dbre3agþ ~C 5dare3bgþ

~C 6dbge3ar ð9bÞ

Ĉabgr ¼ Ĉ1e3abe3grþ Ĉ2e3age3brþ Ĉ3e3are3bg ð9cÞ

Eq. (9a) is just the 2D version of Eq. (6). By utilizing the identity e3abe3gr¼dagdbr�dardbg, Eq. (9c) is found to take the
same form as Eq. (9a), this is not surprising since Ĉa b g r is the product of two pseudo tensors, hence it is an ordinary
tensor. In summary, we conclude that for a 2D micropolar medium the generic form of an isotropic tensor of rank four can
be given as

Cabgr ¼ Cabgrþ
~Cabgr ð10Þ

Reexamining the strain energy density in Eq. (8) with the help of Eq. (10) and Dab¼D1dab, we have

w¼ 1
2 eabCabgregrþð ~C 1þ

~C 2Þeaae3gregrþ1
2D1f3,adabf3,b ð11Þ

Introducing the Lame’s constant l, m, antisymmetric shear modulus k, higher order modulus g, and a single chiral
parameter 2A� ~C 1þ

~C 2, the in-plane isotropic micropolar elastic tensors with chirality are written as

Cabgr ¼ ldabdgrþðmþkÞdagdbrþðm�kÞdardbg ð12aÞ

~Cabgr ¼ Aðdabe3grþdgre3abÞ, ð12bÞ

Dab ¼ gdab ð12cÞ

Note that Eq. (12b) has a symmetric form with the requirement of major symmetry for the C tensor. The constitutive
equation then becomes

sab ¼ ldaberrþðmþkÞeabþðm�kÞebaþAdabe3gregrþAe3aberr ð13Þ

ma3 ¼ gf3,a
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It is interesting to note that the pseudo tensor ~Cabgr representing the chirality relates to both the normal stress and
normal strain, this is different from the Bijkl tensor in the 3D case. However, the physical meaning of ~Cabgr is very clear.
Consider the relevant part in Eq. (11)

Aðdabe3grþdgre3abÞeabegr ¼ 2Aerrðe3abeabÞ ð14Þ

the spherical strain err represents the bulk deformation at a material point, it is obviously independent of the handedness
of the frame. On the other hand, e3abeab¼�2(f3�c3)is the pure rotation of a point, with c3¼e3abub,a/2 denoting the
macro rigid rotation, therefore, it is an axial quantity depending on the handedness. This chiral term in the energy density
clearly demonstrates that a pure rotation can produce shrink or dilatation of the material, and vice versa. This mechanism
derived from a continuum formulation correctly explains the behavior of a real 2D chiral structure (e.g., the triangular
chiral lattice schematically depicted in Fig. 1), which will be discussed in detail in the following section. This can also
provide the explanation of the unique mechanism of the chiral lattice to have the negative Poisson’s ratio.

The constitutive law of Eq. (13) can be rearranged in a matrix form as

s11

s22

s12

s21

m13

m23

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

2mþl l �A A 0 0

l 2mþl �A A 0 0

�A �A mþk m�k 0 0

A A m�k mþk 0 0

0 0 0 0 g 0

0 0 0 0 0 g

2
6666666664

3
7777777775

u1,1

u2,2

u2,1�f
u1,2þf
f1

f2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð15Þ

It has four classical micropolar elastic constants and a new parameter A characterizing the chiral effect. When the
handedness of the material pattern is flipped over, the chiral constant A should reverse its sign to maintain the invariance
of the strain energy density, and the other constants remain unchanged:

s11

s22

s12

s21

m13

m23

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

2mþl l A �A 0 0

l 2mþl A �A 0 0

A A mþk m�k 0 0

�A �A m�k mþk 0 0

0 0 0 0 g 0

0 0 0 0 0 g

2
6666666664

3
7777777775

u1,1

u2,2

u2,1�f
u1,2þf
f1

f2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð16Þ

Finally, with the proposed constitutive equation, the governing equations expressed in the displacements u, v and the
microrotation f�f3 read

