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a b s t r a c t

In this paper, an elastic metamaterial with multiple dissipative resonators is presented for broadband
wave mitigation by properly utilizing interactions from resonant motions and viscoelastic effects of
the constitutive material. The working mechanism of the metamaterial to suppress broadband waves
is clearly revealed in a dissipative mass-in-mass lattice system through both negative effective mass
density and effective metadamping coefficient. Based on the novel metadamping mechanism, a
microstructure design of the dissipative metamaterial made of multi-layered viscoelastic continuum
media is first proposed for efficient attenuation of a transient blast wave. It is found that the extremely
broadband waves can be almost completely mitigated with metamaterials at subwavelength scale. The
results of the study could be used in developing new multifunctional composite materials to suppress
the shock or blast waves which may cause severe local damage to engineering structures.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Metamaterials are engineered structural materials that possess
unique dynamic effective properties, not commonly found in nat-
ure. In recent years, a great deal of theoretical, numerical and
experimental research has been conducted on electromagnetic
metamaterials with novel applications such as electromagnetic
absorbers, negative refractive indices, cloaking and superlensing
[1–3]. Because of the analogy between electromagnetic waves
and acoustic waves, acoustic metamaterials hold the potential to
perform similar novel functions with acoustic waves as those
found in electromagnetic metamaterials [4–9]. The key idea and
principal component in microstructure design of acoustic metama-
terials is to introduce subwavelength locally resonant inclusions,
or, resonators. Due to the subwavelength feature, acoustic meta-
materials can be modeled as effective continuum media with
frequency dependent effective mass densities and/or bulk moduli.

The realm of elastic metamaterial research is a relatively new
field that also presents exciting and novel applications related to
manipulation of elastic (longitudinal and transverse) waves and
plate guided waves. The label Elastic MetaMaterials (EMMs) refers
to a class of periodic structural materials, consisting of a

solid-phase host and arrays of internal resonators, which are
capable of affecting the propagation of elastic waves. For most con-
figurations, the resonators typically consist of structural elements
with highly contrasting elastic properties. For example, the very
first EMM archetype was realized by embedding rubber-coated
lead spheres in an epoxy matrix to capture dipolar resonances
[10]; an anomalous bandgap (400–600 Hz) was observed with this
architecture even for small spherical inclusions (5 mm radius) at
subwavelength scale. By using a mass-in-mass lattice system to
represent an EMM, it was found that the negative effective mass
density could be achieved and this phenomena has been
experimentally realized in a relatively low-frequency domain
[11,12], which results in the prohibition of low-frequency wave
propagation across the metamaterial at subwavelength scale.
Unfortunately, EMM configurations involving geometrically simple
resonators have limited applicability, as they offer limited design
opportunities to tune (widen and/or shift) the bandgaps – a prob-
lem that has been only partially alleviated using geometry or
topology optimization. For example, it has been shown that, by
embedding multiple heavy inclusions into a rubber matrix, an
EMM can engage monopolar, dipolar and quadrupolar resonances
associated with different dynamics of the resonating masses [13].
As a result, the EMM can simultaneously feature negative effec-
tive mass density and negative effective elastic moduli. Recently,
a new chiral EMM configuration consisting of a three-phase or
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single-phase material and capable of experiencing both dipolar and
rotational microstructural resonances has been developed [14,15].
The EMM was found to simultaneously exhibit negative effective
mass density and bulk modulus in a selected frequency band
numerically and experimentally. However, for the designs of exist-
ing micro-inclusions or resonators, the resulting bandgaps are still
relatively narrow near the locally resonant frequency, which is a
fundamental challenge for practical engineering applications and
further development of the EMM. In order to improve the function-
ality of the EMM for wave interference at broadband frequencies,
there is a compelling need for a new microstructure design and
wave absorption concept.

It is well known that the attenuation bandwidth can be
extended through the use of multiple resonators, for which the
internal resonances may be tailored to cover a range of frequencies
that extends beyond that achievable with one resonator. As a first
effort in exploring the problem, a metamaterial consisting of two
resonators was suggested and investigated for the demonstration
of multiple bandgap generation [16], which means that the elastic
wave in those frequency regimes cannot propagate and wave
energy is reflected back or temporarily stored in resonators. A sim-
ilar metamaterial with two embedded resonators was then
adopted to explore the possibility for blast wave blocking and mit-
igation [17]. The transient waves in those bandgap frequency
regimes were efficiently mitigated by increasing the number of
unit cells. Zhu et al. [18] investigated the vibration suppression
abilities of a chiral EMM with multiple resonators, both analyti-
cally and experimentally to produce complete broadband vibration
suppression or blocking by utilizing their individual bandgaps
through a section-distributed design of multiple local resonators.
It should be mentioned that, for those EMMs, the elastic wave
energy is actually reflected back or blocked by the EMMs and elas-
tic waves are not dissipated or absorbed at all because damping
properties in the constituent materials are not considered in those
microstructure designs.

Damping is an intrinsic property of materials and its character-
ization represents the degree of energy dissipation or absorption at
different dynamic states. In wave mitigation applications of the
resonator-based EMMs, dissipation or damping is not desired
because damping will reduce the resonant motion and therefore,
their ability to efficiently suppress or mitigate waves will also be
reduced. A key trade-off in the broadband wave mitigation applica-
tions is that an increase in the intensity of damping commonly
reduces relative motions of the resonators, or mechanical resis-
tance capacity. The two underlying design features for the
microstructure design are (1) the presence of locally resonant ele-
ments and (2) the presence of at least one constituent material
phase or component that exhibits damping. Proper combination
of these two features may lead to broadband wave attenuation
or absorption. Inspired by the concept, Hussein and Frazier [19]
and Manimala and Sun [20] studied wave propagation in the
mass-in-mass lattice model by introducing damping coefficient
into the single resonator. It was found that the damping can actu-
ally broaden the wave attenuation frequency regime through the
analysis of wave transmission or effective high damping ratio so
called ‘‘metadamping”. A dissipative mechanism in two resonators
was also utilized as a broadband vibration absorber for a metama-
terial beam [21]. Numerical simulations in the structural level
showed that for a vibration with a frequency in one of the two
stopbands, the resonators are excited to vibrate in their optical
modes for vibration attenuation, however, for a vibration with a
frequency outside of but between the two stopbands, it can be effi-
ciently damped out by using the damper with the second mass.
However, to fully implement this concept in the material level, a
comprehensive study of the dissipative EMM is highly needed to
answer following fundamental questions such as: (1) how to

design the microstructure of the EMM to possess the multiple
bandgaps which are close to each other? (2) how to utilize the cou-
pling of resonant motion and damping coefficients to achieve
metadamping properties and form a complete broadband wave
mitigation regime? (3) what is the wave attenuation ability of
the proposed dissipative EMM under a transient wave loading?

