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Abstract An effective stress of  a ductile matrix is defined directly from the average second order 
stress moment. It is evaluated exactly provided that an estimation of  the composite effective moduli 
is given. On the basis of this effective stress and the secant moduli concept originally proposed by 
Berveiller and Zaoui (BerveiUer, M. and Zaoui, A. (1979). An extension of  the self-consistent scheme 
to plastically-flowing polycrystals. J. Mech. Phys. Solids 35, 325 344) and modified for composite 
materials by Tandon and Weng (Tandon, G. P. and Weng, G. J. (1988). A theory of  particle 
reinforced plasticity. A S M E  J. Appl. Mech. 55, 12(~135), a method for composite plasticity is then 
proposed. The method is capable of predicting the influence of  hydrostatic stress on particle- 
reinforced composite yielding, especially for porous materials at high triaxiality. Compared to 
Tandon and Weng's model, the proposed method gives always softer predictions. For particle 
reinforced composites, the new matrix average effective stress coincides with that obtained by Ponte 
Castaneda's variational procedure (Ponte Castaneda, P. (1991). The effective mechanical properties 
of nonlinear isotropic composites. J. Mech. Phys. Solids 39, 45 71). © 1997, Elsevier Science Ltd. 
All rights reserved. 

1. INTRODUCTION 

There are, in general, three classes (not exhaustive) of methods for predicting nonlinear 
composite properties. The first is the numerical method based on the periodic microstructure 
assumptions (Tvergaard, 1990, Gao et  al., 1991). The second is the variational methods 
which can develop the bounds for the effective behavior of nonlinear composites (Talbot 
and Willis, 1992, Willis, 1991, Ponte Castaneda, 1991 and Suquet, 1993). The work of 
Ponte Castaneda (1991) makes use of arbitrary bounds and estimates for classes of linear 
comparison composites to generate bounds and estimates for the corresponding classes of 
nonlinear composites. Application of this method was performed by Li and Ponte Cas- 
taneda (1993) for composites made of two elastically incompressible phases. The third 
method is originally proposed by Berveiller and Zaoui (1979) and modified for composite 
materials by Tandon and Weng (1988). This model makes use of a linear comparison 
material, whose matrix elastic moduli at every instant are chosen to coincide with the 
average secant moduli of the matrix to characterize its elastoplastic state. The method 
generates directly elastic results to plastic cases with the help of secant moduli of the 
composite. This model is simple and straightforward for applications. However, as recog- 
nized by Qiu and Weng (1992), under a pure hydrostatic load, Tandon and Weng's original 
model always predicts elastic behavior for the composites reinforced by spherical inclusions. 
In their model the effective stress of the matrix is evaluated from the average stress of the 
matrix, and the local stress variation in the matrix is not taken into account. Recently, Qiu 
and Weng (1992) redefined an effective stress of the matrix from an energy approach to 
improve the predicted results. However, in their model the effective stress can not be 
obtained exactly. 

On the basis of the secant moduli concept (Berveiller and Zaoui, 1979, Tandon and 
Weng, 1988), we propose a method for composite plasticity. The effective stress of the 
matrix will be defined from the average second order stress moment. It will be calculated 
in an exact manner from the linear composite effective moduli. Particle-reinforced com- 
posites will be analyzed in detail. Finally, the possible connections with Ponte Castaneda's 
work (1991) will be also discussed. 
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2. AVERAGE SECOND ORDER STRESS MOMENT 

Here we will follow the general method proposed by Bobeth and Diener (1986, 1987) 
and Kreher (1990). Considering a representative volume V, a uniform macroscopic stress 
Z~j is prescribed along its boundary. Corresponding local stress and strain are denoted by 
o-,j(x), %(x). They satisfy : 

~r q,i = 0 

1 e,j = 5(u,., + uj,,) (1) 

where u~ is the displacement field. Along the boundary of the representative volume, we 
have a~jnj = Y~ijnj. It is easy to show that: 

(o,;)  =Eij. (2) 

(A)  is the volume of quantity A over the whole representative volume. 
In the case of elasticity, the average of the stored elastic energy of the composite is : 

' 2 ( . , j ~ j )  = & (3) 

Using the Hill condition (Hill, 1963), we get 

2 U  = ( a ! j % )  = (a,jS~jk~Okl) = Zt : jS( jk lY~kl  (4) 

where Sijk~, Sijkt are local and composite effective compliance tensors, respectively. 
Now, under a constant applied macroscopic load, a variation of the local compliance 

tensor 6sij~ wilt lead to a variation of the local stress 6a o in turn a variation of the average 
stored energy 6 U  and the composite effective compliance tensor fiS,kt. We have: 

