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Coupled piezo-elastodynamic
modeling of guided wave excitation
and propagation in plates with applied
prestresses

F. Song1, G. L. Huang1 and G. K. Hu2

Abstract
Plate-like aerospace engineering structures are prone to mechanical/residual preloads during flight operation. This article
focuses on the quantitative characterization of applied prestress effects on the piezoelectrically-induced guided wave
propagation, which has been widely used in structural health monitoring systems. An analytical model considering
coupled piezo-elastodynamics is developed to study dynamic load transfer between a surface-bonded thin piezoelectric
actuator and a prestressed plate. The accuracy of the analytical prediction is evaluated by the comparison with the finite
element analysis. Based on the developed model, the load-dependent guided wave signal variation in both time-of-flight
and amplitude is determined, and its dependence on loading frequency and host material properties is also discussed. It
is found that the guided wave signal variation due to the prestress could be significant under some circumstances. A sig-
nal difference coefficient is finally proposed to quantitatively assess the signal variation caused by different prestresses.
This study can serve as a theoretical foundation for the development of the real-time piezo-guided wave–based struc-
tural health monitoring system in a realistic loading environment.
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Introduction

Ultrasonic guided waves (GWs), which can propagate
over large distances in plates and shells, have shown
great potential for structural health monitoring (SHM)
of thin-walled aircraft and aerospace structures over
the past decades (Anton et al., 2009; Kundu and
Maslov, 1997; Senesi and Ruzzene, 2011; Song et al.,
2012). Due to advantages such as quick response, low
power consumption, low cost, and small size, piezoelec-
tric wafers are particularly suitable for being integrated
in those structures as actuators/sensors to form an
active on-line SHM system (Giurgiutiu, 2005; Ihn and
Chang, 2008; Park et al., 2010; Raghavan and Cesnik,
2007; Song et al., 2009). Many damage diagnosis and
characterization approaches have been developed and
suggested by comparing the GW signals from the dam-
aged structures to the baselines recorded from the
undamaged structures (Huang et al., 2010b; Lin and
Yuan, 2005; Michaels, 2008). However, implementa-
tion of those approaches are mostly based on the con-
dition that the monitored structures are under the ideal

laboratory environment, in which the working loads on
the monitored structures such as mechanical/residual
prestresses are not considered.

It is well known that operating aircraft and aero-
space structures are often subjected to various pres-
tresses such as applied loads. During manufacture and
assembly, many load-bearing elements of aircraft such
as fuselages, longerons, stringers, bulkheads, and stabi-
lizers are fully or partially prestressed to enhance their
fatigue strength and fracture resistance (Ratwani,
2000). In bolted aerospace structures, applied stresses
can be exerted by the bolts on the surrounding material
of the joints (Doyle et al., 2010). Significant thermal
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residual stresses in aerospace composite structures can
be initiated due to the difference in thermal expansion
coefficient (CTE) and mechanical incompatibility of
the different components when the structures serve
under extreme temperature environment (Karami
et al., 2008). Thin-walled aerospace structures are usu-
ally operated under in-plane loads during flight service.
For instance, spinning helicopter rotor blades, bladed
disks in engines, and pressurized aircraft cabins are
under tensile loads while buoyant structures are under
compressive loads due to gravitational forces or pres-
sure loads (Lesieutre, 2009). Therefore, consideration
of prestress effects on the GW excitation and propaga-
tion in thin-walled aerospace structures is of practical
importance in the design of an in situ SHM system.

A number of research activities have been conducted
on characterization of mechanical and dynamic beha-
viors of various prestressed structures (Akbarov, 2007;
Hu et al., 2002; Kwun et al., 1998; Loveday, 2009;
Singh, 2010; Tiersten et al., 1981; Yang, 2005) by using
analytical, numerical, or experimental methods. Desmet
et al. (1996) studied effects of the externally applied
stress on the fundamental Lamb wave propagation in
polymer foils. It was found that the applied tensile
stress had very small influence on the dispersion of the
symmetric mode compared to the antisymmetric mode.
Based on the finite element modeling, Chen and Wilcox
(2007) examined pretension influences on the GW pro-
pagation in cables and rails, and found that the wave
velocity of the fundamental flexural wave changed sig-
nificantly due to the appearance of tensile load, espe-
cially for low-frequency cases. An and Sohn (2010)
tested the transient GW responses in plates under vari-
ous static loading conditions and similar conclusions
were drawn. Doyle et al. (2010) and Zagrai et al. (2010)
experimentally studied the acoustoelastic effects of
piezoelectric wafer-active sensors (PWAS) bonded onto
the bolted space structures under different prestresses.
Recently, the effects of applied loads on GW responses
were experimentally investigated in the context of envi-
ronmental load impacts on GW-based SHM using
piezoelectric wafers (Michaels et al., 2011). To the best
of our knowledge, however, no systematic theoretical
study has been carried out to quantitatively characterize
prestress effects on the coupled piezo-elastodynamic
behavior of surface-bonded piezoelectric wafers. Such
theoretical framework would be fundamental in under-
standing the reliability and feasibility of applying piezo-
GW–based SHM systems for field applications.