In this paper, a systematic study of an EMM with multiple dis-
sipative resonators is provided for broadband longitudinal wave
mitigation by properly modeling and analyzing viscous effects of
constitutive materials. Wave dispersion behavior of a non-
dissipative lattice system with multiple resonators is first studied
to quantitatively determine microstructure properties required to
produce multiple bandgaps. Then, wave propagation of a dissipa-
tive lattice system with multiple resonators is investigated. Atten-
tion is focused on achieving a wide wave attenuation band through
properly selecting the damping coefficients in the each of the con-
stitutive elements. To reveal the working mechanisms, the dissipa-
tive EMM is homogenized as an effective medium with an effective
mass and an effective metadamping coefficient, from which wave
attenuation can be quantitatively interpreted by the negative
effective mass density and effective metadamping. For one exam-
ple of an engineering application, a transient analysis of the pro-
posed lattice system with finite unit cells is performed to
demonstrate and validate the efficiency and ability to mitigate a
blast wave. Finally, a microstructure design of the dissipative
EMM made of the heterogeneous continuum media with damping
coefficients included in the constitutive materials is numerically
proposed as a potential EMM candidate for broadband wave miti-
gation. Hopefully, the results of the study can open new opportu-
nities in the development of a new multifunctional composite as
efficient wave mitigation materials to suppress the broadband
shock or blast waves.

2. Non-dissipative mass-in-mass lattice system with multiple
resonators

2.1. Wave dispersion of the non-dissipative lattice system

Bandgap structure behaviors of a multiresonator mass-in-mass
lattice system were studied and investigated by Huang and Sun
[16]. In the study, to further understand the underlying mechanism
for the wave attenuation behavior, wave propagation in the one-
dimensional (1D) lattice system is briefly iterated and revisited.
As shown in Fig. 1, each unit cell contains two local resonators
and is separated from each of its adjacent cells by a length, L.
The three rigid masses that make up each of the unit cells are
m1, m2, and m3, respectively. Each of the unit cells are connected
by a spring element with coefficient k1. While the coefficient, k2,
represents the spring element between the middle mass and the
outer mass and the coefficient, k3, represents the spring element
between the innermost mass and the middle mass in each unit
cells.

For this two-resonator structure, equations of motion for the jth
unit cell can be expressed as

m1
d2uðjÞ

1

dt2
þ k1 2uðjÞ

1 � uðj�1Þ
1 � uðjþ1Þ

1

h i
þ k2 uðjÞ

1 � uðjÞ
2

h i
¼ 0; ð1aÞ

m2
d2uðjÞ

2

dt2
þ k2 uðjÞ

2 � uðjÞ
1

h i
þ k3 uðjÞ

2 � uðjÞ
3

h i
¼ 0; ð1bÞ

m3
d2uðjÞ

3

dt2
þ k3 uðjÞ

3 � uðjÞ
2

h i
¼ 0; ð1cÞ

where uðjÞ
a is defined as the displacement of mass ‘‘a” (a = 1, 2, or 3)

in the jth unit cell of the lattice. Based on the Bloch–Floquet theory,
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the harmonic waveform of the displacement for the (j + n)th unit
cell is given as

uðjþnÞ
a ¼ BaeiðqxþnqL�xtÞ; ð2Þ

where Ba is the amplitude of the displacement, q is the wavenum-
ber, and x is the angular frequency. By substituting Eq. (2) into
Eq. (1), wave dispersion relations can be obtained by setting the
determinant of the system equal to zero as

�X2 d2
h2
þ 2ð1� cos qLÞ þ d2 �d2 0

�d2 �X2d2 þ d2 þ d3 �d3
0 �d3 �X2 d2h3

h2
þ d3

��������

��������
¼ 0;

ð3Þ
where X ¼ x=x0 is the non-dimensional frequency with
x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
. The mass and stiffness ratios are defined as

h2 ¼ m2=m1, h3 ¼ m3=m1, d2 ¼ k2=k1 and d3 ¼ k3=k1.
According to Eq. (3), three branches of the band structure can be

obtained, which is shown in Fig. 2(a). In the figure, mass and stiff-
ness ratios, h2, h3, d2 and d3 are selected to be 2.0, 8.0, 0.05 and 0.05,
respectively. For this case, x0 is assumed to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:025k1=m1

p
, and

unchanged in following analyses of this paper. Two bandgaps can
be observed (shaded area in the figure) in the low-frequency
ranges of x ¼ 0:34x0 � 0:89x0 and x ¼ 1:46x0 � 1:86x0, where
waves cannot propagate through the lattice system. As also
observed from the figure, a passband exists between these two
bandgaps, in which no wave attenuation can be found.

If we consider this multi-resonator lattice system to be repre-
sented by a monatomic lattice systemwith single masses,meff, con-
nected by spring elements with coefficient k1, the dispersion
equation of this homogeneous lattice system should satisfy the dis-
persion relations given in Eq. (3). Thus, meff is readily obtained as

meff ¼ 2k1ð1� cos qLÞ
x2 : ð4Þ

The dimensionless effective mass meff/m1 in function of fre-
quency is plotted in Fig. 2(b) for the same material constants used
in Fig. 2(a). By comparing Fig. 2(b) with Fig. 2(a), it can be found
that frequency regimes of the two bandgaps can almost be inter-
preted and predicted by the frequency regimes of the negative
effective mass density, which implied that the wave energy must
be transferred and stored into negative motions of the inner
masses instead of propagating along the lattice system and as a
consequence the negative mechanical motions (inertia forces)
block or reflect the incoming wave.