Z(i ~ SijklZkl = ( ff ij 6Sijkl(T kl ) ~- 2(cr~is!jkt 6O kl ) .  (5) 

Since, under a constant applied stress, the volume average of the local stress variation 
vanishes, we get : 

Z~j 6Sij~lEk~ = (ors fis~j~toij). (6) 

Again the Hill condition is used. 
In general, the exact composite effective compliance S,k~ is not available. In the follow- 

ing, the approximations or bounds for the effective moduli of linear composite materials 
will be used to calculate the matrix effective stress. 

3. COMPOSITE WITH SPHERICAL ISOTROPIC INCLUSIONS 

3.1. Prel iminary 
The secant moduli method (Berveiller and Zaoui, 1979, Tandon and Weng, 1988) will 

be used to account for the decreasing constraint power of matrix plastic deformation. The 
overall stress-strain relation of the nonlinear composite is characterized by the effective 
moduli of a series of linear elastic comparison composites. The matrix moduli of  the linear 
comparison composites are taken as the secant moduli of the nonlinear matrix at the current 
deformation state. The effective stress and strain of  the nonlinear matrix is assumed to 
follow the modified Ludwik's equation 
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a., = ayo +h(s~)" (7) 

where %0, h and n are initial yield stress, strength coefficient, and work-hardening exponent. 
s p is usual effective plastic strain. 

The secant shear and bulk moduli of the matrix at the plastic strain eP is defined by 

/~l = 1/(1/#o + 3e~/(a,.+h(eP)")), k~, = ko (8) 

where/~o, ko are the usual elastic shear and bulk moduli. 
With the help of the matrix secant shear and bulk moduli, the effective shear and the 

bulk moduli of the linear comparison composite can be estimated by the Mori-Tanaka 
mean field theory (Tandon and Weng, 1988) : 

kc c l ( k l - k o )  
- 1 +  ( 9 )  

ko C o ~ ( k l - k o ) + k o  

~c Cl (~ l - -~0)  
- 1 + ( l O )  

#o Cofl (~l-~o)+#o 

where ~ = 1/(1 + 4Uo/3ko) and fl = 2/15(3 + 18Uo/3ko)/(1 + 4Uo/3ko). So as not to complicate 
the notation, we keep using/~0, k0 for the matrix secant shear and bulk moduli. 

To construct nonlinear composite stress and strain relations, we have to know, under 
a given applied macroscopic load, the corresponding linear comparison composite, or, 
more concretely, the matrix secant shear modulus of the studied nonlinear composite. This 
will be established in the following section by defining a new matrix effective stress. 

3.2. Matr ix  average effective stress o f  the comparison composite 
For a particle reinforced composite, the composite as a whole is isotropic. We split the 

stress tensor into a deviatoric and a spherical part : 

a,, = a{j + aai, 

Z~, = E~j + £6o.. (l l)  

The shear and bulk moduli of the inclusions, the matrix and the linear comparison composite 
are denoted, respectively, by Ul, kl, u0, k0 and u,,, k,,. Let only the shear modulus of the 
matrix undergo a small variation, and the other local material constants be kept constant. 
In this case, eqn (6) reduces to 

we get 

2 t = CotkUc/ ~uo y ' ' i£°+2  k,. ~u0 E 
(12) 

where (A)0 is the volume average of quantity A over the matrix, Co is the volume fraction 
of  the matrix. Equation (8) will give the same yield condition as Li and Ponte Castaneda 
(1994) through a variational procedure. 

In the same manner, we obtain for the spherical stress 



1010  Gengkai Hu 

(13) 

We observe that if the comparison composite effective shear and bulk moduli are given, the 
average second order stress moment of the matrix can then be obtained. 

With the help of eqns (9) and (10) for the linear comparison composite, the matrix 
average effective stress is obtained : 

2,~ £2 
(a~}0 = 7 + B z (14) 

and 

m 2 _ 

9 2 

[Co(fl--1)(Ul--Uo)+Ul] 2 

(u,--uo)Z[coflZ--cofl--1/5cla(1--~)]+(u~--u~)fl+u~ 

4 [ c o ( a - l ) ( k , - k o ) + k , ]  2 

9 ( l _~ ) 2c l ( k l_k o )  2 

where a~ = 3/2a~ja~j and 22 = 3/2ZIjY@ 
If the matrix satisfies the von Mises yield criterion, the yield function of the composite 

material can be obtained by setting (ae2 }0 = a v,2 where aj. is the current yield stress of the 
matrix. Since 1/B 2 is, in general, not zero, so the matrix effective stress based on the average 
second order stress moment is not zero even under a pure hydrostatic load. 