Based on the Bernoulli–Euler beam theory, Crawley
and De Luis (1987) developed a static shear-lag model
to study the interfacial load transfer between a piezo-
actuator and a substructural coupled beam for low-
frequency cases. A direct extension of the classical
shear-lag theory (Crawley and De Luis, 1987) has been
reported (Giurgiutiu and Santoni, 2009), where the
nonlinear stress distribution across the thickness was

considered. To avoid the difficulties associated with the
complex interaction between the actuator and the host
medium, the interfacial shear stress was simplified as
‘‘pinching’’ tangential traction only at the actuator tips
on the structure surface by neglecting coupled actuator/
structural dynamics (Raghavan and Cesnik, 2005; Von
Ende and Lammering, 2007). To consider the coupled
piezo-elastodynamic behavior, a one-dimensional
actuator model has been developed to investigate the
coupled dynamic load transfer between the piezo-
actuator and the semi-infinite elastic medium (Huang et
al., 2010b; Huang and Sun, 2006; Wang and Huang,
2001). Similarly, an integral equation-based model was
also proposed to study the patch–layer interaction and
resonance effects in a system of flexible piezoelectric
patch actuators bonded to an elastic substrate
(Glushkov et al., 2007). However, the piezo-actuator
model surface bonded to a prestressed plate structure
has not been developed.

In this article, we extend the one-dimensional actua-
tor model (Huang and Sun, 2006; Wang and Huang,
2001) to quantitatively investigate the interfacial shear
stress and its resulting GW propagation in the pre-
stressed isotropic plate. The interfacial shear stress
between the actuator and the host plate is calculated
using the Fourier transform technique and solving the
resulting integral equations. The analytical predictions
of the interfacial shear stress and transient responses
from the current model are compared with the finite
element simulation results to evaluate the accuracy of
the developed model. Based on the current model and
the modified Rayleigh–Lamb equations in the pre-
stressed plate, the load-dependent GW excitation and
propagation by the piezoelectric wafer actuator is stud-
ied, from which the prestress effects are demonstrated.
It is found that the wave response variation induced by
the prestresses could be significant under some circum-
stances, which is quantitatively characterized by a pro-
posed signal difference coefficient (SDC).

Formulation of the problem

Consider a plane strain problem of a thin piezo-
actuator surface bonded to an isotropic host plate sub-
jected to a uniform prestress, as sketched in Figure 1.
In this figure, the half-length and the thickness of the
actuator are denoted as a and h, respectively, and the
half-thickness of the host plate is d. The host plate is
under a uniaxial static prestress s0 along the x direc-
tion. The poling direction of the actuator is along the
z-axis, and a voltage (DV ) between the upper and lower
electrodes of the actuator is then applied, which results
in an electrical filed (Ez) of circular frequency v along
the poling direction of the actuator. For the steady-
state harmonic solution of the system, the time factor
exp �iv tð Þ, which applies to all the field variables, is
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suppressed in the following analysis. In the current
model, it is assumed that the piezo-actuator is bonded
onto the substructure after manufacturing.
Conceptually, this is an ideal assumption for the
achievement of online SHM based on surface-bonded
piezo-wafers (Giurgiutiu, 2008). Under this conceptual
assumption, our model is mainly for considering the
effects of applied prestresses (during operation) on
piezo-actuated GWs. The perfect actuator/structure
bonding is assumed in the current model and the adhe-
sive interface layer effects (Dugnani, 2009; Han et al.,
2009; Jin and Wang, 2011; Lanza di Scalea and
Salamone, 2008) are neglected.

Modeling of the prestressed piezoelectric actuator

In this study, attention is paid to modeling the thin
actuator, for which the thickness is very small com-
pared with its length. In response to an electric field
(Ez) applied across its thickness along the poling direc-
tion, the actuator mainly experiences axial deformation.
Therefore, the prestressed actuator can be modeled as
an electroelastic element subject to the applied electric
field and the distributed interfacial stress, as illustrated
in Figure 2. In this figure, ŝ0 is the resulting initial stress
in the actuator due to the prestress s0 on the host plate,
and t represents the interfacial shear stress transferred
between the actuator and the host plate.