In order to reveal the mechanical transfer mechanism of inner
masses, the dimensionless displacement amplitudes of inner
masses, m2 and m3, are calculated from the eigenvectors of Eq.
(3) and shown in Fig. 2(c) and (d), respectively, where material
constants are left unchanged as those used in Fig. 2(a) and (b). It
is interesting to note that both u2 and u3 are in phase with u1 at

frequencies lower than the first resonant frequency. However,
when the frequency increases and occupies the region between
the first and the second resonant frequencies, u2 is initially out of

k1

m1

j th j+1 th

L

m2

m3
k1 k2 k3

Fig. 1. Non-dissipative mass-in-mass lattice system with two resonators.

        (a)                                           (b)

          (c)                                         (d)
Fig. 2. (a) Band structure of a non-dissipative lattice system with two resonators;
(b) effective mass of a non-dissipative lattice system with two resonators; (c)
dimensionless wave displacement amplitude of m2 in a non-dissipative lattice
system with two resonators; (d) dimensionless wave displacement amplitude ofm3

in a non-dissipative lattice system with two resonators.
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phase with u1 and then gradually becomes in phase with u1, while
u3 is always out of phase with u1. Therefore, by comparing Fig. 2(c)
and (d) with Fig. 2(a) and (b), it can be concluded that (1) in the
first bandgap, m2 and m3 work together to block the incoming
wave through their out of phase inertial forces; (2) in the second
bandgap, u2 becomes out of phase with u1 again, and u3 becomes
in phase with u1, therefore, only m2 works to suppress the incom-
ing wave through its own out of phase inertia force in the second
bandgap region. These findings will be useful for the microstruc-
ture design of the metamaterial to achieve multiple bandgaps in
the desired frequency regimes.

2.2. Bandgap design of the non-dissipative lattice system

Bandgap edge frequencies of the non-dissipative EMM counter-
part are then characterized. Attention is paid to the effects of the
microstructure parameters on locations and widths of multiple
bandgap frequencies. In the analysis, a weight constraint of the
metamaterial is applied by fixing the total weight of the system
for practical application.

Fig. 3. Bandgap variations of a non-dissipative two resonator lattice system with
different stiffness ratios (h2 = 2.0, h3 = 8.0): (a) d2 = 0.01; (b) d2 = 0.05; (c) d2 = 0.2.

Fig. 4. Bandgap variations of a non-dissipative two resonator lattice system with
different mass ratios (d2 = 0.05): (a) h2 = 5.0, h3 = 5.0; (b) h2 = 8.0, h3 = 2.0.
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Fig. 3 shows the variation of bandgap edge frequencies of the
non-dissipative systemwith two resonators with different stiffness
ratios. In the figures, the weight constraint is considered by assum-
ing two mass ratios of the inner masses (resonators) as h2 = 2.0 and
h3 = 8.0, respectively. Solid and dotted curves represent lower edge
frequencies of the first and second bandgaps, respectively, and
dashed and dash-dot curves denote upper edge frequencies of
the first and second bandgaps, respectively. Shaded areas denote
bandgap regions. Effects of both stiffness ratios d2 and d3 on band-
gap edge frequencies are investigated in Fig. 3(a)–(c) by assuming
d2 = 0.01, 0.05 and 0.2, respectively. In each figure, the variation of
the bandgap edge frequencies with the change of the stiffness ratio
d3 is illustrated. As can be seen in the three figures, when d3 is
increased, the width of the first bandgap becomes larger, while
the width of the second bandgap becomes smaller. As shown in
Fig. 3(a)–(c), it is worth noting that the dimensionless locations
and widths of the two bandgaps are directly related to the ratio,
d3=d2.

For example, when d3 approaches d2, the gap of the passband
between the first and the second bandgaps becomes the smallest
one. Thus, in order to more easily connect or merge these two
bandgaps into one large attenuation region through properly
selecting damping elements, it is suggested to select the value of
d3 around the value of d2.

The mass ratio effects upon the variation of bandgap edge fre-
quencies of the non-dissipative system is further investigated by
fixing d2 = 0.05 and selecting h2 = 5.0; h3 = 5.0 and h2 = 8.0;
h3 = 2.0, as shown in Fig. 4(a) and (b), respectively. By comparing
the results in Figs. 3(b) and 4, it can be found that the width of a
passband between the first and second bandgaps becomes smaller,
as the inner-mass ratio parameter, h3=h2, is decreased from 4.0 to
0.25, which means that the low inner mass ratio parameter h3=h2
can be used for the design of the two bandgaps to be close to each
other. However, it should be mentioned that the total wave atten-
uation frequency range by merging the two bandgaps could be
smaller with the decrease of the inner mass ratio parameter
h3=h2 as shown in those figures. Therefore, the selection of inner
mass ratio parameter, which determines the non-dissipative band-
gap patterns, will be primarily important for the design of a dissi-
pative EMM to form a broadband wave mitigation.

