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Abstract. Crosslinks between the elastic moduli and electrical conductivity of
two-dimensional composite materials with a variety of random microstructures are
obtained with the method of finite elements. The numerical results for two-phase
composites are found to be in good agreement with the approximate cross-
property relations derived from the Hashin-Shtrikman (HS) bounds. For porous
materials (i.e., one of the phases is void), the analytical crosslinks correlate with
the numerical predictions only at relatively low porosity levels.
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1. Introduction. The effective properties of a composite material having two or
more phases depend intimately on its microstructure and constituent properties,
thus offering a variety of possibilities to design its functionality by microstructure-
tailoring. The elastic moduli of a composite having a given microstructure, and its
many other effective properties, such as the electrical/thermal/magnetic
conductivity, dielectric coefficient and thermal expansion coefficient, are typically
functions of the same microstructural parameters. One can eliminate, at least
partially, these parameters to obtain the crosslink between two different classes of
properties, e.g. Young’s modulus and conductivity. Practically, one can measure
one property of the material and deduce the others from the crosslinks.
Cross-property links of a multiphase material were apparently first examined by
Bristow (1960) for a solid containing low density, randomly oriented microcracks:
crosslinks between elastic modulus and conductivity were obtained. Levin (1967)
subsequently gave exact correlations between the effective bulk modulus and
thermal expansion coefficient of a composite material. Gibiansky and Torquato
(1996) proposed to bound one effective property from the bounds of others: the
results are called the cross-property bounds. The correlations between the effective
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modulus and thermal conductivity of thermal barrier coatings (TBCs) made by
physical vapor deposition have been established by Lu et al. (2001) using the non-
interaction approximation for a variety of anisotropic pore morphologies; similar
work can be found in Sevostianov and Kachanov (2001) for plasma sprayed
TBCs. A systematic study on cross-property links was conducted by Kachanov et
al. (2001) and Sevostianov and Kachanov (2002). They derived, in the framework
of non-interaction approximation, explicit correlations between the effective
modulus and electrical conductivity of porous materials as well two-phase
composites with anisotropic microstructures. The experimental assessment of the
crosslinks was conducted by Sevostianov et al. (2002) for a close-celled metal
foam and by Sevostianov and Kachanov (2003) for short fiber-reinforced
thermoplastics. It is found that the link between the effective Young’s modulus
and electrical conductivity can be well predicted.

There are many micromechanics methods that can be used to predict the
effective moduli and conductivity of composite materials. In this letter, we will
first derive analytical crosslinks from the Hashin-Shtrikman bounds (Hashin and
Shtrikman, 1963), although these are only exactly realized by certain hierarchy
laminate structures (Milton, 2002). These crosslinks will then be compared with
those calculated with the finite element (FE) method for two-dimensional
isotropic two-phase composites having different phase morphologies (including
pores in the limiting case).

2. Microstructure and numerical method. The microstructures of the
composites to be analyzed are two-dimensional (planar), random and
macroscopically isotropic, including impenetrated mono-spheres, penetrated
spheres, randomly oriented ellipses with different aspect ratios, Checkerboard
model (Ziman, 1979), and Cellular automata model (Rothman and Zaleski, 1997),
as shown in Fig. 1. Each of the images in Fig. 1 is taken as a representative
volume element (RVE) of the corresponding material. Inclusions (the white phase
in Fig. 1) with different physical properties and volume fractions will be examined.

To compute the effective properties of the composites, the FE-based
numerical method of Garboczi (1998) is employed. For numerical accuracy, each
image of Fig. 1 is divided into 64x64 pixels of the square form, with each pixel
considered an element in the FE formulation. With a unit macroscopic shear strain
imposed, the local shear stress and its spatial average over the RVE are evaluated
to calculate the effective shear modulus g, of the material. Throughout this study,

the subscripts ¢, 0 and 1 are used to denote quantities associated with the
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composite, matrix and inclusions, respectively. The same procedure is applied to
compute the effective in-plane bulk modulus k. and the effective electrical
conductivity o, . For each microstructure considered, the effective Young’s
modulus and Poisson’s ratio of the composite are computed by the isotropic
relations E, =4u k. /(4. +k.) and v, = (k. —p.)/(u, +k.). The accuracy of
the numerical results is checked with the universal relations obtained recently for

isotropic planar composites and porous materials having arbitrary phase
morphologies (Cherkaev et al., 1993; Hu and Weng, 2001).