It is assumed that the incremental stress sa
x and dis-

placement ua
x are uniform across the actuator. Under

plane strain deformation, the axial incremental stress in
the actuator (sa

x) can be expressed as

sa
x =Eae

a
x � eaEz ð1Þ

where Ea and ea are the effective elastic and piezoelec-
tric material constants, Ea = c11 � c2

13

�
c33 and

ea = e13 � e33c13=c33, respectively, and Ez = � DV=h

with cij and eij(i, j = 1, 3, or x, z) being the components
of the piezoelectric elastic stiffness matrix for a constant
electric potential, and the piezoelectric constant matrix,
respectively. The small strain component is given by

ea
x =

dua
x

dx
ð2Þ

By considering the incremental deformation (Su et
al., 2005) together with equations (1) and (2), the equa-
tion of motion of the prestressed actuator can be writ-
ten as

Ea + ŝ0
ave

� � d2ua
x

dx2
+

t xð Þ
h

+ rav2ua
x = 0 ð3Þ

where ra is the mass density of the actuator, and
ŝ0

ave = 1=2a
Ð 2a

0
ŝ0 xð Þdx is an averaged resulting stress

over the actuator length for simplification of the prob-
lem. The determination of the resulting initial stress
ŝ0 xð Þ can be found in Appendix 1. Since the load trans-
ferred between the actuator and the host plate can be
attributed to t, two ends of the actuator during incre-
mental deformation can be assumed as

sa
x = 0, xj j= a ð4Þ

The axial strain of the actuator can be obtained in
terms of the interfacial shear stress t by solving equa-
tion (3) as

ea
x = eE xð Þ+ sin ka a+ xð Þ

h Ea + ŝ0
ave

� �
sin 2kaa

ða
�a

cos ka z � að Þt zð Þdz

�
ðy
�a

cos ka z � xð Þ t zð Þ
h Ea + ŝ0

ave

� �dz

ð5Þ

where eE xð Þ= eaEz

�
Ea + ŝ0

ave

� �� �
cos kax=cos kaað Þ,

ka =v=ca, and ca = Ea + ŝ0
ave

� ��
ra

� �1=2
with ka and ca

being the wave number and the axial wave velocity of
the prestressed actuator, respectively.

GW solution of the prestressed plate structure

Under the plane strain deformation, the elastic wave
motion for a prestressed material can be expressed as
follows (Akbarov, 2007; Liu et al., 2003; Wang et al.,
2007)

r2u+
s0

l+ 2m

� �
∂2u
∂x2

+
v2

c2
l

u= 0 ð6Þ

Figure 1. An actuator surface-bonded to an elastic plate under the static prestress.
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r2c+
s0

m

� �
∂2c

∂ x2
+

v2

c2
t

c= 0 ð7Þ

where r is the mass density of the host medium,
c2

l = l+ 2mð Þ=r, and c2
t =m=r with l and m being the

Lame constants, respectively, and u and c are the two dis-
placement potentials that satisfy the following equation

ux =
∂u
∂x

+
∂c

∂z
and uz =

∂u
∂z
� ∂c

∂x
ð8Þ

The general solution of the wave propagation can be
determined by solving equations (6) and (7) using the
spatial Fourier transform as follows

�f jð Þ=
ð+‘

�‘

f xð Þ eij xdx and f xð Þ= 1

2p

ð+‘

�‘

�f jð Þ e�ij xdj

ð9Þ

The solutions can be expressed as follows

�u=A1 sin pzð Þ+A2 cos pzð Þ ð10Þ
�c=B1 sin qzð Þ+B2 cos qzð Þ ð11Þ

where p2 = v2
�

c2
l

� �
� 1+ s0

�
l+ 2mð Þ

� �� �
j2 and

q2 = v2
�

c2
l

� �
� 1+ s0

�
m

� �� �
j2. Using the linear

strain–displacement relation and the constitutive equa-
tion, the stresses can be readily determined as

�szz =m
j2 � q2
� �

sin pzð ÞA1 + j2 � q2
� �

cos pzð ÞA2

�2jq cos qzð Þ iB1 + 2jq sin qzð Þ iB2

	 

ð12Þ

�sxz =m
2jp cos pzð Þ iA1 � 2jp sin pzð Þ iA2

+ j2 � q2
� �

sin qzð ÞB1 + j2 � q2
� �

cos qzð ÞB2

	 

