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Abstract

The overall property of a composite material is dictated by parameters that characterize its microstructure. Theoretically, cross-
links between different physical properties of the same material have been established by eliminating all or partially these microstruc-
tural parameters. Practically, such a correlation may be used to determine one property from another once the latter is measured or
calculated: the success of this approach depends on whether the correlation is insensitive to the detailed material microstructure. In
the present paper, cross-property relations for planar two-phase composites are examined using both analytical approaches and the
digital-based finite element method. Both isotropic and transversely isotropic two-phase planar composites are studied. Focus is
placed on studying how the microstructure (e.g., shape, size, distribution and volume fraction of inclusions) affects the correlation
between two different overall properties of the composite. At a fixed volume fraction, questions on whether the correlation is one-
to-one and whether it is sensitive to large material contrast (e.g., voids or rigid inclusions) or how the inclusions are distributed in the
matrix will be answered.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The overall properties of a heterogeneous material
depend intimately on its microstructure. These proper-
ties, including the elastic modulus, electrical/thermal/
magnetic conductivity, dielectric coefficient and thermal
expansion coefficient, are typically functions of the same
microstructural parameters. One can eliminate all or
partially these parameters and obtain the cross-link rela-
tions between two different classes of overall properties,
e.g. elastic modulus and electrical conductivity. When
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some macroscopic properties are difficult to measure,
one can use the cross-relations to estimate these proper-
ties in term of the others. This idea has already been
applied to practice: for example eddy current method
is widely utilized for non-destructive evaluation of steel
structural elements [1].

The idea of cross-property link was firstly proposed
by Bristow [2] for a solid containing low density, ran-
domly oriented microcracks: based on non-interaction
approximations, cross-property relations between elastic
modulus and conductivity were obtained. Levin [3] sub-
sequently derived exact correlations between the effective
bulk modulus and the thermal expansion coefficient of a
fiber-reinforced composite. The cross-property bounds
derived by Berryman and Milton [4] for two-phase com-
posites provide improved bounds compared to the
Hashin–Shtrikman (HS) bounds [5]. Gibiansky and
Torquato [6] proposed to bound one effective property

mailto:hugeng@public.bta.net.cn
mailto:tjl21@ cam.ac.uk
mailto:tjl21@ cam.ac.uk


H.F. Zhao et al. / Computational Materials Science 35 (2006) 408–415 409
from the bounds of others for any two-dimensional iso-
tropic composite material. The correlations between the
effective modulus and thermal conductivity of thermal
barrier coatings (TBCs) made by physical vapor deposi-
tion have been established by Lu et al. [7] using the non-
interaction approximation for a variety of anisotropic
pore morphologies; a similar work can be found in [8]
for plasma sprayed ceramic coatings. Kachanov et al.
[9] and Sevostianov and Kachanov [10] derived, also in
the framework of non-interaction approximation, expli-
cit correlations between the effective modulus and electri-
cal conductivity of two-phase composites and porous
materials with anisotropic microstructures. Zhao et al.
[11] performed numerical computations for different
two-dimensional isotropic composites and porous mate-
rials: the numerically obtained cross-property relations
compare favorably with the HS bounds. Experimental
investigation of the cross-property link was addressed
by Sevostianov et al. [12] for close-celled aluminum
foams and by Sevostianov and Kachanov [13] for short
fiber-reinforced thermoplastics.

The focus of this paper is on planar (two-dimen-
sional) two-phase composites, with both numerical and
analytical methods utilized to obtain the cross-property
relations. The composites studied are either isotropic
with random or periodic microstructures or transversely
isotropic with aligned fibers or pores. The influence of
microstructures and reinforced phase property on the
cross-links is examined in detail. The paper is arranged
as follows: cross-links derived with different analytical
methods are presented in Section 2, numerical computa-
tions on a variety of microstructures are detailed in Sec-
tion 3, and a comparison of the cross-property relations
established by these two methods is given in Section 4.
2. Analytical cross-property relations

In this section, different micromechanical methods
will be utilized to establish the cross-property relations
between the effective modulus and thermal conductivity
for planar composites. Both isotropic and transversely
isotropic composites are considered. For simplicity, only
the effective bulk modulus is discussed for isotropic
materials. Here we assume a two-phase planar compo-
site with (K0, K1), (l0, l1) and (r0, r1) representing sepa-
rately the two-dimensional bulk moduli, shear moduli
and thermal conductivities, where the subscripts (0, 1)
refer to the matrix and inclusion phases, respectively.
The volume fractions of the reinforced phase (or pores)
and the matrix are denoted by c0 and c1 (c0 + c1 = 1).
For transversely isotropic composites, only the cross-
links obtained with the HS bounds are given.