r @
2u

@t2
¼ ðlþ2mÞuxxþðmþkÞuyyþðlþm�kÞvxyþ2kfy�Aðvxx�vyy�2uxy�2fxÞ ð17aÞ

r @
2v

@t2
¼ ðmþkÞvxxþðlþ2mÞvyyþðlþm�kÞuxy�2kfx�Aðuxx�uyyþ2vxy�2fyÞ ð17bÞ

j
@2f
@t2
¼ gðfxxþfyyÞ�4kfþ2kðvx�uyÞ�2AðuxþvyÞ ð17cÞ

Fig. 1. Visualization of the physical meaning of the 2D chiral micropolar constitutive equation.
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The form of Eqs. (15–17) looks like those of an anisotropic medium, however, they are fundamentally different and
cannot be recovered by even the most general anisotropy without chirality, since the parameter A and its sign form a
unique pattern in the constitutive matrix. They are indeed in-plane isotropic guaranteed by Eq. (12). It should be
mentioned that, for the 2D isotropic micropolar solid, Eq. (12) is the only possible form to include chirality.

The constraint conditions on the five material constants can be obtained by imposing positive definiteness of the strain
energy density w. It is convenient to decompose the strain tensor into hydrostatic, deviatoric symmetric and
antisymmetric parts as (Liu and Hu, 2005)

eab ¼ dabeþed
ðabÞ þe abh i ð18Þ

where

e¼ 1
2eaa ð19aÞ

ed
ðabÞ ¼

1
2ðeabþebaÞ�dabe ð19bÞ

e abh i ¼
1
2ðeab�ebaÞ ¼ eba3ðf�cÞ ð19cÞ

Substituting Eqs. (18) and (12) into Eq. (11) yields

w¼ 2k e2
þ2med

ðabÞe
d
ðabÞ þ2kðf�cÞ2þ4Aeðf�cÞþ1

2gf,af,a ð20Þ

where k¼ lþm is defined as the 2D bulk (area) modulus. This equation yields the necessary and sufficient conditions for
the positive definiteness of w. Besides the four conditions for a classical micropolar medium given in the literature

k¼ lþm40, m40, k40, g40 ð21Þ

an additional condition

A2o ðlþmÞk ð22Þ

is imposed on the chiral constant A. It can be either positive or negative, but its absolute value is bounded.

3. Homogenization for a 2D triangular chiral lattice

In this section, we will examine a 2D triangular chiral lattice, and analytically derive the five material constants
proposed in the Section 2 by a homogenization method.

3.1. Description of geometry

The geometry of the chiral lattice is shown in Fig. 2. The structural layout consists of circles of radius r linked by straight
ligaments of equal length L. The ligaments are required to be tangential to the circles and the angle between adjacent
ligaments is p/3. The circles are arranged as a triangular lattice with the lattice constant, i.e. the distance between circle
centers, a. The angle between the line connecting the circle centers and the ligament is defined as b. The geometry
parameters are connected by the following relations:

cosb¼
L

a
, sinb¼

2r

a
ð23Þ

Fig. 2. Geometry of auxectic triangular chiral lattice.
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A quadrilateral unit cell is used for the analytical development, as bounded by the dashed parallelogram in Fig. 2. The
tessellation of the unit cell along the lattice vectors

a1 ¼ aex

a2 ¼�
1

2
aexþ

ffiffiffi
3
p

2
aey ð24Þ

generates the whole lattice. The wall thicknesses of the circles and the ligaments are denoted as tc and tb, respectively.
Among the parameters, b is denoted as a topology parameter (Prall and Lakes, 1996; Spadoni et al., 2009). When b-0,

the circles shrink to dots and a traditional triangular lattice is obtained. When b-p/2 the ligaments vanish and a lattice of
packed circles is recovered. It should be noted that the chiral effect disappears in these two extreme cases. The parameter
b affects not only the topology but also the mechanical behavior of the lattice. As pointed by Spadoni and Ruzzene (2012),
the variation of b monitors the transition from bending dominated behavior to axially dominated behavior.

Finally, as shown in Fig. 3, we adopt the sign convention of b according to the relative orientation of the ligament and
the link of circle centers. When b reverses its sign, the lattice is flipped over and a complementary pattern with a reversed
handedness is implied. This operation cannot be achieved by an in-plane rotation due to its chiral nature.

