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Abstract

In this paper, it is shown that the double-inclusion model (Hori, M., Nemat-Nasser, S., 1993. Double-inclusion

model and overall moduli of multi-phase composites. Mech. Mater. 14, 189±206) carries more theoretical connections

with other micromechanical models than what is presently realized. In the past, only connections with the Mori±Tanaka

(MT) model (Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with mis-

®tting inclusions. Acta Metall. 21, 571±574) and the self-consistent model (Hill, R., 1965. A self-consistent mechanics of

composite materials. J. Mech. Phys. Solids 13, 213±222; Budiansky, B., 1965. On the elastic moduli of some hetero-

geneous material. J. Mech. Phys. Solids, 13, 223±227) for aligned inclusions have been established. By choosing the

shape and the relative orientation of the inclusion and the matrix judiciously, the double-inclusion model can produce

results for a two-phase composite containing randomly oriented ellipsoidal inclusions for the Ponte Castaneda±Willis

(PCW) model (Ponte Castaneda, P., Willis, J.R., 1995. The e�ect of spatial distribution on the e�ective behavior of

composite materials and cracked media. J. Mech. Phys. Solids 43, 1919±1951), MT model, and Kuster±Toksoz (KT)

model (Kuster, G.T., Toksoz, M.N., 1974. Velocity and attenuation of seismic waves in two-phase media: I Theoretical

formulation. Geophysics, 39, 587±606). These connections have also shed some light into the possible microgeometries

for the MT and KT models. The microstructure for the PCW model is already known, and it is now established that the

outer shape and orientation of the double inclusion is exactly the spatial distribution ellipsoid of the PCW model. The

result also proves that the KT model, widely used in the geophysics community, actually provides a result that is

identical to the PCW model and, thus, has a well-de®ned microstructure that was previously said to be non-exis-

tent. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The double-inclusion model as proposed by Nemat-Nasser and Hori (1993) and Hori and Nemat-Nasser
(1993) consists of an ellipsoidal inclusion embedded in another ellipsoidal matrix, that is, further embedded
in an in®nitely extended homogeneous medium. The shape and orientation of the inclusion and the matrix,
and the elastic properties of these three phases are arbitrary; as such, it provides great ¯exibility and can be
used to evaluate the e�ective properties or to construct various micromechanics models of a two-phase
composite with di�erent inclusion arrangements. By choosing the inclusion and the matrix to be aligned
and identically shaped, and by taking the elastic moduli of the reference medium to be identical to those of
the matrix and the e�ective composite, respectively, they have demonstrated that it can produce the e�ective
moduli of a two-phase composite with aligned inclusions for the Mori and Tanaka (1973) model and the
self-consistent model (Hill, 1965; Budiansky, 1965). These connections have given some alternative inter-
pretations for these two approaches. Its ¯exibility also points to the possibility that connections with other
micromechanical models may still exist. Establishment of such inter-relations is quite desirable for it could
uncover the similarities of the underlying principles, and it can also provide some insights into the possible
microgeometries for those approximate models which have been derived from the embedding process of
Eshelby (1957). To this end, we decided to look into the double-inclusion model one more time, and
consider its possible connections with three useful explicit schemes for the 3-D randomly oriented case: the
Ponte Castaneda and Willis (1995) model, the Mori and Tanaka (1973) model, and the Kuster and Toksoz
(1974) model. Of course connection for the 3-D random orientation of inclusions automatically implies the
connection for the 1-D aligned case.

2. The double-inclusion model

To facilitate our analysis, the double-inclusion model will be recapitulated ®rst. This method was pro-
posed to better account for the interaction between the inclusion and the matrix, and between the inclusion
and the inclusion. The inclusions have an ellipsoidal form with a common aspect ratio, and they can be
aligned or randomly oriented in a plane or in the space. The modulus tensor of the matrix is denoted by L0,
and by L1 for the inclusions, and the volume concentration of the inclusions (phase 1) by c1.