The micromechanical methods discussed in this paper
have been well documented (see, e.g., [14]). Consequently,
only the final results on cross-links are listed below.
2.1. Voigt and Reuss estimations

The Voigt upper bounds of the bulk modulus and
thermal conductivity for a planar isotropic two-phase
composite are

Kc ¼ c1K1 þ ð1� c1ÞK0; ð1aÞ
rc ¼ c1r1 þ ð1� c1Þr0. ð1bÞ

In fact, Eq. (1) provides the upper limits for the effective
bulk modulus and thermal conductivity, here we take
these upper limits as the effective properties of the com-
posite to establish the cross-link relation. The same
assumption is made for Hashin–Shtrikman bound in
the following section. From Eq. (1), one can eliminate
the volume fraction of the inclusions, c1, to obtain the
cross-property relation, as

Kc � 1 ¼ ðK � 1Þ
ðr� 1Þ ð�rc � 1Þ; ð2Þ

where Kc ¼ Kc=K0, �rc ¼ rc=r0, r = r1/r0 and K = K1/K0.
Eq. (2) can be used to calculate Kc once rc is given, and
vice versa. Note that this correlation is independent of
the composite microstructure as well as the volume frac-
tion of the inclusions. Similar observations apply to
other analytical cross-links to be presented below.

The Reuss lower bounds for the bulk modulus and
thermal conductivity are given by

Kc ¼
K1K0

c1K0 þ ð1� c1ÞK1

; ð3aÞ

rc ¼
r1r0

c1r0 þ ð1� c1Þr1

. ð3bÞ

Eliminating c1 from Eq. (3) leads to

1

Kc
� 1

� �
¼ 1=K � 1

1=r� 1

1

�rc
� 1

� �
. ð4Þ
2.2. Hashin–Shtrikman bound

More elaborated bounds for a two-phase isotropic
composite than the Voigt and Reuss bounds are pro-
posed by Hashin and Shtrikman [5]. In the two-dimen-
sional case, the HS bounds for the bulk modulus and
thermal conductivity are

Kc ¼ 1þ c1
1

K � 1
þ ð1� c1Þ

1þ v

; ð5aÞ

�rc ¼
ð1þ c1Þrþ ð1� c1Þ
ð1� c1Þrþ ð1þ c1Þ

. ð5bÞ

Eq. (5) gives a lower bound if K0 < K1, l0 < l1 and
r0 < r1, and an upper bound if K0 > K1, l0 > l1 and
r0 > r1. For spherical inclusions, Eq. (5) can also be
obtained by the Mori–Tanaka method [15].
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Combination of Eqs. (5a) and (5b) leads to the fol-
lowing cross-property relation [11]:

kðKcÞ
kðKÞ ¼ Rð�rcÞ

RðrÞ ; ð6Þ

where v = l0/K0, kðxÞ ¼ 1
x�1

þ 1
vþ1

and RðxÞ ¼ xþ1
x�1

.

For a planar isotropic porous material, Eq. (6)
reduces to
1

Kc
� 1 ¼ 1

1� m0

1

�rc
� 1

� �
; ð7Þ

where m0 is the Poisson ratio of the matrix material.
Consider now a two-dimensional composite with

aligned elliptical inclusions, the HS bounds are provided
by Willis [16], which can also be obtained by the Mori–
Tanaka method if the ellipsoid characterized the distri-
bution of inclusion is taken to be the same form as the
inclusion [17,18]. If all the elliptical inclusions have the
same form with aspect ratio a and they are aligned with
the axis x1, Young�s moduli of the composite along and
perpendicular to the x1-axis are