3.2. Determination of constitutive constants

To formulate the problem analytically, the circles of the chiral lattice are assumed to be rigid. Further, the ligament is
assumed to be massless, and the mass and rotation inertia of the rigid circle are denoted as m and J, respectively. However,
a numerical procedure (Spadoni and Ruzzene, 2012) can be utilized to deal with the case of deformable circles and
distributed mass density.

Let up,q ¼ up,q vp,q fp,q

n oT
denote the motion of the center of the rigid circle labeled as (p,q), where up,q, vp,q and fp,q

are the displacement and rotation DOFs, respectively. Referring to Fig. 2, the deformation energy of a quadrilateral unit cell
labeled as (p,q) is just contributed from the three deformable ligament beams, and can be determined by the motion of the
four related rigid circles as

wcell
p,q ¼wðup,q,upþ1,q,up,qþ1,upþ1,qþ1Þ ð25Þ

The derivation of wcell
p,q can be found in the work of Spadoni and Ruzzene (2012), thus the Hamiltonian of the whole

lattice system can be obtained as

H¼
X

p,q
wcell

p,q þ
1
2 m _u2

p,qþ
1
2 m _v2

p,qþ
1
2 J _f

2

p,q

� �
ð26Þ

By using Hamilton’s principle, the discrete dynamic governing equations for the circle up,q are obtained as

rAcell
@2up,q

@t2
¼�

@H

@up,q
ð27aÞ

rAcell
@2vp,q

@t2
¼�

@H

@vp,q
ð27bÞ

jAcell

@2fp,q

@t2
¼�

@H

@fp,q

ð27cÞ

where the effective density and micro-inertia are defined as r¼m/Acell, j¼ J/Acell, with Acell ¼
ffiffiffi
3
p

a2=2 being the area of the
unit cell. The right hand side of Eq. (27) contains DOFs up,q and those of its adjacent neighbors up71,q71. The detailed
expansion of Eq. (27) is straightforward and will not be presented here.

Fig. 3. Chiral lattice with (a) b40 and its handedness reversed pattern with (b) bo0.
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At long wave limit or the characteristic scale of the problem is much larger than the lattice constant a, the
homogenization of the discrete Eq. (27) is possible by representing up71,q71 as its Taylor series expansion at up,q.
Specifically, for the displacement u, we have

up71,q71 ¼ uþu0T dxp71,q71þ
1
2dxT

p71,q71u00dxp71,q71þOð9dxp71,q719
2
Þ ð28Þ

where

u0 ¼ @u=@x @u=@y
n oT

ð29aÞ

u00 ¼
@2u=@x2 @2u=@x@y

@2u=@x@y @2u=@y2

 !
ð29bÞ

and from the relative sites of the circles (Fig. 2), the increments of the position vectors are given by

dxp71,q ¼ 7a 0
� �T

ð30aÞ

dxp,q71 ¼ 8a=2 7
ffiffiffi
3
p

a=2
n oT

ð30bÞ

dx7 ðpþ1,qþ1Þ ¼ 7a=2 7
ffiffiffi
3
p

a=2
n oT

ð30cÞ

Substituting Eq. (28) and the similar expansions for v and f into Eq. (27) and retaining the leading terms of the spatial
differentials yield exactly the governing equations derived in the continuous description (Eq. (17)). This is an encouraging
result which confirms the proposed chiral constitutive relation based on the continuum formulation. Then by equating the
corresponding coefficients, the effective material constants of the equivalent chiral micropolar medium can be easily
obtained,

l¼
ffiffiffi
3
p

Es

4
Z cos2 b�Z2
� �

sec3 b cos 2b ð31aÞ

m¼
ffiffiffi
3
p

Es

4
Z cos2 bþZ2
� �

sec3 b ð31bÞ

k¼
ffiffiffi
3
p

Es

2
Zðsin2 bþZ2Þsec b ð31cÞ

g¼� Esa2

4
ffiffiffi
3
p Z 3 sin2 bþ2Z2

� �
sec b ð31dÞ

A¼

ffiffiffi
3
p

Es

2
Z Z2�cos2 b
� �

sec b tan b ð31eÞ

where Es ¼ Eb=ð1�nb
2Þ or Eb under a plane strain or plane stress assumption, respectively, with Eb and nb being the Young’s

modulus and Poisson’s ratio of the underlying lattice material. Note that in Eq. (31) the slenderness ratio