In order to evaluate the average stress and strain concentration tensors for the matrix and the inclusions,
a double-cell V is taken for each inclusion, with both the double-cell and the inclusions being ellipsoidal in
shape. The double-cell contains the matrix phase (C) and an inclusion (X) (V � C� X), and the volume
concentration of the inclusion in the double-cell is set equal to c1. Now, the double-cell is placed into a
homogeneous medium with a modulus tensor L under a remote uniform strain e1, as shown in Fig. 1.

With the introduction of an eigenstrain distribution and the local consistency condition, and then taken
over the respective volume average, the average eigenstrain in the inclusion and the matrix region can be
estimated. Hori and Nemat-Nasser (1993) found that the average eigenstrain tensors of the inclusion and
the matrix satisfy the following relations:

L1 e1
� � SXe�1 � �SV ÿ SX�e�2

� � L e1
� � �SX ÿ I�e�1 � �SV ÿ SX�e�2

�
;

L0 e1
�
� SV e�2 �

c1

1ÿ c1

�SV ÿ SX��e�1 ÿ e�2�
�
� L e1

�
� �SV ÿ I�e�2 �

c1

1ÿ c1

�SV ÿ SX��e�1 ÿ e�2�
�
;

�1�

where e�1; e�2 are the average eigenstrains introduced in the inclusion and matrix regions so that L1 and L0

can be replaced by L to yield the same average stress and strain in both regions. Furthermore SV ; SX are
the Eshelby tensors for the double-cell and the inclusion, respectively, and I is the fourth-order unit tensor.
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These two consistency equations allow one to determine the average eigenstrains e�1; e�2, and then the
average stress and strain in the double-cell.

These two equations can be re-arranged into

��Lÿ L1�SV ÿ L�e�2 � ��Lÿ L1�SX ÿ L��e�1 ÿ e�2� � �L1 ÿ L�e1;
��Lÿ L0�SV ÿ L�e�2 �

c1

1ÿ c1

�Lÿ L0��SV ÿ SX��e�1 ÿ e�2� � �L0 ÿ L�e1: �2�

This leads to the solution

e�2 � A2e
1; e�1 ÿ e�2 � A1e

1; �3�
where A2 and (A1 � A2) represent the eigenstrain concentrations of the matrix and the inclusion, respec-
tively. Their general forms can be easily deduced from (2), but it is better to write their speci®c forms after a
choice of L, and the shape and orientation of the double-cell (SV ), have been decided for a speci®c objective.

For a two-phase composite, where the inclusions may be aligned or randomly oriented in a plane or in
the space, and each double-cell may be aligned or take the same shape and orientation as the enclosed
inclusion, the average stress and strain over all double-cells can be written as

�r � hL� L��SV ÿ I��A2 � c1A1��ie1;
�e � hI � SV �A2 � c1A1�ie1;

�4�

where h�i stands for the orientational average of the said quantity.
Following the idea of the double-inclusion model, the coe�cient between the average stress and strain of

the double-cell gives the e�ective moduli of the composite. After eliminating e1 in Eq. (4) one arrives at

Lc � L

 � L �SV� ÿ I��A2 � c1A1�

��
I

 � SV A2� � c1A1�

�ÿ1 �5�

for the e�ective moduli tensor. Apparently Lc depends on the choice of L and SV .
As pointed out by Hori and Nemat-Nasser (1993), the elastic moduli tensor L of the in®nitely extended

homogeneous medium can be taken as L0 or L1, or Lc of the composite as one wishes, and this would lead
to various estimates for the e�ective moduli. In what follows, we will demonstrate that, by judiciously
choosing the shape and the orientation of the double-cell and the elastic moduli of the in®nitely extended
medium, the three micromechanical models cited above can be found. For clarity, we shall only consider
the case that both tensors L1 and L0 are isotropic.