3. Dissipative mass-in-mass lattice system with multiple
resonators

3.1. Wave dispersion of the dissipative lattice system

As discussed in the non-dissipative system, the wave energy is
actually stored only temporarily by the internal masses (res-
onators) and requires the external forcing agent to absorb it. It
was found that tailoring the damping in the microstructural res-
onator can enhance attenuation and absorption characteristics of

the metamaterials with one resonator [20]. In order to merge the
multiple bandgaps presented in the previous non-dissipative sys-
tem and form a complete broadband wave mitigation region, three
damping elements are introduced into each unit cell of the 1D dis-
sipative mass-in-mass lattice system and the results are shown in
Fig. 5. In the figure, c1 is denoted as the damping coefficient of the
host medium, and c2 and c3 represent the damping coefficients of
the middle and innermost resonators within each unit cell, respec-
tively. For the dissipative system, equations of motion are written
as

m1
d2uðjÞ

1

dt2
þ k1 2uðjÞ

1 � uðj�1Þ
1 � uðjþ1Þ

1

h i

þ c1 2
duðjÞ

1

dt
� duðj�1Þ

1

dt
� duðjþ1Þ

1

dt

" #
þ k2 uðjÞ

1 � uðjÞ
2

h i

þ c2
duðjÞ

1

dt
� duðjÞ

2

dt

" #
¼ 0; ð5aÞ

m2
d2uðjÞ

2

dt2
þ k2 uðjÞ

2 � uðjÞ
1

h i
þ c2

duðjÞ
2

dt
� duðjÞ

1

dt

" #
þ k3 uðjÞ

2 � uðjÞ
3

h i

þ c3
duðjÞ

2

dt
� duðjÞ

3

dt

" #
¼ 0; ð5bÞ

m3
d2uðjÞ

3

dt2
þ k3 uðjÞ

3 � uðjÞ
2

h i
þ c3

duðjÞ
3

dt
� duðjÞ

2

dt

" #
¼ 0: ð5cÞ

By substituting Eq. (2) into Eq. (5) as we did for the non-
dissipative lattice system, wave dispersion relations of the dissipa-
tive lattice system can be obtained as

A11 A12 A13

A21 A22 A23

A31 A32 A33

�������
������� ¼ 0; ð6Þ

in which

A11 ¼ �X2 d2
h2

þ 2ð1� cos qLÞ 1þ iXs1

ffiffiffiffiffi
d2
h2

s !
þ d2ð1þ iXs2Þ; ð7aÞ

A12 ¼ A21 ¼ �d2ð1þ iXs2Þ; ð7bÞ

A13 ¼ A31 ¼ 0; ð7cÞ

A22 ¼ �X2d2 þ d2ð1þ iXs2Þ þ d3 þ iXs3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d3h3
h2

s
; ð7dÞ

A23 ¼ A32 ¼ �d3 � iXs3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d3h3
h2

s
; ð7eÞ

Fig. 5. Dissipative mass-in-mass lattice system with two resonators.
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A33 ¼ �X2 d2h3
h2

þ d3 þ iXs3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d3h3
h2

s
; ð7fÞ

and the dimensionless damping coefficient is defined as

si ¼ ci
ffiffiffiffiffiffiffiffiffi
kimi

p.
.

According to Eq. (6), the dimensionless wavenumber, qL, will be
complex when given a real frequency, x, and when damping
effects appear in the lattice system. As a result, the wave will be
attenuated spatially during propagation in the dissipative EMM.
The dimensionless wavenumber can then be described by
qL ¼ aþ ib, where a and b represent the propagation and attenua-
tion/dissipation portions of the wave, respectively. For the current
dissipative system, the wave attenuation and dissipation behavior
will be insured by the coupling of local resonant motions and the
inner damping. Specifically, the imaginary part of the wavenumber
of the system, termed as ‘‘attenuation factor”, will be studied to
evaluate the magnitude of the attenuation/dissipation perfor-
mance with the change of the damping values of the system.

Fig. 6 shows the imaginary part of the wavenumber of the dis-
sipative mass-in-mass lattice system with different inner damping
coefficients. Effects of the backgroundmaterial damping coefficient
s1 are outside the scope of this study, and thus is assumed to be
zero. In the figure, the stiffness ratios are assumed to be
d3 = d2 = 0.05, mass ratios are h2 = 2.0 and h3 = 8.0. As illustrated
in Fig. 6(a), for the case of s2 = 0.01 and variation of s3, two clear
wave attenuation regions can be observed (solid curve) at two
bandgap frequencies, where the effective masses are negative as
shown in Fig. 2(b) when the innermost damping coefficient is a
small value (s3 = 0.01). When s3 is increased to 0.2 (dashed curve),
it is interesting to find that the imaginary part of the wavenumber
is dramatically increased for the original passband frequencies
between the two bandgaps and a broad frequency region with rea-
sonable wave attenuation is formed by merging the two bandgap
frequencies. A broad wave attenuation frequency range can be still
observed when s3 is increased further to 1.0 (dotted curve). How-
ever, the magnitude of b at the second bandgap frequencies is sig-
nificantly decreased, and thus a narrower wave attenuation
bandwidth is expected compared with the case for s3 = 0.2. Fig. 6
(b) shows the variation of the imaginary part of the wavenumber
with the change of s3 for the case of s2 = 0.1. Similar wave attenu-
ation phenomena can also be observed and wave attenuation abil-
ity is enhanced mostly for the wave frequencies higher than the
second bandgap with the increase of the damping coefficient s2.
Therefore, the innermost damper with optimal damping coefficient
s3 is a key factor and should be carefully selected to achieve low-
frequency wave attenuation. Fig. 6(c) shows the variation of the
imaginary part of the wavenumber with the change of s3 for the
case of s2 = 1.0. It is found that the imaginary part of the wavenum-
ber is actually decreased for the wave frequencies below the sec-
ond bandgap compared with the cases of small values of s2,
which further validate that the high damping coefficient s2 is not
desirable for the low-frequency attenuation. For this case, only
wave components higher than the second bandgap frequency can
be efficiently attenuated with the increase of the damping coeffi-
cient s2.