Ec1 ¼
B� C
Rþ S

; ð8aÞ

Ec2 ¼
B� C
W þ Y

; ð8bÞ

where

B ¼ �E2½�3a� c1ð2þ 2a2 þ ac1Þ þ 2aðc1 � 1Þv0
þ aðc1 � 1Þ2v20�;
Kc ¼
Kð1� 2c1 þ v0Þ � ð1� 2c1 � v0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Kð1� 2c1 þ v0Þ � ð1� 2c1 � v0Þ�2 � 4Kðv20 � 1Þ

q
2ðv0 � 1Þ ; ð11aÞ

�rc ¼
1

2
1� 2c1 � rþ 2c1rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rþ ð1� 2c1 � rþ 2c1rÞ2

q� �
. ð11bÞ
C ¼ 2ðc1 � 1ÞEf1þ a2 þ ac1 � a½1þ ðc1 � 1Þv0�v1g
þ aðc1 � 1Þ2ðv21 � 1Þ;

R ¼ aðc1 � 1ÞE2ð1þ v0Þ½�3þ 2ac1ðv0 � 1Þ þ v0�
þ aðc1 � 1Þð1þ 2ac1Þðv21 � 1Þ;

S ¼ 2Ef1þ a2 þ 2ac1ð1� aþ ac1Þ � aðc1 � 1Þ½�1

þ ð1þ 2ac1Þv0�v1g;

W ¼ ðc1 � 1ÞE2ð1þ v0Þ½aðv0 � 3Þ þ 2c1ðv0 � 1Þ�
þ ðc1 � 1Þðaþ 2c1Þðv21 � 1Þ;

Y ¼ 2Ef1þ a2 þ 2c1ðaþ c1 � 1Þ � ðc1 � 1Þ
� ½ðaþ 2c1Þv0 � a�v1g.

In the above relations, the normalized Young�s moduli
are defined as Ec1 ¼ Ec1=E0, Ec2 ¼ Ec2=E0 and E = E1/
E0, and m1 is the Poisson ratio of the inclusion material.
The HS bounds for the effective conductivity of the
same composite are

�rc1 ¼
1� c1 þ c1rþ ar
1þ aðc1 þ r� c1rÞ

; ð9aÞ

�rc2 ¼
að1� c1 þ c1rÞ þ r
aþ c1 þ r� c1r

. ð9bÞ

Although explicit cross-property relations can be
derived in a direct way by eliminating c1 from Eqs. (8)
and (9), the final expressions are complicated and hence
will not be listed below. In the case of aligned elliptical
pores, the cross-link relations simplify to

Ec1 ¼
rc1ð1þ aÞ

1þ 2a� rc1a
; ð10aÞ

Ec2 ¼
rc2ð1þ aÞ
2þ a� rc2

; ð10bÞ

Note that for spherical voids (a = 1), Eq. (10) reduces to
Eq. (7).
2.3. Self-consistent approximation

For a two-phase planar composite with spherical
inclusions, its bulk modulus and thermal conductivity
estimated by the self-consistent method are [19]
Eliminiting c1 from Eqs. (11a) and (11b), the cross-prop-
erty relation can be obtained. For porous materials, this
leads to

Kc � 1 ¼ 1

1� v0
ð�rc � 1Þ. ð12Þ
2.4. Differential scheme

The expressions for the effective bulk modulus and
thermal conductivity of a two-dimensional composite
with spherical inclusions estimated by the differential
scheme [20] are complicated. For a planar porous mate-
rial with spherical pores, the results are

Kc ¼
3ð1� c1Þ3v0

c1½3þ c1ðc1 � 3Þ�ð1� 2v0Þ þ 3v0
; ð13aÞ

�rc ¼ð1� c1Þ2. ð13bÞ
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The cross-link relation can be established by eliminating
c1 from (13).
3. Finite element simulations

The micromechanical methods outlined above are
approximate, and they only apply for some specificmicro-
structures. For example, the HS bounds are only attain-
able for hierarchical layered microstructures, and the
self-consistent method is more suitable for polycrystalline
microstructures without a specific matrix phase [21]. In
order to examine whether the cross-property relations
are sensitive to the microstructure of a material, we will
in this section generate more complex and realistic micro-
structures, and compute the corresponding cross-property
Fig. 1. Microstructures generated with impenetrate spheres: (a) mono-sphere
an hexagonal distribution, c1 = 32.3%.

Fig. 2. Microstructures with random lattice generated with: (a) cellular aut
game of life simulation, c1 = 5%.

Fig. 3. Microstructure generated with short fibers (aspect ratio 1:10): (a) rand
no uniform size, c1 = 6.78%; (c) parallel ellipses along the x1-axis, c1 = 3.49%
relations using the finite element method (FEM). The
comparison of the cross-property relations established
by the two different methods will be given in Section 4.