ð13Þ

Based on the present actuator model, the boundary
condition on the upper surface of the host plate can be
written as

sxz x, dð Þ= � t xð Þ, xj j\a and szz x, dð Þ= 0 ð14Þ

Using equations (12)–(14) and applying the inverse
Fourier transform, the Lamb strain component ex on

the surface z= d can be expressed in terms of the inter-
facial shear stress t as follows

ex x, dð Þ= � 1

4pm

ð+‘

�‘

t hð Þ
ð+‘

�‘

i
NS jð Þ
DS jð Þ +

NA jð Þ
DA jð Þ

	 


e�ij x�hð Þdjdh

ð15Þ
in which NS jð Þ= jq cos pdð Þ cos qdð Þ j2 + q2

� �
;DS jð Þ

= j2 � q2
� �2

cos pdð Þ sin qdð Þ+ 4j2pq sin pdð Þ cos qdð Þ;
NA jð Þ= � jq sinðpdÞ sinðqdÞ ðj2+q2Þ; and DAðjÞ=ðj2

�q2Þ2 sin ðpdÞ cos ðqdÞ+ 4j2pq cos ðpdÞ sin ðqdÞ
The integral in equation (15) is singular at the roots

of Ds and DA, which represent the symmetric and
antisymmetric eigenvalues of the modified Rayleigh–
Lamb equations at frequency v with the prestress
parameter s0. At low frequencies, only two eigenva-
lues jS

0 and jA
0 exist, while several eigenvalues appear

at sufficiently high frequencies. For s0 = 0, the dis-
persion equations can be reduced to the conventional
Rayleigh–Lamb equations without load (Raghavan
and Cesnik, 2005).

Dynamic load transfer and resulting GW propagation

The continuity between the actuator and the host plate
at z= d can be described as

ea
x xð Þ= ex x, dð Þ, xj j\a ð16Þ

By substituting equations (5) and (15) into equation
(16), the integral equation can be obtained as

� 1

4pm

ð+‘

�‘

t hð Þ
ð+‘

�‘

i
NS jð Þ
DS jð Þ +

NA jð Þ
DA jð Þ

	 

e�ij x�hð Þdjdh

� sin ka a+ xð Þ
h Ea + ŝ0

ave

� �
sin 2kaa

ða
�a

cos ka z � að Þt zð Þdz

+

ðx
�a

cos ka z � xð Þ t zð Þ
h Ea + ŝ0

ave

� �dz =
eaEz

Ea + ŝ0
ave

� � cos kax

cos kaa

ð17Þ

Figure 2. The schematic diagram of the actuator model.
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Equation (17) is a singular integral equation of the first
kind, which involves a square-root singularity of t at the
ends of the actuator. The general solution of t can be
expressed in terms of Chebyshev polynomials, such that

t xð Þ=
X+‘

j= 0

cjTj x=að Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x=að Þ2
q

ð18Þ

with Tj being Chebyshev polynomials of the first kind.
If the expression in equation (18) is truncated to the

N-th term and equation (17) is satisfied at the following
collocation points along the length of the actuator

xl = a cos
l � 1

N � 1
p

� �
, l = 1, 2, . . . ,N ð19Þ

N linear algebraic equations in terms of cf g = c1,f
c2, . . . , cN�1gT can be obtained as

M½ � cf g= Ff g ð20Þ

where M½ � is a known matrix given by

Mlj = � n0

2m

X+‘

j= 1

cj

sin½jcos�1�xl�
sin½cos�1�xl�

+
n0

2m

X+‘

j= 1

cj

ð+‘

0

Pl
j

�j,�xl
� � NS

�j
� �

n0DS
�j
� � + NA

�j
� �

n0DA
�j
� � + 1

" #
d�j

+
a

h Ea + ŝ0
ave

� �X+‘

j= 1

cj

ðp
cos�1xl

cos �ka cos u� �xl
� �� �

cos juð Þ du

+
ap

h Ea + ŝ0
ave

� � sin �ka �xl + 1
� �� �

sin 2�ka

� � X+‘

j= 1

cjP
2
j

with n0 = 2 1� nð Þ (n is the Poisson’s ratio of the host
medium),

�xl = xl
�

a, �ka = �kaa, �j= ja,

Pl
j

�j,�xl
� �

= Jj
�j
� � �1ð Þn cos �j�xl

� �
j= 2n+ 1

�1ð Þn+ 1 sin �j�xl
� �

j= 2n

(
,

P2
j = Jj

�ka

� � �1ð Þn sin �ka

� �
j= 2n+ 1

�1ð Þn cos �ka

� �
j= 2n

(

with Jj (j = 1, 2,.) being the Bessel functions of the
first kind, and Ff g is the applied load with
Fl = eE xl