Equation (14) and the matrix hardening law (eqn (7)) together provide a relation 
between the matrix secant shear modulus and the applied load, so the nonlinear composite 
stress and strain can be constructed. In the following, porous materials and rigid inclusions 
reinforced composites will be examined in detail. 

3.3. Porous materials or rigid inclusions reinforced composites 

Voided materials'. In this case setting ktl = kl = 0, we obtain from eqn (14) the average 
effective stress of the matrix: 

1 I ] 9C'z2. 
( a ~ ) - - c o ( f l _ l )  2 (1--f l)(1--Cofl)--~(1--~)  E 2+4co 2 05) 

The yield function of the composite can be simply obtained by setting (a,~ }o = a~, where 
a~. is the effective stress representing the current flow stress of the matrix. 

ka., } + 4 [ ( 1 - f l ) ( 1 - C o i l ) - ~ ( 1 - a ) ]  a,. 

c ~ ( ~ - l )  2 

[(1 -fl)(1 -Cofl)--~(1 --~)] 
= 0 .  

(16) 

This yield function of the composite for an elastically compressible matrix is different from 
that given by Qiu and Weng (1993). The difference is probably due to the neglected terms 
by Qiu and Weng, since in our case the exact average effective stress of the matrix is 
obtained. 

For an elastically incompressible matrix ~ = 1, fl = 2/5, the yield function and the 
average effective stress of the matrix become : 
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\~y/ 4( l+~c, )  ~yy -- l+~c, - 0  07)  

(18) 

This result coincides with those obtained by Qiu and Weng (1992), in turn this method 
corresponds to the Ponte Castaneda's lower bound approach (Ponte Castaneda, 1991) as 
demonstrated by Qiu and Weng (1992). 

Rigid inclusions. In this case ]A b k I - -  > OO, the average effective stress of the matrix and 
the yield function of the composite become" 

' [ ' 1 (Coil+c,): fl(Cofl+c,)- ~c,c((1 - ~ )  E~ + 4- \c~+~-c~ / (19) 

9C1 

\~.,./ 4[f l(Cofl+c,)-~c,cx(l ~o~C~ / \~,./ 

(Cofl'2f-Cl) 2 

--[~(Co~_Jr_ CI)__Ic,o~(I--~)] = 0. (20) 

For an elastically incompressible matrix ~ = 1, fl = 2/5, the previous results reduce to 

2 
@~)0 - 2+3c,  E2 (21) 

F=(Y,e)2 2+3c~ \Oy/ ~ - O. (22) 

Now we will examine the difference between the proposed matrix effective stress and that 
given by Tandon and Weng (1988), that is -2 , , ~e = 3/2@o)o (o'u)0. The compared results are 
depicted in Fig. 1. We note that the higher the triaxiality co -- E/Ze and the mismatch of 
the shear modulus of the particles and matrix, the greater the difference. 
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Fig. l. Relative difference of the matrix effective stress predicted by Tandon and Weng's original 

model and by the present model (k,/ko = 10, #o/ko = 0.383, c~ = 20%). 
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Fig. 2. Comparison between the present method (solid line) and Tandon and Weng's model (dashed 

line) for particle-reinforced composites. 

Figure 2 gives the comparison results between the above method and Tandon and 
Weng's model. The material properties for a Carbide/Aluminum system (hard particles) 
are • 

E0 = 6 8 . 3 G P a ,  v0 =0.33,  a:0 = 2 5 0 M P a ,  

h =  173MPa, n=0 .455 ,  E~ = 4 9 0 G P a ,  v] =0.17.  

For the soft particles composite system, the particle properties are Ej = 6.83 GPa, v~ = 0.33 
and the matrix's properties remain the same. 

The dash lines are the results predicted by Tandon and Weng's model and the solid 
lines are the results obtained by the proposed method. It is noted that the proposed method 
gives always softer predictions compared to the Tandon and Weng's model. 