Z¼ t=a ð32Þ

is defined as the ratio of the ligament wall thickness (t�tb) to the lattice constant.
It can be verified from Eq. (31) that when the chiral lattice is flipped over (sign of b is reversed), A changes its sign, while

all the other parameter remains unchanged, which is just the same as that predicted by Eq. (15) and (16). When b¼0 for a
traditional triangular lattice, A vanishes and the chiral effect disappears, the remaining effective material constants are
reduced to

l¼
ffiffiffi
3
p

Est

4a3
a2�t2
� �

ð33aÞ

m¼
ffiffiffi
3
p

Est

4a3
a2þt2
� �

ð33bÞ

k¼
ffiffiffi
3
p

Est
3

2a3
ð33cÞ

g¼� Est
3

2
ffiffiffi
3
p

a
ð33dÞ

which are the same as those given by Kumar and McDowell (2004) for a triangular lattice by considering up to the second
order expansion of the microrotation DOF. With this homogenization scheme, the obtained higher order modulus g for the
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lattice structures is always negative, since the microrotation on the unit cell is approximated by a second order Taylor’s
expansion (Bazant and Christensen, 1972; Kumar and McDowell, 2004). However, the first order method (Chen et al.,
1998; Kumar and McDowell, 2004; Spadoni and Ruzzene, 2012), i.e. retaining the first order items of Eq. (38) and by using
the equivalence of the unit cell energy density wcell

p,q=Acell with the continuum medium, Eq. (11), is also examined, and a
positive version of the higher order modulus is obtained as

g¼ Esa2

4
ffiffiffi
3
p Z 3 sin2 bþ4Z2

� �
sec b ð34Þ

with the other effective material constants in Eq. (31) remaining unchanged. It also reduces to the results considering only
the first order expansion when b¼0 (Chen et al., 1998; Kumar and McDowell, 2004). The negative or positive values of
gamma depend on the selection of retaining or not the second order derivatives of the microrotation in the energy
expression of the unit cell. From the viewpoint of the equilibrium of lattice joint, gamma should be negative (Bazant and
Christensen, 1972), on the other hand, it should be positive regarding to the positive definiteness of strain energy
(Eringen,1966). Kumar and McDowell (2004) provided an insightful explanation for this contradiction and reference
computations on the two versions of the higher order modulus g. Basically, negative g is not suitable in the static problem
since the terms like e

ffiffigp appears in the solution, which results in a nonphysical fluctuant mechanical field (Kumar and
McDowell, 2004).

If the lattice with deformable node circles is considered, numerical homogenization procedure based on the unit cell
finite element calculation can be employed. We found that the chiral effect of the lattice is also pronounced in case of
deformable circles, which is in accordance with the main conclusion with the rigid ring. The details of the case with
deformable node circles can be found in the supplementary material.

4. Discussions and applications

In this section, we will discuss in detail the obtained effective material constants for the triangular chiral lattice. A static
tension problem and a plane wave analysis will also be examined in order to illustrate the proposed theory.

4.1. Properties of the effective material constants

First, we will compare the derived effective material constants in Eq. (31) with those derived from a non-chiral
micropolar theory (see Eqs. (25–34) in Spadoni and Ruzzene (2012)) for the same chiral lattice. In the following, la, ma, ka

and ga are denoted as the non-chiral version of the effective constants.
Comparing the results predicted by the chiral and non-chiral theories, it is found that the two theories give the same

prediction on the modulus m and k as well as the higher order modulus g, but different on l. Of course the parameter A is
only introduced in the current chiral theory. In Fig. 4, A, l and la normalized y Es are plotted as function of b, where