� �
, l = 1, 2,., N. From these equations, the

unknown coefficients in cf g can be determined, from
which the interfacial shear stress t can be obtained.
By applying the residue theorem (Raghavan and
Cesnik, 2005) and using the resulting cf g in equations
(18) and (15), the steady-state Lamb strain induced
by the piezo-actuator on the surface z= d can be
determined as

ex x, dð Þ= �pi

2m

XN

j= 1

cj

�1ð Þn

P
�j

S

NS
�j

Sð Þ
D9S

�j
Sð ÞJj

�j
S


 �
cos �j

S
�xl


 �

+
P
�j

A

NA
�j

Að Þ
D9A

�j
Að ÞJj

�j
A


 �
cos �j

A
�xl


 �
2
6664

3
7775, j= 2n+ 1

�1ð Þn+ 1

P
�j

S

NS
�j

Sð Þ
D9S

�j
Sð ÞJj

�j
S


 �
sin �j

S
�xl


 �

+
P
�j

A

NA
�j

Að Þ
D9A

�j
Að ÞJj

�j
A


 �
sin �j

A
�xl


 �
2
6664

3
7775, j= 2n

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð21Þ

in which �jS = jS
�

a and �jA = jA
�

a. It should be men-
tioned that while a single circular frequency v is
assumed for harmonic excitation in the above analysis,
the transient GW response to any time-limited signal
can be evaluated by taking the inverse Fourier trans-
form of the integral of the product of the harmonic
response multiplied by the Fourier transform of the
excitation signal over the bandwidth (Raghavan and
Cesnik, 2005).

Validation of the model

To evaluate the developed model, predictions from the
current model will be compared with the results by
using commercially available finite element (FE) code
ANSYS/Multiphysics 11.0. The two-dimensional
PLANE13 element with four nodes and three degrees-
of-freedom (DOF) at each node is selected for the
piezo-actuator and the plate. The additional DOF in
the coupled field element is the electrical voltage. The
input voltage can be applied on the top nodes of
the piezo-actuator, and zero voltage is assigned for all
the bottom nodes of the piezo-actuator to simulate the
grounding operation. The material properties of the
actuator used for the following numerical examples are
given in Table 1.

Static deformation analysis is first conducted to
compute the initial interfacial stress distribution
between the piezo-actuator and the host plate caused
by prestresses. Transient analysis is then performed to
calculate the dynamic response of the prestressed plate
(Chen and Wilcox, 2007).

Initial interfacial load transfer

First, consider the initial static deformation of the
piezo-actuator surface bonded to the prestressed plate.
The material properties of the actuator can be found in
Table 1, and E = 2:7431010 Pa and n= 0:3 are used
for the host plate (Wang and Huang, 2001). Figure 3
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shows the normalized initial static interfacial shear
stress distribution between the actuator and the pre-
stressed host plate with varying actuator half-length-to-
thickness ratios (a=h). In this figure, t0�= t

�
s0

�� ��,
ra=r= 1, and H=h= 40 with H = 2d being the plate
thickness. In this analysis, 40 terms in Chebyshev poly-
nomial expansions are used. It can be seen that the
interfacial shear stress more and more concentrates the
actuator tips with the increase of the actuator length-
to-thickness ratio, as predicted by both the current
model and the FE simulation. Excellent agreement
between the current model and the FE simulation is
observed especially for the actuator with large length-
to-thickness ratios, that is, a=h.10 that validates the
applicability of the current one-dimensional actuator
model and the averaged resulting stress assumption in
the integrated piezo-plate structure.

Transient GW propagation

To further show capability of the developed model, the
transient GW signals generated by the piezo-actuator
surface bonded to prestressed plates are evaluated in
this subsection. The excitation used in the study is a
five-peak tone-burst signal (Song et al., 2012), which
has been widely used for the GW-based SHM. To
obtain the theoretical transient GW response, the
inverse Fourier transform of the harmonic solution is
conducted over the frequency spectrum of the excited
tone-burst signal. Figure 4 shows the normalized tran-
sient strain responses predicted by the current model
(equation (21)), and the FE model at a central excita-
tion frequency of fc = 100 kHz. The material properties
of the actuator are given in Table 1 and the host plate
material is assumed to be a typical aircraft-grade alumi-
num alloy (E = 79 GPa, y = 0:33 and r= 2600 kgm�3)
with the yield strength around sY = 0:5 GPa (Santus
and Tayler, 2009), respectively. In Figure 4, Am� is the
normalized surface strain component ex with respect to
its maximum value. In the example, the applied pres-
tress is s0 = 0:8sY , geometry parameters are a=h= 20,
H=h= 13:3 with H = 2d, and the strain is calculated at
x = 226.5 mm away from the actuator. In Figure 4, a
complete separation of the fundamental symmetric
mode (S0) and antisymmetric mode (A0) can be
observed. Specifically, very good agreement in both
wave amplitude and phase can be clearly seen between
the current model and the FE simulation, which shows
the capability of the current model in quantitatively
describing the GW excitation and propagation in the
prestressed plate.