4. DISCUSSIONS 

In this section, we will further explore possible connections between the proposed 
method and that given by Ponte Castaneda (1991). Now we consider a composite made of 
two incompressible isotropic phases, inclusions are of  spheroidal shape and well aligned 
(the symmetry axis is taken to be xl) .  The composite as a whole is also incompressible. 
This problem has been analyzed by Li and Ponte Castaneda (1993) using the variational 
method. In this section we will reconsider this problem by the above proposed method. The 
composite material is characterized by three shear moduli #~, #p, /~ and the composite 
energy density is (Li and Ponte Castaneda, 1993) : 

1 e 2 +  - + - - -  ( 2 3 )  
U = 2#5 2/~p p 2/~ 

where % ~p and ~. are the three transversely isotropic invariant of the applied stress tensor 
Eij. Their relations are 

1 ] 

q~p z [~'~'~3 -t'-~(~33 - - '~22)2]  1/2 

~ = ( ~ 2  + z L )  ':2. (24) 
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The same relations apply for the corresponding shear strain. When the matrix undergoes a 
plastic deformation, we will use its secant moduli to characterize its plastic state. The 
previous composite shear moduli should be taken as the corresponding secant shear moduli 
of the composite. The stress-strain relations of the composite are related by its shear moduli 
as the following: 

~,j = 2p~g,, ,  -~, = 2p~, G, L, = 2p;g,. (125) 

The composite shear moduli (secant) depend on the applied load through the secant shear 
moduli of the matrix. To determine their relation, we must calculate the average effective 
stress of the matrix. Using the concept introduced in Section 2, we obtain 

2 f  I-1 ap~ : 1 c~G~ 2 1 #p~_~] 
( < j < j ) o  = - - / - - ~ - ~ d + - - - -  + - ~  - ~ - ~ .  

Co Lp~ ,Jpo p~: am " p,; epo J 
(26) 

For the composites made of two elastically incompressible isotropic phases, its shear moduli 
are estimated as the following (Li and Ponte Castaneda, 1993) : 

po c,(1 -~) 
- 1  

p'a 1 - -  Co (1 - -  ¢ ) f ( r )  

P0 cl(l --e) 

/4 1 -Co(1 -e)(1-2112323) 

Po cl(1--~) 
- - =  1 -  ( 2 7 )  
pc 1 -Co(1 -~)(1 - 2FI, 212) 

fir), 1-I2323 and 1-]1212 w e r e  given by Li and Ponte Castaneda (1993) (independent of Po), 
e = Po /P l .  

The effective shear stress of the matrix can be obtained by using eqns (26) and (27) : 

z2 = i (28) 

where 

=  o{ l _Cl  l--c°(1--g)2J(r) 
-- )flO]2J 

/-/~ = ~o{1-< 

~.  - - ~  - c ,  

1 -  C0(1--~)2 ( 1 -  2I]2323 ) 

[1--¢0(1 ~--~--2I~2323)]2J 

l--co(1--~)2(1--21-[,212 ) "~ 
[1 - C o O -  ~ -  2FI, 2,2)]2 J" 

We note that, for linear comparison composites, the determined matrix average effec- 
tive shear stress coincides with that obtained by Li e t  a l .  (1993). For such a composite in 
the case of a uniaxial loading, Fig. 3 shows the comparison results between the proposed 
method and that based on Tandon and Weng's model (the matrix and reinforced phase are 
incompressible, other material constants are the same as the previous). As in the case of 
the particle-reinforced composite, the secant moduli method based on the matrix average 
second order stress moment gives always softer prediction compared to Tandon and Weng's 
model. 

The previous results may suggest a more general correspondence between the secant 
moduli method based on the second order stress moment and the variational method by 
Ponte Castaneda (1991). In the author's later work, this connection was established for a 
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Fig. 3. Comparison between the present method (solid line) and Tandon and Weng's model (dashed 

line) for two phase incompressible aligned composite (c~ = 20%). 

two phase composite, and in the revision of this paper, the author is noted that Suquet 
(1995) established independently this connection through the strain field for a more general 
composite. So the secant moduli method based on the second order stress moment gives 
always the low bound estimation proposed by Ponte Castaneda (1991) for nonlinear 
composites. 

5. CONCLUSIONS 

On the basis of the secant moduli concept, a method for composite plasticity is 
proposed. The method makes use of a matrix effective stress derived directly from the 
average second order stress moment. The proposed method is capable of predicting the 
influence of hydrostatic stress on the particle-reinforced composite yielding, especially for 
porous materials at high triaxiality. For the particle reinforced composite, the new matrix 
average effective stress coincides with those obtained by the variational method (Ponte 
Castaneda, 1991). 
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