Fig. 4. Effective Lame constant l predicted by chiral and non-chiral theory, and the effective chiral constant with different microstructure parameters.
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Z¼1/20 is used in the calculation. It is shown that the chiral constant is an odd function of b and 9A9 increases with the
increase of 9b9 in the region of roughly 9b9o751, this indicates that the bulk-rotation coupling behavior becomes stronger
with the increase of circle size. It should also be noted here that since the beam theory is used the results may not be
accurate or even meaningless for b-901, where the ligament is vanishingly short. An additional curve is also included in
the figure for the parameter A with a slenderness Z¼1/50, the result shows that the chiral constant also increases for
greater ligament width. Physically positive A means, regarding to the constitutive Eq. (15), an anticlockwise circle rotation,
which will induce a hydrostatic compression, while all the other strain components are hold to be zero. This is just the case
for the lattice shown in Fig. 3a. The scenario should be reversed for another handedness, Fig. 3b. Finally, from Eq. (31), we
get

ðlþmÞk�A2
¼ 3

4 Z sec b
� �4

Z0 ð35Þ

which confirms that the thermodynamic stability requirement on the chiral constant, Eq. (22), is always fulfilled.
An unusual characteristic of the non-chiral micropolar (and also the classical elasticity since they are the same in bulk

behavior) homogenization of the chiral lattice is the negativity of l. This is obvious since the chiral lattice produces
negative Poisson’s ratio n¼l/(lþ2m). However, Fig. 4 shows that the current chiral homogenization gives significant
variation of l, thus it seems that the effective Poisson’s ratio would be no longer negative in some ranges of the parameter
b. Based on the constitutive Eqs. (15) and (16), the Poisson’s ratio of a chiral micropolar medium must be redefined. By
defining v¼�e22/e11 and assuming all the stress components except for s11 are zero, we have

le11þðlþ2mÞe22�Aðe12�e21Þ ¼ 0 ð36aÞ

�Aðe11þe22ÞþðmþkÞe12þðm�kÞe21 ¼ 0 ð36bÞ

Aðe11þe22Þþðm�kÞe12þðmþkÞe21 ¼ 0 ð36cÞ

Solving the above equations gives the Poisson’s ratio for the chiral micropolar medium

v¼
l�A2=k

lþ2m�A2=k
ð37Þ

The sign of the chiral constant does not affect the Poisson’s ratio. Physically this means the auxetic behavior is
independent of the direction of internal rotation of the circles, as expected. The Young’s modulus now becomes

E¼
ðlþ2m�A2=kÞ2�ðl�A2=kÞ2

lþ2m�A2=k
ð38Þ

By using Eq. (31), the overall Young’s modulus and Poisson’s ratio of the chiral lattice are explicitly expressed as

v¼
1�Z2�ðcosbsinb=ZÞ2

3þZ2þðcosbsinb=ZÞ2
ð39Þ

E¼ 2
ffiffiffi
3
p

EsZ3 sec3 b Z2þcos2 b
	 


3Z2þZ4=8þcos2 b sin2 b
ð40Þ

From Eq. (39), vE1/3 (slightly affected by the ligament slenderness) for the two extreme values of b, while for the
other geometry vE�1since the 1/Z term dominates. In fact, it is interesting to verify that the above expressions are
exactly the same as the non-chiral prediction by Spadoni and Ruzzene (2012). The other commonly used parameters such
as the characteristic length l2¼g/m and the coupling number N2

¼k/(kþm) (Cowin, 1970) are also the same as those
derived from the non-chiral theory. In summary, the proposed chiral micropolar theory introduces the chiral parameter A

to capture the coupling between the bulk deformation and the internal rotation, and is only different in the prediction on
Lame’s constant l compared with the non-chiral micropolar theory.

4.2. One dimensional static tension

We consider in the following a one dimensional tension problem of the chiral micropolar medium, as shown in Fig. 5a.
A sourceless domain is l in size in x direction, and infinite in y direction. A constant displacement uo is prescribed on the
right side while all the other DOFs are fixed on the boundary. Since the problem is infinite in y direction, the field
quantities are only the functions of x, the strains are then exx¼u0, eyy¼0, exy¼v0 �f and eyx¼f, where a prime means the
ordinary differential with respect to x. With the help of the constitutive and equilibrium equations, we obtain

ðlþ2mÞu00�Av00 þ2Af0 ¼ 0 ð41aÞ

�Au00 þðmþkÞv00�2k f0 ¼ 0 ð41bÞ

g f00�4k fþ2kv0�2Au0 ¼ 0 ð41cÞ

with the boundary conditions shown in Fig. 5a.
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For the classical micropolar case (A¼0), the solution is identical with that by the Cauchy elasticity, since Eq. (41a) is
decoupled from the other two and forms a complete boundary value problem, while v and f are zero conforming the
homogeneous boundary conditions. When the chirality appears, the variables in Eq. (41) are coupled together, this implies
that even a simple tension in x direction will produce the displacement in y direction, as well as the rotational field. This
basic behavior cannot be predicted with the existing 2D version of the non-centrosymmetric micropolar theory.