To illustrate the mass ratio’s effects, Fig. 7 shows the imaginary
part of the wavenumber of the dissipative mass-in-mass lattice
system with different inner damping coefficients. In the figure,
the mass ratios are selected as h2 = 8.0 and h3 = 2.0, and the stiff-
ness ratios are the same as those in Fig. 6. As shown in Fig. 7(a),
the passband frequency region between the two bandgaps
becomes narrower (solid curve) compared with that in Fig. 6(a),
when the two inner damping coefficients are small values
(s2 = s3 = 0.01). For this case, it can be found that a broadband
wave attenuation range can be easily formed by increasing the

innermost damping coefficient s3 to 0.2 and 1.0 (dashed and dotted
curves). The absolute value of the imaginary part of the wavenum-
ber at the frequencies between two bandgaps is very uniform and

Fig. 6. Imaginary part (attenuation constant) of wavenumber of a dissipative two
resonator lattice system with different damping coefficients (h2 = 2.0, h3 = 8.0,
d2 = d3 = 0.05): (a) s2 = 0.01; (b) s2 = 0.1; (c) s2 = 1.0.
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close to the values within the bandgaps. For the cases of s3 = 0.2
and 1.0, wave attenuation behaviors in the combined attenuation
bands are almost identical. To compare, Fig. 7(b) and (c) shows

variations of the imaginary part of the wavenumber of the dissipa-
tive mass-in-mass lattice system with the change of the damping
coefficient s2. It is found that when s2 is increased, wave attenua-
tion at frequencies higher than the second bandgap can be signif-
icantly improved, which is reflected by the fact of higher values
of the imaginary part of the wavenumber. To understand the
unique wave attenuation behaviors induced by s2 and s3, the
mechanical motions of the two resonators, as shown in Fig. 2(c)
and (d), are revisited. From the two figures, it can be noted that
m2 and m3, which are connected by the innermost dashpot with
the damping coefficient s3, move out of phase at frequencies
between two bandgaps. It is believed that the energy absorption
due to damping effects can be significant improved by the out of
phase motions at two ends of the dashpot, therefore, the damping
coefficient s3 can effectively cause the wave attenuation behaviors
in this passband region. Similarly, m2 moves out of phase with m1

in the frequency region higher than the second bandgap, thus, the
damping coefficient s2 will be more efficient to tailor the wave
attenuation behaviors at higher frequencies.

3.2. Effective modeling of the dissipative lattice system

To quantitatively reveal and identify the actual working mech-
anisms of the coupling effects from the mechanical motion and
damping in the dissipative system, an effective monatomic lattice
model is developed, which shown in Fig. 8. Due to the inner damp-
ing effects, the effective monatomic lattice for the dissipative lat-
tice system contains not only a single effective mass meff to
represent wave energy transferred or temporally stored but also
an effective metadamping ceff to represent wave energy absorption.

The equation of motion of the single mass in the dissipative
monatomic lattice system at the jth unit cell is

meff
d2uðjÞ

1

dt2
þ k1 2uðjÞ

1 � uðj�1Þ
1 � uðjþ1Þ

1

h i

þ c1 2
duðjÞ

1

dt
� duðj�1Þ

1

dt
� duðjþ1Þ

1

dt

" #
þ ceff

duðjÞ
1

dt
¼ 0: ð8Þ

The dispersion equation for harmonic waves can be readily
obtained as

x2meff ¼ 2ðk1 þ ixc1Þð1� cos qLÞ þ ixceff : ð9Þ
Physically, both the effective mass meff and the effective

metadamping coefficient ceff are real numbers in nature. According
to Eq. (9), wave attenuation caused by the negative mass and the
damping absorption can be fully decoupled and quantitatively
identified as

meff ¼ Re 2ðk1 þ ixc1Þð1� cos qLÞ½ �
x2 ; ð10aÞ

ceff ¼ Im �2ðk1 þ ixc1Þð1� cos qLÞ½ �
x

: ð10bÞ

To clearly demonstrate the two wave attenuation mechanisms,
the variation of the dimensionless effective mass and metadamp-
ing coefficient with the change of the innermost damping coeffi-
cient is presented in Fig. 9. In the figure, the optimal
microstructure parameters of the dissipative lattice system,
obtained in the previous section, are selected as the mass ratios
being h2 = 2.0 and h3 = 8.0, the stiffness ratios being d3 = d2 = 0.05
and the inner damping coefficient being s2 = 0.01. As shown in
Fig. 9(a), the effective mass becomes negative in the two bandgap
frequency regions (solid curves) with a small damping coefficient
(s3 = 0.01), which means that the out of phase mechanical resonant
motions are responsible for the wave attenuation in those fre-
quency regimes. However, the effective metadamping coefficient

Fig. 7. Imaginary part (attenuation constant) of wavenumber of a dissipative two
resonator lattice system with different damping coefficients (h2 = 8.0, h3 = 2.0,
d2 = d3 = 0.05): (a) s2 = 0.01; (b) s2 = 0.1; (c) s2 = 1.0.
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becomes extremely high near the two resonant frequencies, and
almost zero at other frequencies. This global metadamping phe-
nomenon in the dissipative metamaterial can be interpreted as
the most kinematic energy is stored in the resonators around res-
onant frequencies and is then efficiently absorbed by using the
constitutive medium with very small damping coefficient. How-
ever, when the frequency is away from the resonant frequencies,
the effective metadamping coefficient of the dissipative metamate-
rial becomes very small and therefore most of wave energy is

attenuated by the locally resonant motions of the inner masses.
When s3 is increased to 0.2, the effective mass in the first bandgap
frequency range is still large negative values, however, the effec-
tive mass in the second bandgap frequency range becomes very
small negative values and remains positive between the two band-
gap frequencies (dashed curves). This means that the wave atten-
uation ability due to the resonant motions is reduced with the
increase of the damping coefficient s3, as we expected. However,
the metadamping phenomenon could still be observed around
the two bandgap frequency ranges andmuch broader. For the pass-
band frequency range between the two bandgaps especially, the
effective metadamping coefficient increases significantly from zero
to around 0.25. Therefore, the wave attenuation or absorption
mechanism in this passband and the second stopband frequency
ranges is essentially due to the damping absorption within the
innermost resonator, and the wave attenuation or absorption
mechanism in the first bandgap is caused by the coupling mecha-
nism between the mechanical resonant motions and metadamping
effects. As a consequence, broadband wave attenuation and
absorption can be accomplished by properly selecting the damping
coefficient and microstructure parameters of the dissipative meta-
material. As also shown in Fig. 9, when s3 is increased to 1.0 (dot-
ted curve), the effective mass in the first bandgap and the
proceeding passband frequency ranges becomes negative values,
however, the effective mass in the second bandgap frequency
range becomes positive values. On the other hand, the effective
metadamping coefficient increases significantly in the low-
frequency range compared with the cases with small s3, and
decreases dramatically in the high-frequency range, such as the
frequency range of the second bandgap. For this case, a complete
wave attenuation and absorption frequency range can still be
achieved but in a relative narrow band because the second stop-
band becomes a passband with a small attenuation factor.