Fig. 1. Scheme of the double-inclusion method.
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3. The Ponte Castaneda and Willis model

Ponte Castaneda and Willis (1995) proposed a rather novel approach to separate the spatial distribution
of inclusions from the inclusion shape. It was based on the Hashin and Shtrikman (1962, 1963) variational
principles originally developed in Willis (1977, 1980). In this development, the inclusions are taken to be
ellipsoidal, and the distribution of inclusions is also taken to be ellipsoidal. Unlike in Willis (1977), these
two ellipsoids do not have to be aligned and identically shaped. The distribution ellipsoid is de®ned from
the conditional probability density function that represents the probability density for ®nding an inclusion
centered at one point given that there is an inclusion centered at another point. The outcome of the de-
velopment is that the e�ective moduli tensor of the composite is dependent on two ellipsoids, one char-
acterizing the inclusion shape and the other characterizing the distribution function, and the results are
explicit.

Now, consider the case that L � L0, and the orientation of the double-cell is ®xed but those of the
ellipsoidal inclusions are randomly oriented. In this case, we have

A2 � 0; A1 � ÿ SX
h
ÿ �L0 ÿ L1�ÿ1

L0

iÿ1

; �6�
from the average consistency conditions. It follows from (5) that the e�ective modulus tensor of the
composite now writes as

Lc � L0 I

�
ÿ c1 hA1iÿ1

h
� c1hSV A1ihA1iÿ1

iÿ1
�
: �7�

Since the orientation of the double-cell is ®xed, the Eshelby tensor SV can be brought out of the orien-
tational average to yield

Lc � L0 I

�
ÿ c1 hA1iÿ1

h
� c1SV

iÿ1
�
: �8�

This result is exactly the same as the one derived by Ponte Castaneda and Willis (1995) (see also Hu and
Weng, 2000). It is now clear that the shape of the double-cell in the double-inclusion model in fact char-
acterizes the ellipsoidal distribution function of the inclusions. The corresponding microstructure is shown
in Fig. 2. The orientation of the ellipsoidal double-cell must be ®xed in order for the distribution function to

Fig. 2. The double-cell microstructure of the PCW model.
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satisfy the symmetry requirement for the two-point joint probability distribution function. To obtain an
isotropic composite, its shape must be spherical.

4. The Mori and Tanaka model

The MT model has been widely discussed in the literature (see, for instance, Weng 1984, 1990;
Benveniste, 1987 for two distinct lines of approach). This model was not introduced with any known
microstructure and it was not until Weng (1992) that a microstructure of Willis (1977) type was identi®ed
with it for the aligned ellipsoidal inclusions. For the randomly oriented ellipsoidal inclusions, it is still not
known to possess any microstructure even though its moduli for a two-phase isotropic composite always
remain inside the Hashin and Shtrikman (1963) and Walpole (1966) bounds. Thus any potential connection
with the double-inclusion model will help reveal its possible microstructure, if it has any.

We now take L � L0 but, unlike in PCW model, the shape and orientation of each double-cell is further
taken to be identical to those of the inclusion enclosed in it. As the ellipsoidal inclusions are randomly
oriented in space, the orientation of the double-cell must also change according to the orientation of each
inclusion. That is, in the orientational average, the Eshelby tensor SV can no longer be brought out of the
averaging procedure in (5), but the fact that the double-cell has the same shape and orientation as the
inclusion also implies that SV � SX.

In this case, the eigenstrain concentration tensors carry the values

A2 � 0; A1 � �L0

� ÿ L1�SX ÿ L0

�ÿ1�L1 ÿ L0� �9�

and the average stress and strain of the inclusions and the matrix are

r1 � L1 I
� � SXA1

�
e1; e1 � I

� � SXA1

�
e1; �10�

r0 � L0e
1; e0 � e1: �11�

These results are immediately recognizable as the Eshelby result and, when used to form the overall stress
and strain of the composite, they will lead to the MT model.

Fig. 3. The double-cell microstructure of the MT model.