As an example, Eq. (41) is solved with the parameters l¼20a, Z¼1/20, and uo
¼a/10. A discrete model of the finite

element method (FEM) is constructed with the same parameters as sketched in Fig. 5b. The rigid circle is modeled by the
constraint equations which connect the six nodes on the circle to the nodes at its center. The infinite size in y direction is
mimicked by periodic boundary conditions with the matched nodes on each side, and the same boundary conditions as
Fig. 5a are point-wisely enforced. As mentioned in the previous section, the negative version of high-order modulus g
causes non-physical fluctuation in static solution, the positive version of Eq. (34) is used in this problem. The displacement
v and the microrotation f predicted by the analytical and FEM solutions are displayed in Fig. 5c, a fairly good agreement is
found between the two methods. Due to the chirality of the lattice structure, the displacement in y increases in an
asymmetrical manner in the vicinity of the boundary, and soon becomes affine across the x length, which creates an
inclined deformed sample. It is also found that the significant variation portion of the fields near the boundary is nearly
independent of the length l, this can be attributed to the boundary layer effect (Eringen, 1999) and agrees with the
traditional micropolar theory. If the handedness of the microstructure of the FEM model is changed, i.e., the model is
mirror reflected with respect to x axis, the field distribution should be also reflected. For the analytical model, this is a

Fig. 5. (a) Problem definition and (b) sketch of corresponding discrete FEM model for the one-dimensional tension; (c) lateral displacement and

microrotation fields.
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natural result by inversing the sign of the chiral constant (�A). The non-chiral micropolar theory always gives trivial
solutions for v and f. Though the displacement in y caused by the tension in x is relatively small for the static case, such
effect would become more pronounced for wave propagation, as demonstrated in the following section.

4.3. Plane wave propagation

Considering in an infinite planar chiral micropolar medium under a plane wave in þx direction, the displacement and
the microrotation are assumed to be the following from

ðu,v,fÞ ¼ ðû,v̂,f̂Þexpðikx�iotÞ ð42Þ

where k and o denote the wave number and circular frequency, ðû,v̂,f̂Þ are the (complex) amplitudes, and i¼
ffiffiffiffiffiffiffi
�1
p

.
Substituting Eq. (42) into Eq. (17) yields the following secular equation system for the chiral micropolar medium:

k2
ðlþ2mÞ�o2r �Ak2

�2iAk

�Ak2 k2
ðkþmÞ�o2r 2ikk

2iAk �2ikk ðk2gþ4kÞ�o2j

0
BB@

1
CCA

û

v̂

f̂

0
B@

1
CA¼ 0 ð43Þ

Let A¼0, we obtain the secular equation for a classical micropolar medium without chirality

k2
ðlþ2mÞ�o2r 0 0

0 k2
ðkþmÞ�o2r 2ikk

0 �2ikk ðk2gþ4kÞ�o2j

0
BB@

1
CCA

û

v̂

f̂

0
B@

1
CA¼ 0 ð44Þ

The most pronounced difference between the chiral and non-chiral micropolar media is that for the later one a non-
dispersive longitudinal wave with velocity cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2mÞ=r

p
can always be decoupled from the other two shear-rotation

coupled waves (Eringen, 1999). This is the characteristic of the non-chiral micropolar media, i.e. the microrotation is only
coupled with shear but not with dilatation. In the current chiral micropolar theory, as implied by Eqs. (11–13), the rotation
is coupled with the dilation deformation due to the non-zero chiral constant A. Hence there would be no longer pure P or
pure S wave in such media. The three wave modes are all mixed and dispersive, thus we call P, S or R (rotation) dominated
waves, respectively. Since the full matrix in Eq. (43) will result in a full third order equation, the analytical eigen-solution is
tedious, we will instead numerically evaluate it through examples.