Effects of prestresses on GW propagation

In this section, attention is paid to characterization of
the prestress effects on the GW generation and propa-
gation based on the developed analytical model. In
the following calculation, the actuator material
properties are listed in Table 1, and the typical aircraft-
grade aluminum alloy (E= 79 GPa, y = 0:33 and
r= 2600 kgm�3) with the yield strength around
sY = 0:5 GPa (Santus and Tayler, 2009) is considered
as the host plate. The static prestresses varying in the
range of 60.4 GPa are considered, where the positive
and negative prestresses physically denote tension and
compression, respectively.

Dispersion of the fundamental Lamb wave modes

Figure 5 shows the dispersion curves of the fundamen-
tal S0 and A0 Lamb wave modes in the plate under dif-
ferent prestresses. In this figure, cp and ct represent the
phase velocity of Lamb waves and the transverse bulk
wave velocity, respectively, and f–H is the product of
frequency and plate thickness. In Figure 5(a), the dis-
persion properties of the S0 mode show small sensitivity
to the applied prestresses throughout all considered fre-
quencies. For instance, the predicted change in the velo-
city is less than 0.25% for most frequencies even when
the stress is applied up to 0:8sY . However, for the A0
mode in Figure 5(b), an obvious shift in the wave velo-
city can be seen with the change of the applied pres-
tresses especially at relatively low frequencies. It can be
found that phase velocities of the A0 mode increase
with the increase of tensile stresses and decrease with
the increase of compressive stresses. The A0 mode has
been widely used to detect various damages in metallic
plates due to its high sensitivity to structural damage
(Francis Rose and Wang, 2010; Fromme and Sayir,
2002). Therefore, when the A0 mode is used to evaluate
the structures under prestressed work conditions, the
wave signal variation caused by the prestress should be
taken into account. Interestingly, stopping bands of the
A0 mode are observed in compressed plates for the rela-
tively low frequencies, which represent evanescent wave
propagation.

Figure 6 shows the velocity variation of GW modes
in the prestressed plate with different material proper-
ties. In this figure, the normalized prestress-induced
wave velocity variation is defined as

Dc� s0
� �

= cp s0
� �

� cp s0 = 0
� �� ��

cp s0 = 0
� �

ð22Þ

Table 1. Material properties of the piezo-actuator (Wang and Huang, 2001).

c11 (1010 N/m2) c13 (1010 N/m2) c33 (1010 N/m2) e31 (C/m2) e33 (C/m2) ra (kg/m3)

13.9 7.43 11.5 25.2 15.1 7500
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where s0 = 0:8sY , and the normalized Young’s modu-
lus of the host plate is E�=E=E0 with E0 = 79 GPa.
The excitation frequency is selected to be fc = 150 kHz.
As observed in Figure 6, the softer the host structural
material is, the more prestress-induced variation in the
wave velocity can be found for both GW modes. For
example, the effects of the prestress on the GW-based
SHM may become more profound for the aerospace

structures made of aluminum alloys (E�= 1:0) than
those made of high-strength steels (E�.1:6).

Tuned GW generation

The technique of wave frequency tuning, which can
generate the strong desired GW mode sensitive to spe-
cific damages, has been widely used for GW inspection

Figure 4. The transient guided wave response in the prestressed plate at x = 226.5 mm away from the piezo-actuator under
excitation fc = 100 kHz (s0 = 0:8sY ).
FE: finite element.

Figure 3. The normalized initial static interfacial shear stress of the piezo-actuator surface-bonded to the prestressed plate with
varying actuator half-length-to-thickness ratio a/h.
FE: finite element.
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of plate structures (Gangadharan et al., 2009;
Giurgiutiu, 2005; Nieuwenhuis et al., 2005; Raghavan
and Cesnik, 2005; Yu et al., 2010). However, no investi-
gations have been reported to consider the effects of
the prestress upon GW mode-tuning capabilities.
Figure 7 demonstrates the normalized piezo-actuated
responses of the fundamental S0 and A0 Lamb wave
modes as a function of sweeping frequencies in the
plate under various prestresses. In this figure, e�x x, dð Þ is
the normalized surface strain along the x direction
defined as the ratio of the surface strain with the pres-
tress to that without the prestress. The actuator/host
plate geometry parameters are a/h = 20 and d/a =
0.333. It can be observed that the overall shape of

wave-tuning curves is retained for both the S0 and A0
modes throughout the sweeping frequency under either
pretension or precompression. The amplitude of the S0
mode is almost not affected by the applied prestress as
shown in Figure 7(a), while the appearance of the pre-
tension or the precompression can lead to an observa-
ble change in the wave amplitude and the tuning
frequency shift of the A0 mode as shown in Figure
7(b). For example, compared with the case without
prestress, around 15-kHz variation of tuning frequency
for the first maximum A0 mode can be observed when
the applied prestress reaches 0:8sY . Appropriate strate-
gies need to be developed to compensate for the influ-
ences of the prestress (Croxford et al., 2007), such that