Different microstructures are generated by the meth-
ods widely used in the computational physics commu-
nity, including the random walk method and the
cellular automata method [22]. Three classes of micro-
structures are analyzed, corresponding separately to
the microstructures generated with spheres, random
lattice and short fibers. For each class of the microstruc-
ture, different area fractions and physical properties of
the inclusions (the white phase) will be examined. The
images for the generated microstructures are shown in
Figs. 1–3. For finite element simulations, each image is
taken as the representative volume element (RVE) for
the corresponding composite.
s, c1 = 40%; (b) spheres with different sizes, c1 = 35%; (c) spheres with

omata simulation, c1 = 45.7%; (b) checkerboard model, c1 = 50%; (c)

omly oriented ellipses, c1 = 14.5%; (b) randomly oriented ellipses with
; (d) parallel ellipses along the x1-axis with no uniform size, c1 = 2.27%.



Table 1
Numerical accuracy for an image with different pixels

Image size Bulk modulus Shear modulus Young�s modulus Poisson ratio Thermal conductivity

32 · 32 1.6977 ± 0.0200 0.8448 ± 0.0089 2.2782 ± 0.0357 0.3351 ± 0.0073 2.7370 ± 0.0460
64 · 64 1.5766 ± 0.0119 0.7935 ± 0.0070 2.1134 ± 0.0252 0.3309 ± 0.0057 2.4628 ± 0.0236
128 · 128 1.5165 ± 0.0106 0.7626 ± 0.0061 2.0434 ± 0.0242 0.3308 ± 0.0059 2.3338 ± 0.0222
256 · 256 1.4963 ± 0.0149 0.7536 ± 0.0070 1.9985 ± 0.0196 0.3301 ± 0.0047 2.2747 ± 0.0199
320 · 320 1.4920 ± 0.0101 0.7523 ± 0.0059 1.9960 ± 0.0190 0.3298 ± 0.0040 2.2692 ± 0.0129
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Fig. 4. Comparison between numerical results and universal relation:
(a) isotropic composites; (b) transversely isotropic composites with
aligned pores. Symbols: FEM calculation; solid line: universal relation.
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Numerical methods to evaluate the effective proper-
ties of composite materials are recently reviewed by
Schmauder [23]. In the present paper, the digital-image-
based finite element method developed by Garboczi
[24] is utilized. This method is able to handle images
as shown in Figs. 1–3 with an adequate resolution. In
the computation, the digital images need to be saved
in an ASCII format containing the values of square pix-
els at different gray scales.

With unit biaxial macroscopic strain imposed on the
boundary of the RVE, local stresses and their spatial
averages over the RVE are evaluated and subsequently
used to calculate the effective modulus. For the effective
thermal conductivity, a constant gradient of tempera-
ture is imposed at the boundary: the local heat flux is
computed, and then averaged over the RVE.

To check the accuracy of the numerical method, the
microstructure consisting of impenetrate mono-spheres
with an area fraction c1 = 44% is chosen to be examined
with different precisions (pixels). The following material
constants are assumed: E0 = 1, E1 = 10, r0 = 1, r1 = 10,
and v0 = v1 = 1/3. The computed results are given in
Table 1, where each value of the computed effective
properties is the average of ten samples. It is found that
the average values of the effective modulus, Poisson
ratio and thermal conductivity stabilize for the digital
image with more than 64 · 64 pixels. In all subsequent
computations, images with 128 · 128 pixels are used.

The numerical results are further checked with the
universal relations derived recently for planar compos-
ites and porous materials having arbitrary phase
morphologies [25,26]. According to Hu and Weng [26],
for any isotropic planar material containing arbitrarily
shaped cracks or pores, the effective Young�s modulus
Ec and Poisson ratio mc must satisfy the following uni-
versal relation:

ðmc � vc0ÞE0=Ec ¼ m0; ð14Þ
where mc0 is the effective Poisson ratio of the same com-
posite if the Poisson ratio of the matrix material is set to
be zero. Similarly, for a transversely isotropic compos-
ite, one has [26]:

ðmc12 � vc120ÞE0=Ec1 ¼ m0; ð15Þ
where the x2-axis is taken to be perpendicular to the
crack surface, mc120 is the effective in-plane Poisson ratio
of the composite if the Poisson ratio of the matrix mate-
rial is zero, and (Ec1, mc12) are the effective Young�s mod-
ulus and effective Poisson ratio of the composite.