As a comparison, Fig. 10 shows the variation of the dimension-
less effective mass and metadamping coefficient with the change
of the innermost damping coefficient for the mass ratios being
h2 = 8.0 and h3 = 2.0 and other material properties left the same.
As shown in Fig. 10, when s3 is increased to 0.2, it is interesting
to find that the effective mass becomes negative between the
two bandgap frequencies (dashed curves) and still remains the
negative value at second bandgap frequency range although the
absolute value is much smaller. However, the metadamping phe-
nomenon can only be observed around the first resonate frequency
and the effective metadamping coefficient is very small at other
frequencies. Therefore, the wave absorption working mechanism
can only be found for the frequencies around the first resonant fre-
quency, and the mechanical resonant motions will play a dominant
role for the wave attenuation or blocking at other frequencies,
which is not desirable for the design of the dissipative metamate-
rial. The similar wave attenuation mechanism can also be observed
when s3 is increased to 1.0.

meff

ceff

k1

c1

meff

ceff

meff

ceff

k1

c1

Fig. 8. Dissipative lattice system with two resonators represented by an infinite effective lattice model.

Fig. 9. Effective material parameters of a two resonator dissipative lattice system
(h2 = 2.0, h3 = 8.0, d2 = d3 = 0.05, s2 = 0.01): (a) effective mass; (b) effective
metadamping coefficient.
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3.3. Transient analysis under blast loadings

Now we move on to analysis for potential applications of the
dissipative EMM for blast wave attenuation by realizing the com-
bination of two bandgaps into a large wave attenuation band by
implementing a proper value of the innermost damping coefficient.
The ratio h3=h2 will be selected as a relatively large value to ensure
a broadband absorption for blast wave applications. Fig. 11 shows a
1D lattice system for a time domain blast wave transmission test,
where the proposed dissipative mass-in-mass lattice system with
15 unit cells is sandwiched between two background materials.
The first 400 unit cells contain masses, m1, and springs, k1, which
are considered incident background material in the left side of

the dissipative mass-in-mass lattice system, and the last 385 iden-
tical unit cells are denoted as transmitted background material in
the right side of the dissipative mass-in-mass lattice system. An
incident blast wave is applied as a force signal to the first unit cell
of the lattice system using the following equation:

F ¼ Fmaxe
�t�t0

td ; ð11Þ
where Fmax ¼ 1000 N, t0 ¼ 0:5 ms, and td ¼ 0:1 ms in order to real-
istically represent a typical air blast [17]. The frequency domain
of the incident signal is calculated in Fig. 12 (solid curve) using
the Fast Fourier Transform (FFT) for understanding blast wave prop-
erties. It is apparent that the blast wave is broadband with frequen-
cies from 0 to �10 kHz with large amplitudes in the low-frequency
region and weak amplitudes in the higher frequency ranges. To effi-
ciently mitigate such a blast wave, material parameters of the dis-
sipative lattice system are designed and selected as m1 = 0.002 kg,
m2 = 0.01 kg, m3 = 0.04 kg, k1 = 7.90 � 106 N/m, k2 = 1.58 � 106 N/
m, k3 = 7.90 � 105 N/m, c1 = 1.26 Ns/m, c2 = 1.26 Ns/m and
c3 = 125.66 Ns/m.

The frequency domain of the transmitted signal in the proposed
dissipative lattice system subjected to a blast pulse is then calcu-
lated in Fig. 12 (dotted curve). For comparison, the transmitted sig-
nal in the proposed lattice system without damping elements is
also plotted in Fig. 12 (dashed curve). For the non-dissipative lat-
tice system (dashed curve), we can see two frequency amplitude
dips present at approximately 600–1200 Hz and 2400–4600 Hz.
Waves with frequency components within these two regions will
be blocked by the non-dissipative mass-in-mass lattice system
through mechanical resonant motions and cannot propagate
through. However, a large portion of the wave energy can still
transmitted through the lattice system, when the frequency
component falls between these two dips (i.e. 1200–2400 Hz). As
shown in the figure, the dissipative mass-in-mass lattice system
can merge the two transmission dips and a broadband wave

Fig. 10. Effective material parameters of a two resonator dissipative lattice system
(h2 = 8.0, h3 = 2.0, d2 = d3 = 0.05, s2 = 0.01): (a) effective mass; (b) effective
metadamping coefficient.

…  … …  … …  …

#1 #2 #399 #400 #401 #415 #416 #417 #800#799

Background Material Proposed Metamaterial Background MaterialBlast
Pulse

Unit
Cell 
No.

Fig. 11. Schematic design of time domain transmission analysis of a 1-D dissipative mass-in-mass lattice system under a blast incidence.

Fig. 12. Frequency domain of blast simulations calculated by Fast Fourier
Transform.
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absorption from 600 Hz to 4600 Hz is clearly observed. As dis-
cussed in Section 3.2, for this case, the metadamping plays a dom-
inant role for the wave absorption at frequencies between the two
transmission dips. It can be concluded that the proposed dissipa-
tive mass-in-mass lattice system is an efficient candidate material
for blast wave mitigation.

4. Microstructural design of dissipative EMMs for blast wave
mitigation

Recently, research on blast induced shockwaves behavior in
various homo and heterogeneous materials has been conducted
with the goal of developing practical mechanisms for blast/shock-
wave mitigation. The topical interest has been brought about due
to an array of integrative applications including civilian and mili-
tary utilizations, both focused on efficient blast/shockwave attenu-
ation. The previous mitigation mechanisms are either based on the
deformation of materials to absorb energy [22] or utilizing the
anti-momentum principle to oppose or redirect the incoming blast
wave [23–25], which results in extensive material damage or com-
plex structures. Furthermore, based on these concepts, wave atten-
uation cannot be tailored in specific low-frequency regions, and
cover the full frequency range of the blast wave.