Figure 5. Phase velocities of Lamb wave propagation in an aluminum alloy plate under various prestresses: (a) the S0 mode and (b)
the A0 mode.
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the desired wave mode generation can be achieved to
interrogate the prestressed structure.

Transient GW propagation

In practical GW-based SHM systems, the integrated
piezo-actuators are often excited by narrow-band tone-
burst signals to suppress the dispersion of the induced
GWs, which is beneficial for further signal interpreta-
tion (Ihn and Chang, 2008). Based on the developed
model, the GW signals excited by the piezo-actuator in
the prestressed plate are evaluated. Figure 8 shows the
transient piezo-actuated GW responses in the pre-
stressed plate under different prestresses. The five-peak
tone-burst signal (Song et al., 2012) at a central fre-
quency of 150 kHz is used for excitation. The same
material properties and geometrical parameters in
Figure 7 are used for the host medium and the actua-
tor. In Figure 8, e�x x, dð Þ is the normalized surface strain
along the x direction defined as the ratio of the surface
strain with the prestress to that without the prestress.
From Figure 8, it can be further substantiated that the
S0 mode signal is not sensitive to the prestresses com-
pared to the A0 mode, which is good for health moni-
toring of prestressed structures utilizing the S0 mode.
In contrast, an obvious shift in the wave velocity
and amplitude can be found for the A0 mode with
varying prestresses, and such an observed shift has
comparable magnitude to that caused by temperature
variations (Lee et al., 2010; Raghavan and Cesnik,
2008). Similar effects of prestresses on piezo-actuated
GW signals at higher frequency (fc = 400 kHz) can be

seen in Figure 9, where the S0 mode is dominantly
excited over the A0 mode. It is known that many
signal-processing algorithms (e.g. using damage-
induced scattered waves) are based on accurately mea-
suring the wave velocity of the interrogative GW sig-
nals (Francis Rose and Wang, 2010; Michaels, 2008).
Therefore, the influences of the prestress upon GW
responses should be considered to obtain the calibrated
diagnostic image of the structure, especially when the
A0 mode is excited for damage detection in the pre-
stressed structure.

According to the transient GW responses predicted by
the current model, an appropriate SDC is proposed to
quantitatively evaluate the overall change in the received
GW signals caused by the prestress. The SDC, based on
the root-mean-square change of the GW signals in the
time domain (Michaels et al., 2011), is defined as

SDC s0
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

S tn,s0ð Þ � S tn,s0 = 0ð Þ½ �2
,X

n

S tn,s0 = 0ð Þ½ �2
vuut

ð23Þ

where S tn,s0ð Þ is the received transient GW signal at
time tn and the applied prestress s0.

As an example, Figure 10 displays the normalized
SDC for both GW modes as a function of applied
prestresses, where SDC* represents the normalized
value of SDC with respect to the maximum value. In
the calculation, the excitation frequency is selected to
be fc = 150 kHz. It can be found, in Figure 10, that the

Figure 6. Effects of structural material properties on prestress-induced velocity variation of the guided wave modes.
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shape of the normalized SDC is approximately linear
when the applied prestress is relatively small (e.g.
s0\0:2sY ); however, the variation of the normalized
SDC curve evidently exhibits some nonlinearity for the
larger magnitude of the applied prestress especially for
the A0 mode. Similar variation with respect to applied
loads has been reported in a recent experiment study
on load impact on the GW-based SHM (Michaels et
al., 2011). Noticeably, most modern GW methods rely
on scattered signals to identify small structural damage,
which is often implemented by comparing received sig-
nals to baseline signals collected from the undamaged
structure (Huang et al., 2010b; Lin and Yuan, 2005). If

the effects of the prestress on the GW-based SHM are
neglected, however, those detection methods may most
likely provide a false alarm or fail to diagnose in the
presence of applied loads on the monitored structure.