The wave behavior in an isotropic 3D chiral micropolar medium has been addressed in the literature (Lakhtakia et al.,
1988; Ro, 1999; Khurana and Tomar, 2009). A remarkable feature is that the transverse (shear and rotation coupled) waves
can be distinguished as left circular polarized (LCP) and right circular polarized (RCP) waves, which means that the ratio of
the two displacement (also the rotation) components equals to 7 i and not in the same phase. The LCP and RCP waves
propagate at different phase speeds, this reveals the lack of mirror symmetry of the underlying chiral microstructure
inherent in the material. From Eq. (43), it is easy to obtain the ratio of the two displacement amplitudes as

û

v̂
¼

k2
½A2
�kðlþ2mÞ�þko2r
Aðk2m�o2rÞ

ð45Þ

Obviously this ratio cannot be an imaginary number, therefore the common feature (circular polarization) for 3D chiral
micropolar media is not presented in the 2D version, and the particle motion under the wave is always linearly polarized.
However, the loss of mirror symmetry is reflected in another way for the 2D case. Because the medium is in-plane
isotropic, the frequency dispersion must be isotropic and independent of the propagating direction, i.e. the iso-frequency
contour of this medium should be concentric circles. On the other hand, the displacement polarization will remain the
same angle with respect to the wave vector. This result is schematically shown in Fig. 6a. The polarization according to the
wave vector k forms a pattern with a rotational symmetry, but without mirror reflective symmetry. It is interesting to note
that the P- and S-mixed wave modes can be traditionally observed in the anisotropic medium, but we can find the mixed
wave modes in a 2D chiral micropolar medium while the dispersion is isotropic. This wave phenomenon is not reported
before.

In the following, numerical solutions based on the chiral and non-chiral micropolar theories for the same chiral lattice
will be conducted. For comparison, the exact dispersive solution of the chiral lattice is also calculated from the Bloch wave
(Brillouin, 1953) solution of the discrete kinetic Eq. (27), by adopting the following lattice wave function

ðu,v,fÞp,q ¼ ðû,v̂,f̂Þp,qexpðikxp,q�iotÞ ð46Þ

where the location of certain rigid circle xp,q takes the similar value as Eq. (30). The wave frequencyois normalized by

O¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4Est

3

ma3

s
ð47Þ

which represents the natural frequency of a simple supported beam with a lumped mass at its middle. Parameters b¼0.9,
Z¼1/20, m¼ J¼1 are used in the numerical example.
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Fig. 6. (a) Schematic wave behavior of the 2D chiral media; Comparison dispersion relations for the chiral, non-chiral homogenization employing

negative (b) and positive (c) versions of higher order modulus, with the discrete model. (For interpretation of the references to color in this figure, the

reader is referred to the web version of this article.)
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Fig. 6b shows the three branches (in black, red and blue, respectively) of the dispersion curves, predicted by the chiral
micropolar theory (solid line), the non-chiral micropolar theory (dashed line) and the discrete model (circles), respectively.
The first and second branches correspond to the displacement dominated modes and the third one is the rotational
dominated wave. The second branch is almost non-dispersive. For the non-chiral theory this is just the uncoupled non-
dispersive P-wave, while they are slightly dispersive predicted by both the chiral theory and discrete model. All three
models agree well for this branch. However, for the first and third branches, the chiral theory agrees well with those given
by the discrete model and a large discrepancy between the chiral and the non-chiral micropolar theory is found. It is also
interesting to notice that the dispersion curves of P and S dominated waves almost coincide at the long wave limit,
indicating almost same phase wave velocities. This is the feature of waves in materials with Poisson’s ratio nE�1, where
the shear modulus is much greater than the bulk modulus (Spadoni and Ruzzene, 2012).

In the Fig. 6b, the negative value of the high-order modulus g in Eq. (31d) is used. For a comparison, the dispersion
relation using the positive one, Eq. (34), is also shown by Fig. 6c. It is seen that the results of these two versions differ only
slightly, particularly for the second branch. However, no matter positive or negative g values are employed, the chiral
theory predicts consistently better results than the non-chiral theory.