(d) f=23.5% () f=51%

Figure 1. Microstructures of two-dimensional isotropic two-phase planar composites: (a) impenetrated
mono-spheres; (b) penetrated mono-spheres; (c) randomly oriented ellipses (aspect ratio 1:10); (d)

randomly oriented ellipses (aspect ratio 1:3); (e) Checkerboard; (f) cellular Automata porous material.

3. Correlation relation. The Hashin-Shtrikman (HS) bounds are used first to
estimate the effective modulus and effective electrical conductivity of an isotropic
planar composite (or a porous material). The results will be approximate, since
Milton (2002) has demonstrated that the HS bounds are only exactly realized by
some hierarchy laminate structures. Generally speaking, the HS bounds become
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wider as the contrast of the phases increases. However, it has been accepted that
for a inclusion/matrix type composite, one of the HS bounds depends on the

properties of the continuos phase, and can provide an reasonable estimate for its
overall effective properties. Furthermore, Kachanov et al. (2001) found that the
crosslink is rather insensitive to the exact form of the shape distribution of the
inclusions. The accuracy of the cross-property links established by the HS bounds
will be checked with the numerical experiments performed on the composites

shown in Fig. 1.

For planar isotropic porous materials, the HS upper bounds for the effective in-
plane bulk, shear and Young’s moduli, and the effective conductivity are
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From Eq. (1), we eliminate the pore volume fraction to arrive at:
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Figure 2. Effective in-plane bulk modulus plotted as a function of effective electrical conductivity for two-
dimensional isotropic porous materials. Symbols: FE calculation; solid line: HS upper bound.
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Fig. 2 presents the numerically calculated correlation between 1/ ke and 1/
for vy =0.2; the correlation derived from the HS upper bound is included. Notice
that, at relatively low porosity levels (e.g., f <1/3), 1/ Ec and 1/k. are both
linear functions of 1/0., and are insensitive to the pore morphologies. As the
porosity level is increased, the calculated crosslink starts to deviate from that
established by using HS upper bound, and becomes clearly microstructure-
dependent. Analytical models including more information on the distribution of
the phases are needed for improved predictions.

Consider next the case where the microstructures of Fig. 1 each represent a
inclusion/matrix type composite, with the matrix being the ‘softer’ phase in terms
of both the mechanical and electrical properties. The dimensionless HS lower
bounds for the effective in-plane bulk modulus, shear modulus and electrical

conductivity of the composite are:
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where k =k, kg, = /ly, 6 =0,/0y and v=py/ky; k, 4 and o are
separately the in-plane bulk modulus, shear modulus and electrical conductivity of
the inclusion. The cross-property links are obtained from (3) by eliminating the

fiber volume concentration f , as:
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Numerical calculations are carried out for Ele,Zle, =10 and
v =0.667, with different inclusion (fiber) volume fractions considered for each

composite. Fig. 3 compares the crosslinks etablished by the numerical method
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with the HS lower bound predictions from Eq. (4). A direct correlation between
k.lky and o, /0, evaluated by the FE method, is presented in Fig. 4.
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Figure 3. Normalized effective in-plane bulk modulus plotted as a function of normalized effective electrical
conductivity for two-dimensional isotropic two-phase composites. Symbols: FE calculation; solid line: HS

lower bound.
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Figure 4. Effective in-plane bulk modulus plotted as a function of effective electrical conductivity for two-

dimensional isotropic two-phase composites. Symbols: FE calculation.
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4. Discussion. The results of Fig. 4 reveals that the crosslink relation of a two-
dimensional isotropic composite has a remarkably weak dependence on its
microstructure, in agreement with the observation of Kachanov et al. (2001) that
the crosslink of a two-phase composite is relatively insensitive to the exact phase
shape distribution. Also, the prediction by the HS lower bound agrees well with
that calculated by the FE method, irrespective of the microstructure of the
composite. For a porous material with high contrast between the phases, however,
significant difference exists between the HS upper bound and the FE prediction at
relatively large porosity levels (Fig. 2). Analytical models incorporating detailed
pore morphologies are needed to address this discrepancy. At sufficiently low
porosity levels, there is no need in bounds: exact results can be obtained with the
non-interaction approximation (see, e.g., Sevostianov and Kachanov, 2001, 2002;
Lu et al., 2001).