G.K. Hu, G.J. Weng / Mechanics of Materials 32 (2000) 495±503 499



Indeed after some algebra the e�ective moduli tensor Lc can be reduced from (5) to

Lc � L0 I
n
ÿ c1��1ÿ c1�hA1iÿ1 � c1�I ÿM0L1��ÿ1

o
; �12�

where M0 � Lÿ1
0 , the compliances tensor. This result is also the expression of the MT moduli (see, for

instance, the expression given by Hu and Weng, 2000). The corresponding microstructure is sketched in
Fig. 3. Since this type of microstructure leads to asymmetry of the two-point joint probability density
function, this kind of distribution of the inclusions cannot be realized within the frame-work of micro-
structures de®ned by Ponte Castaneda and Willis (1995).

5. The Kuster and Toksoz model

Another explicit micromechanical model that is widely used in the geophysics community but remains
little known in the mechanics community is the Kuster and Toksoz (1974) model. This model has recently
been discussed in some detail by Berryman and Berge (1996), who also pointed out that this model was not
known to have any realizable microstructure. In this section, we ®rst follow Berryman and BergeÕs pre-
sentation of this model and then try to bring out its connection with the double-inclusion model. But before
we do it we declare that the reference material of this model is also the matrix material, and its connection
with the double-inclusion model is graphically shown in Fig. 4.

Now following Berryman and Berge (1996), the localization relation reads

ei � G ie
1; �13�

where G i is the strain concentration tensor for the inclusion of type i, and the following relation also holds
exactly for the orientational average,

�Lc ÿ L0��e � �Lih ÿ L0�G iie1: �14�
In this relation �e is the composite strain, and Lc is the composite sti�ness tensor. In order to evaluate �e as a
function of the applied strain e1, Kuster and Toksoz (1974) proposed to place a composite inclusion with
an ellipsoidal shape into the matrix material under the remote loading e1 (see Fig. 4), and this yields

�e � G ce
1; �15�

where Gc depends on the unknown Lc and also the shape of the composite inclusion. Then by means of
EshelbyÕs solution, G i and Gc are given by

Fig. 4. Concept of the KT method.
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G i � �L0 ÿ Li�ÿ1
L0Ai; Gc � �L0 ÿ Lc�ÿ1

L0Ac �16�
with

Ai � ÿ Si

h
ÿ �L0 ÿ Li�ÿ1L0

iÿ1

; Ac � ÿ SV
h
ÿ �L0 ÿ Lc�ÿ1L0

iÿ1

: �17�

In these expressions SV is the Eshelby tensor characterizing the composite inclusion, and Si are those for the
inclusion of type i. For the two-phase composite analyzed here with the inclusions having the same shape,
we have

G i � G1 � �L0 ÿ L1�ÿ1
L0A1 �18�

in the local oriented coordinates.
Now with the expressions for G i and Gc, and noting that the orientational average operates only on A1,

we arrive at

Ac � c1hA1i or ÿ SV
h
ÿ �L0 ÿ Lc�ÿ1L0

iÿ1

� c1hA1i: �19�

This leads to the sti�ness tensor of the composite

Lc � L0 I

�
ÿ c1 hA1iÿ1

h
� c1SV

iÿ1
�
: �20�

Interestingly, this result is exactly what we derived earlier for the PCW model. As a consequence the shape
of the composite inclusion in the KT model also corresponds to the ellipsoidal region characterizing the
distribution function of the inclusions in the PCW model. The KT model now has a realizable micro-
structure in the framework of PCW. For an isotropic composite, Kuster and Toksoz further assumed that
SV be evaluated for a spherical inclusion (see Berryman and Berge, 1996 for more details), and thus the
distribution function in the PCW model is spherical. But to make this connection safely, the volume
concentration of the spheroidal inclusions and the aspect ratio w (the length-to-the-diameter ratio) must
satisfy the PCW constraints c16w if w6 1, or c16 �1=w�2 if w P 1. Otherwise the inclusions may be in
contact or interpenetrate into each other and the microstructure cannot be constructed.