In this section we propose a microstructure design of the dissi-
pative EMMmade of continuummedia and its application for blast
wave mitigation. We consider a plane strain problem with a unit
cell shown in Fig. 13, where material 1 represents the background
material that allows for wave propagation. While material 1 repre-
sents the outside rigid mass, m1, and the spring, k1, the inner two
rigid masses are represented by materials 3 and 5 and act as the
resonators. Material 2 and 4 represent two kinds of softer materials
with damping properties, and are used as coatings to separate the
rigid masses acting as springs and dashpots. Each material’s thick-
ness is denoted with a radial value from the center of the coatings,
Rn, where n denotes the particular layer of material (n = 1, 2, 3, or 4
from outside to inside). The overall length of the unit cell is
denoted as L1, which represents the dimension of the material 1
in which the resonating and dissipative materials are embedded.

4.1. Dispersion calculation by Finite Element Method (FEM)

To determine wave dispersion properties of a periodic structure
with FEM, the eigenfrequencies are usually calculated based on the
wavenumbers given in Bloch periodic boundary conditions.

However, if the material damping is present, the eigenfrequencies
obtainedwill become complex due to the usage of complexmaterial
parameters. These complex eigenfrequencies do not have a clear
physical meaning because they are real numbers in nature and can-
not represent the overall wave attenuation in space. Additionally,
when the damping coefficient is dependent on the frequency,
procedures with conventional dispersion analysis will be extremely
complicated and special iterative methods need to be developed.
Therefore it is an objective to propose a wavenumber calculation
method based on given frequencies for periodic structures with
damped and/or frequency dependent material properties. Once
the complex wavenumber is calculated, wave propagation and
attenuation properties can then be easily characterized.

For the plane strain problem, the governing equation (Navier’s
equation) of motion expressed with displacements is

ðkþ lÞrr � uþ lr2u ¼ q€u; ð12Þ
where u ¼ ½u1;u2�T, with u1 and u2 being the displacements in the x
and y directions, q, k and l are material mass density, Lamé’s first

and second constants, respectively, and r2 ¼ @2

@x2 þ @2

@y2.

By considering a primitive cell of the periodic problem and by
using the Bloch theorem, the displacement can be assumed as [26]

u ¼ ~ueiðkxþxtÞ; ð13Þ
where ~u ¼ ½~u1; ~u2�T is a periodic function with periodicity being L1,
and k ¼ ½kx; ky� with kx and ky denoting the wavenumbers in x and
y directions. By inserting Eq. (13) into Eq. (12) and letting
k ¼ ½k cosðhÞ; k sinðhÞ� with k and h being total wavenumber and
propagation direction, one can obtain

A2~uk
2 þ iA1r~ukþ ðkþ lÞrr � ~uþ lr2~uþ qx2~u ¼ 0; ð14Þ

where

A2 ¼
� ðkþ2lÞcos2ðhÞþlsin2ðhÞ
h i

�ðkþlÞcosðhÞsinðhÞ

�ðkþlÞcosðhÞsinðhÞ � ðkþ2lÞsin2ðhÞþlcos2ðhÞ
h i

2
64

3
75;

A1 ¼
2ðkþ 2lÞ cosðhÞ 2l sinðhÞ ðkþlÞ sinðhÞ ðkþlÞ cosðhÞ
ðkþlÞ sinðhÞ ðkþlÞcosðhÞ 2lcosðhÞ 2ðkþ 2lÞ sinðhÞ

� �
:

For the finite element formulation of Eq. (14), COMSOL Multi-
physics is adopted where the periodic boundary condition is
applied on the outer boundaries of the unit cell. In order to obtain
the dispersion relations of the proposed dissipative EMM, a quad-
ratic eigenvalue problem for k is finally formulated and solved
numerically.

The dispersion relations of the longitudinal wave propagated
through the proposed dissipative EMM will be numerically deter-
mined with h ¼ 0 and the geometric and material properties are
listed in Table 1. According to the discussions in Section 3.1, two
bandgaps can be combined into one large attenuation band
through properly selecting the damping coefficient of the inner-
most damping coefficient s3. This constructive behavior will be
continually applied to the dissipative EMM design in this section.
For the computational convenience of the application in the time
domain analysis, Rayleigh damping coefficient, bd, is adopted and
applied to material 4. The relation between the loss factor and
the Rayleigh damping is given as

cd ¼ xbd: ð15Þ
Fig. 14(a) shows the real portion of the wavenumber of the pro-

posed EMM with the change of the damping coefficient of material
4, which denotes the propagation factor of the longitudinal wave
through the EMM. As shown in the figure, two perfect bandgaps

L1

R1

R2
R3

R4

Material 1

Material 3
Material 2

Material 4

Material 5

x

y

O

Fig. 13. Microstructure design of a dissipative EMM embedded with two
resonators.
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are present for the frequency ranges of approximately 400–
1000 Hz and 2200–3800 Hz for the EMMwith zero Rayleigh damp-
ing. As the damping magnitude is increased, the bandgaps are
removed and the previously evanescent wave (Re(kL1) = 0)

becomes a propagating wave (Re(kL1)– 0) because of the appear-
ance of the damping element. The propagation factor Re(kL1)
increases with the increase of the damping coefficients. The imag-
inary portion of the wavenumber is shown in Fig. 14(b). In the fig-
ure, we see the two separate wave attenuation regions present for
little or no damping cases (bd ¼ 0 and 1� 10�5). As the Rayleigh
damping is increased to 1� 10�4 and 1� 10�3, the attenuation
region becomes broad, occupying a frequency range of approxi-
mately 400–3800 Hz, which implies that the broadband wave
attenuation/dissipation due to the metadamping presented in Sec-
tion 3 has been realized through a simple embedded EMM design.
It should be mentioned that the broadband wave attenuation/
dissipation behavior is the consequence of the coupling of the
metadamping and local resonant motion of the designed EMM.