By setting the inclusion phase to be void, the effective
moduli and Poisson ratio of the microstructures shown
in Figs. 1–3 can be calculated accordingly. Fig. 4(a)
shows the results for isotropic microstructures, and the
comparison with Eq. (14) is also provided. For porous
materials having aligned elliptical pores (Fig. 3(c) and
(d)), comparison is given in Fig. 4(b). Overall, the
numerical results agree well with the analytical universal
relations for both isotropic and transversely isotropic
composites.
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4. Comparison and discussion

Cross-property relations established by both analyti-
cal and numerical methods are compared below. The
results are grouped into two classes: one (Fig. 5) for iso-
tropic composites and the other (Fig. 6) for transversely
isotropic composites.

4.1. Isotropic composites

For isotropic composites, the following material con-
trasts are examined: E0:E1 = r0:r1 = 1:0 (Fig. 5a), 1:10
(Fig. 5(b)) and 1:10000 (Fig. 5(c)), corresponding respec-
tively to a voided material, an inclusion-matrix material
and a rigid inclusion material. In all computations,
v0 = v1 = 1/5 is assumed. It is found that for isotropic
two-phase composites with modest contrast (Fig. 5(b);
also see more in detail in Fig. 6), the cross-property rela-
tions are insensitive to the detailed microstructures, and
can be well predicted by the analytical methods (e.g., the
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Fig. 5. Cross-property relations for isotropic composites: (a) porous materia
with E0:E1 = 1:10000. Symbols: FEM calculation; line: analytical prediction
HS bounds). There exists a one-to-one correlation
between the effective bulk modulus and the effective
thermal conductivity, irrespective of the underlying
microstructure. For such composites, the established
cross-links should be useful in engineering applications.

For isotropic composites with distributed voids or
rigid inclusions, however, the cross-property relations
predicted by both analytical and numerical methods
exhibit pronounced scattering (see Fig. 5(a) and (c)).
One must then be cautious when using these cross-prop-
erty links in practice.

Fig. 6 presents more results for isotropic composites
having varying phase contrasts: E1:E0 = r1:r0 = 1:0,
1:10, 1:400, 1:1000. Again, v0 = v1 = 1/5 is assumed.
The microstructures analyzed include those shown in
Figs. 1(a), 2(b) and 3(a), and the numerical results are
compared with those derived from the HS bound
(Eq. 6). Fig. 6 clearly shows that for an isotropic com-
posite with modest contrast, the cross-property relations
are insensitive to its microstructure and can be well
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predicted by either the HS lower or upper bounds
(depending on the phase contrast). With high phase con-
trast, however, the scatter is more pronounced, espe-
cially for composites with high volume concentrations
of inclusions. These results are expected: for a voided
or rigid inclusion composite, its effective properties
may vary dramatically near the percolation threshold.

4.2. Transversely isotropic composites

Composites with aligned fibers or pores as a whole
are transversely isotropic (Fig. 3(c) and (d)). For such
composites, the cross-property relations established by
the HS bounds and the numerical method agree excel-
lently with each other, as shown in Fig. 7(a) and (b).
It is believed that, in this situation, the microstruc-
tures are relatively regular and hence there is good
one-to-one correspondence between effective modulus
and effective conductivity.
5. Conclusions

Cross-property relations for planar two-phase com-
posites with varying microstructures are established
using both analytical and numerical methods. For trans-
versely isotropic composites having aligned elliptical
fibers (or pores) with different volume fractions and
aspect ratios, there is good correlation between analyti-
cal and numerical predictions, and the correspondence
between two different physical properties is one-to-one:
the results are insensitive to how the inclusions are
aligned in the matrix. It is therefore possible to deter-
mine one property (e.g., thermal conductivity) from
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another (e.g., Young�s modulus) once the latter is mea-
sured or calculated.

For isotropic two-phase composites, the above con-
clusion still holds if the contrast between the two phases
is not large. For composites with large material contrast
(e.g., voids or rigid inclusions), the cross-links are sensi-
tive to how the inclusions are distributed in the matrix.
The situation is particularly acute when the volume frac-
tion of the inclusions becomes large. The cross-property
correlations must then be used with caution in practice.
The same idea can also be applied for a three-dimen-
sional composite to establish the cross-link relations,
this will be our future work.
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