Conclusion

In the study, we focus on the quantitative characteriza-
tion of the GW generation and propagation in pre-
stressed plate structures induced by the piezoelectric
wafer. An analytical model considering coupled piezo-
elastodynamics is first developed to study dynamic load
transfer between a surface-bonded thin piezoelectric

Figure 7. Piezo-actuated responses of the fundamental guided wave modes in a 2-mm thick aluminum alloy plate under various
prestresses: (a) the S0 mode and (b) the A0 mode (actuator/host plate geometry: a/h = 20 and d/a = 0.333).
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actuator and a prestressed plate. The accuracy of the
analytical prediction is then evaluated through the
comparison with the FE analysis. Based on the current
model, the effects of the prestress on the GW propaga-
tion and mode-tuning capabilities are investigated at
different frequencies for different host materials.
Specifically, it is found that (1) the presence of the
applied prestress can result in the observable variation
in the wave amplitude and the tuning frequency shift of
the A0 mode, and very little for the S0 mode; (2) for
the softer host material under the applied prestress, the

variation in the wave velocity becomes more profound;
and (3) the normalized SDC curve shows some non-
linear variation with respect to the applied prestress
especially for the A0 mode. This study can provide a
theoretical base for on-line piezo-GW-based health
monitoring of the prestressed aerospace structures.
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Figure 9. The transient guided wave responses at x = 150 mm away from the piezo-actuator at a central frequency of fc = 400 kHz
collected from the aluminum alloy plate submitted to different prestresses.

Figure 8. The transient guided wave responses at x = 320.0 mm away from the piezo-actuator at a central frequency of fc = 150
kHz collected from the aluminum alloy plate submitted to different prestresses.
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Appendix 1

Determination of the resulting initial stress

When a static stress s0 is initially applied on the host
plate, the actuator is submitted to the resulting axial
initial stress ŝ0. Based on the assumptions in the sub-
section ‘Modeling of the prestressed piezoelectric actua-
tor,’ the actuator can be modeled as an electroelastic
line subjected to the distributed axial load t0

�
h, and

the equilibrium equation of the actuator along the axial
direction can be then written as

dŝ0

dx
+

t0 xð Þ
h

= 0: ð24Þ

Since the load transferred between the actuator and
the host plate can be attributed to t0, the two ends of
the actuator can be assumed to be traction free, that is

ŝ0 = 0, xj j= a ð25Þ

By integrating equation (24) and making use of
equation (25), the axial stress in the actuator can be
expressed in terms of the shear stress t0 as

ŝ0 xð Þ= �
ðx
�a

t0 zð Þ
h

dz, xj j= a ð26Þ

with

ða
�a

t0 zð Þ dz = 0 ð27Þ

The relation between the axial initial stress (ŝ0),
strain (ê0), and the electric fields (Ê0) of this actuator
model can be obtained by using the following general
constitutive relation

ŝ0 =Eaê
0 � eaÊ0 ð28Þ

where Ea and ea are the effective elastic and piezoelec-
tric material constants, Ea = c11 � c2

13

�
c33 and

ea = e13 � e33c13=c33, respectively, with cij and eij (i, j
= 1, 3) being the components of the piezoelectric elas-
tic stiffness matrix for a constant electric potential, and
the piezoelectric constant matrix, respectively. In the
initial static deformation, Ê0 = 0 is assumed. The
resulting initial axial strain can then be obtained in
terms of t0 as

ê0 xð Þ= �
ðx
�a

t0 zð Þ
hEa

dz, xj j\a ð29Þ

The stress field produced inside the host plate can be
caused by both the initial stress applied on the host
plate with a traction free boundary and the surface
shear stress t0 resulted from the actuator. The strain
induced by t0 can be obtained by using the boundary
condition along the top surface as

s0
xz x, dð Þ= � t0 xð Þ, xj j\a and s0

zz x, dð Þ= 0 ð30Þ

Making use of the quasi-static fundamental solution
of an elastic plate subject to a tangential traction and
following a similar manner as described in Huang et al.
(2010a), the strain ~e0

x resulting from the applied traction
(equation (30)) can be determined in terms of the static
interfacial shear stress t0. Together with the constant
strain e0 =s0

�
E applied along the x direction at infi-

nity, the total surface strain in the host plate can then
be found by superimposing the solutions of both parts
as e0

x x, dð Þ= ~e0
x + e0.

The continuity of deformation between the actuator
and the host medium indicates that

e0
x x, dð Þ= ê0, xj j\a ð31Þ

Expanding t0 in terms of Chebyshev polynomials
and following a similar procedure with the ‘Dynamic
load transfer and resulting GW propagation’ subsec-
tion, the static interfacial shear stress t0 can be solved.
Therefore, based on equation (26), the axial stress ŝ0 xð Þ
in the actuator can be obtained.
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