6. Some remarks for the choice L � Lc

When the elastic moduli of the reference medium are chosen to be the (yet unknown) e�ective moduli of
the composite, the double-inclusion con®guration is exactly that of the generalized self-consistent model
(Christensen and Lo, 1979) and the externally applied strain e1 would be exactly equal to the weighted
mean of the inclusion and matrix strains. (This latter point was also proved in Herve and Zaoui (1990), and
independently con®rmed by us.) In this case, one would normally anticipate that the result of the double-
inclusion model be identical to that of the generalized self-consistent scheme, not the self-consistent scheme
as concluded by Hori and Nemat-Nasser. Due to this unexpected outcome we decided to look into this
special case again from the standpoint of stress and strain concentration tensors of the inclusion and the
matrix.

We ®rst note that the average stress and strain of the inclusion in the double-inclusion model are given
by

r1 � L1 I
� � SXA1 � SV A2

�
e1; e1 � I

� � SXA1 � SV A2

�
e1 �21�
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and for the matrix

r0 � L0 I

�
� SV A2 � c1

1ÿ c1

�SV ÿ SX�A1

�
e1;

e0 � I

�
� SV A2 � c1

1ÿ c1

�SV ÿ SX�A1

�
e1:

�22�

When L � Lc and SV � SX, they further reduce to

r1 � L1 I
� � SX�A1 � A2�

�
e1; e1 � I

� � SX�A1 � A2�
�
e1 �23�

and

r0 � L0 I
� � SXA2

�
e1; e0 � I

� � SXA2

�
e1; �24�

where

A1 � A2 � �Lc

� ÿ L1�SX ÿ Lc

�ÿ1 �L1� ÿ Lc�� �25�

A2 � �Lc

� ÿ L0�SX ÿ Lc

�ÿ1 �L0� ÿ Lc��: �26�
These are exactly the Eshelby results when the inclusion and the matrix are respectively embedded in the
e�ective composite. It is also the exact concept of the self-consistent method. Thus the conclusion reached
here is the same as that of Hori and Nemat-Nasser; that is, the double-inclusion model delivers the self-
consistent result, not the generalized self-consistent result.

There is a strong possibility that this unexpected outcome is due to the neglected term in Hori and
Nemat-Nasser's generalization from the local eigen-®eld to the average eigen-®eld for each phase. They
pointed out correctly that, when the eigenstrain e�2-®eld of the matrix is uniform, such a generalization
is exact, but that, when this ®eld is not uniform, its exact nature is of a less certainty. If L is chosen as
L0 (such as in the choice leading to the PCW, MT, and KT models discussed earlier), this eigenstrain is
zero and thus, the generalization is exact. But when L is chosen to be equal to Lc this ®eld is not zero
and not uniform, and, as such, the average self-consistency conditions given in Eq. (1) may not be
exact. Thus this neglected term may have caused the double-inclusion model to lead to the self-con-
sistent scheme instead of the generalized self-consistent scheme. But evaluation of this neglected term
for a general ellipsoid is not a trivial matter and we were not able to reach a de®nitive conclusion
for it.

7. Conclusions

The following new connections have been established in this paper:
(i) If the double-cell is ®xed, the double-inclusion model leads to the same results as the PCW model. The
shape of the double-cell also represents the distribution function of the inclusions in the PCW micro-
structure.
(ii) When the double-cells have the same shape and orientation of the enclosed inclusions, the double-
inclusion model will produce the MT results.
(iii) The widely used KT model in the geophysics community gives the same predictions as the PCW
method. As such, it now has a known microstructure that was previously considered to be non-existent,
but in order for this model to stay within the PCW framework the range of applicability of the inclusion
concentration must be tied with its aspect ratio as set out in the PCW model.
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