More detailed results on two-dimensional multiphase anisotropic composites and
porous materials will be reported in a separate study. The implication from the
current results of Figs. 2 and 3 that the agreement between the FE prediction and
lower bound holds at large fiber volume fractions for two-phase composites whilst
the correlation between the FE prediction and upper bound only holds at low
porosity levels will be examined in more detail. In addition to the bounds, other
analytical crosslinks incorperating more information on the distribution and shape
of the phases will also be used to compare with numerical predictions.
Furthermore, the threshold porosity (fiber volume fraction) level beyond which the

non-interaction approximation is no longer valid will be established.

Acknowledgement. This work is supported partially by the National Natural
Science Foundation of China and partially by the State Scholarship Council of
China for GKH’s visit to Cambridge.

References

Bristow, J.R. (1960). Microcracks, and the static and dynamic elastic constants of annealed heavily cold-
worked metals, British J. Appl. Phys. 11, 81-85.

Cherkaev, A. V., Lurie, K A. and Milton, G. W. (1992). Invariant properties of the stress in plane elasticity
and equivalence classes of composites, Proc. R. Soc. Lond. A 438, 519-529



18

Garboczi, E. J (1998). Finite Element and Finite Difference Programs for Computing the Linear Electric and
Elastic Properties of Digital Images of Random Materials, NIST Internal Report 6269.

Gibiansky, L. V. and Torquato, S. (1996). Rigorous link between the conductivity and elastic moduli of fiber
reinforced materials, Proc. R. Soc. Lond. A452, 253-283.

Hashin, Z. and Shtrikman, S. (1963) A variational approach to the theory of the elastic behavior of
multiphase materials, J. Mech. Phys. Solids 11, 127-140.

Hu, G. K. and Weng, G. J. (2001). A new derivative on the shift property of effective elastic compliances for
planar and 3-D composites, Proc. R. Soc. Lond. A457, 1675-1684.

Kachanov, M., Sevostianov, I. and Shafiro, B. (2001). Explicit cross-property correlations for porous
materials with anisotropic microstructures, J. Mech. Phys. Solids 49, 1-25.

Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous material, Mechanics of
Solids 2, 58-61

Lu, T. 1., Levi, C. G, Wadley, H. N. G. and Evans, A. G. (2001). Distributed porosity as a control parameter
for oxide thermal barriers made by physical vapor deposition, J. Am. Ceram. Soc. 84, 2937-2946.

Milton, G. A. (2002). The Theory of Composite, Cambridge University Press.

Rothman, D. H. and Zaleski, S. (1997). Lattice-Gas Cellular Automata Simple Models of Complex
Hydrodymamics, Cambridge University Press.

Sevostianov, 1. and Kachanov, M. (2001). Plasma sprayed ceramic coatings: anisotropic elastic and
conductive properties in relation to microstructure: cross-property correlations, Materials Science and
Engineering A297, 235-343.

Sevostianov, I., Kovaik, J. and Simanik, F. (2002). Correlation between elastic and electric properties for
metal foams: theory and experiment, Int. J. Fracture 144, L23-1.28.

Sevostianov, I. and Kachanov, M. (2002). Explicit cross-property correlations for anisotropic two-phase
composite materials, J. Mech. Phys. Solids 50, 253-282.

Sevostianov, I. and Kachanov, M. (2003). Connection between elastic moduli and thermal conductivity of
anisotropic short fiber reinforced thermoplastics: theory and experimental verification. Materials Science
and Engineering A360, 339-344,

Ziman, J. M. (1979). Model of Disorder: The Theoretical Physics of Homogeneously Disordered Systems,
Cambridge University Press.