To further examine the wave modes, here we focus on the displacement dominated one, i.e., the first and second
branches. Since the particle is linearly polarized, it is convenient to define a polarization angle L with respect to the wave
propagating direction, i.e., in x direction

tanL¼ v̂=û
�� �� ð48Þ

Fig. 7. (a) Comparison of the polarization angle for the chiral, non-chiral homogenization and the discrete model; (b) Polarization variation for the first two

branches with different topology parameters. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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The polarization angle of the two waves predicted by the chiral and non-chiral theories are plotted in Fig. 7a as function
of the wave number, where the first and second branches are marked in black and red, respectively. The non-chiral theory
always predicts pure P- and S-waves, thus the polarization angles remain to be 01 and 901, as expected. For the chiral
theory, the S and P dominated wave (for example L4601and Lo301) can be observed when the wave number is small
(kao0.05) for the first and second branches, respectively. However, for the intermediate wave number (ka40.05), the
first two branches become indistinguishable and can even interchange, i.e. the first branch become P dominated and the
second branch become S dominated. Again, the predictions by the proposed chiral micropolar model always agree well
with those by the discrete model (shown by circle and square dots). Polarizations corresponding to different topology
parameters are also shown in Fig. 7b. It is found that the P- and S- wave modes will be more mixed for larger cosb, i.e.,
smaller circles for the same lattice constant.

For further illustrating the unique wave behavior of the proposed theory, snapshots of wave modes of the three
branches are shown in Fig. 8 according to the solutions of Eqs. (42) and (43), where the wave number k¼0.03p/a is used.
The wave modes are shown in 10 material particles represented by circles in a period, whereas a short line in the particle
identifies its rotation. The particle trajectory, i.e. the polarization direction, is highlighted by the dashed line. For the first
branch shown in Fig. 8a, particle translation and rotation are found for both the chiral and non-chiral theories. However,
the polarization is purely transverse for the non-chiral theory, while it is transverse dominated for the current chiral
theory. For the second branch shown in Fig. 8b, a pure longitudinal wave without particle rotation is predicted for the
non-chiral theory, while for the chiral theory it is longitudinal dominated with particle rotation. For the third branch
shown in Fig. 8c, the particle translations are small in both cases, hence only particle rotations almost at their original sites
are observed.

5. Conclusions

The existing micropolar theory is not able to characterize the chiral effect inherent in plane isotropic chiral solids, e.g.
triangle chiral lattices. In the paper, we propose a continuum theory to capture the chiral effect in such materials. The
proposed method is based on the micropolar theory and reinterpretation of in-plane isotropic tensors. The constitutive
equation and the governing equation are analytically derived. Different from the existing 2D isotropic micropolar theory, a
new material constant is introduced to characterize the chiral effect, it can be either positive or negative depending on the
handedness of the material while its absolute value is bounded. Physically, the proposed chiral micropolar theory can
describe the dilatation–rotation coupling, in addition to the conventional shear–rotation coupling.

Based on the theory, we also propose a homogenization scheme for a triangle chiral lattice, from which the effective
material parameters of the chiral lattice are derived analytically. By introducing the new material parameter, the proposed
homogenization method gives different prediction on the Lames constant l, but the other effective material constants
remain the same as those predicted by the non-chiral version. The problems of the triangle chiral lattice under a static
tension and a plane wave loading conditions are examined. For the static tension loading, it is found that even a simple
tension can induce rotation and lateral displacement fields inside of the material, as expected. For the plane wave loading,
there is no longer pure longitudinal and transverse waves, and all the wave modes are of mixed types and dispersive.
Mixed wave modes with isotropic frequency dispersion are also observed, which is a fundamental property of a planar
isotropic chiral solid. This special wave phenomenon is not reported before. These results are finally verified by the exact
solution of the corresponding discrete model. Hopefully, the proposed method can provide a useful tool to investigate the
chiral effect on mechanical behavior of plane isotropic chiral solids.

Fig. 8. Wave shapes compared with non-chiral micropolar theory: (a) S-dominated; (b) P-dominated; and (c) rotational dominated.
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