4.2. Blast wave mitigation of the proposed dissipative EMM

For practical applications, we also conduct transient analysis
of N number of unit cells sandwiched between incident and
transmission bars to examine blast wave mitigation of the pro-
posed dissipative EMM, as shown in Fig. 15. The finite element
based time domain analysis will be performed, where plane strain
assumptions still hold. Material and geometrical parameters for
the dissipative EMM have been left unchanged from those used
in Fig. 14. The material used in incident and transmission bars is
the background material 1 in the dissipative EMM. The length of
the two bars is 8 m. A longitudinal incident force of the form,

F ¼ F0e
�t�t0

td , is applied to the left edge of the incident bar to gener-
ate a blast wave profile, where F0 = 100 N/m, t0 = 0.5 ms and
td = 0.2 ms. The particle velocity at a point 200 mm from the left
edge of the incident bar is measured as an incident blast signal.
After the blast wave has traveled through the proposed dissipative
EMM, the transmitted signal is then measured at a point 50 mm
from the Nth cell. All the other outer edges are set free in the
numerical simulations. Attention will be focused on determining
the total number of unit cells necessary for efficient mitigation of
the incoming blast wave.

Fig. 16(a) shows simulated time domain blast wave signals
measured on the incident and transmission bars under transmis-
sion tests of the proposed EMM with different Rayleigh damping
coefficients for 5 unit cells (N = 5). The signal presented in the
upper window of Fig. 16(a) illustrates a blast wave generated by
an applied force on the left end of the incident bar and then
reflected on the interface between the incident bar and the EMM.
The other windows in Fig. 16(a) demonstrate transmitted signals

Table 1
Material and geometric parameters of the proposed EMM.

Material 1 Material 2 Material 3 Material 4 Material 5

Material properties
Lamé’s first constant (Pa) 2.0 � 109 5.0 � 105 2.0 � 1012 2.0 � 105 2.0 � 1012

Lamé’s second constant (Pa) 1.0 � 109 2.5 � 105 1.0 � 1012 1.0 � 105 1.0 � 1012

Density (kg/m3) 1000.0 1000.0 20000.0 1000.0 20000.0

Geometrical parameters
L1 (mm) R1 (mm) R2 (mm) R3 (mm) R4 (mm)
20.0 9.0 8.5 8.0 7.5

Fig. 14. Dispersion relations of the dissipative EMM embedded with two
resonators: (a) real portion of the wavenumber; (b) imaginary portion of the
wavenumber.

… …

#1 #2 #3# N#N-1Unit Cell No.

Blast

Pulse

Fig. 15. Schematic design of time domain transmission analysis of the dissipative EMM under a blast incidence.
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of blast waves traveling through the dissipative EMM with differ-
ent Rayleigh damping coefficients, bd = 0, 1e�4 and 1e�3, respec-
tively. It can be found that as the damping coefficient is
increased, the peak amplitude of the transmitted signal will be
decreased and the transmitted blast wave can be attenuated faster
than that with a smaller Rayleigh damping coefficient, bd. Fig. 16(b)
shows the frequency amplitude through FFT of these input and
transmitted signals. From Fig. 16(b), we can see that the wave with
frequency components within the bandgaps can be successfully
mitigated, when the Rayleigh damping is equal to zero, bd ¼ 0.
Clearly, a passband between the two bandgaps can be also
observed. It is worth noting that the frequency range of wave
attenuation is slightly higher than the width of the bandgaps that
were predicted in Fig. 14. When Rayleigh damping is applied (i.e.
bd ¼ 1� 10�4) to material 4, wave attenuation becomes strong in
the lower frequency region. Specifically, waves can be absorbed
within the passband frequencies, as predicted in Fig. 14. However,
almost no changes are observed for higher frequency values than
those that were seen when Rayleigh damping was absent
(bd ¼ 0). When greater damping is applied (i.e. bd ¼ 1� 10�3),
waves can be adequately mitigated in the frequency range from
600 Hz to 5000 Hz. However, this range is slightly narrower than
that in the previous case. In order to further reveal wave behaviors
and inner mass motions of the dissipative EMM with 5 unit cells in
details, velocity fields of this blast wave at different times (t = 5.12,
5.30, 5.44 and 5.62 ms) are extracted and shown in Fig. 17. In the
figure, the Rayleigh damping coefficient, bd ¼ 1� 10�4, is
employed. As shown in Fig. 17, the left side windows represent
velocity fields within the whole system, while the right side win-
dows denote velocity fields in the first unit cell. The unit of the
color legend is in m/s. It can be observed from Fig. 17(a) that when
t = 5.12 ms, the blast wave is approaching the EMM and both the
middle and innermost masses are kept motionless. When
t = 5.30 ms, as shown in Fig. 17(b), the blast wave has just traveled
into the EMM. At this time, the middle mass moves with the back-
ground material in the same direction, whereas the innermost
mass starts to move but with a much smaller amplitude. It demon-
strates that large amounts of the wave energy is starting to flow
and be stored in the inner resonators. At the same time, the stored
wave energy is also dissipated within the embedded resonators,

(a) 

(b) 

βd = 0

βd = 1e-4

βd = 1e-3

Signal on incident bar

Fig. 16. Signals of blast waves measured on the incident and transmitted bars of the
dissipative EMM with 5 unit cells: (a) time domain; (b) frequency domain.

(a) 5.12ms

(b) 5.3ms

(c) 5.44ms

(d) 5.62ms

1st cell

Fig. 17. Velocity fields of the blast wave on the incident and transmitted bars and the dissipative EMM with 5 unit cells at different times: (a) t = 5.12 ms; (b) t = 5.30 ms; (c)
t = 5.44 ms; (d) t = 5.62 ms.
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due to the damping in material 4. When t = 5.44 ms, as shown in
Fig. 17(c), the blast wave has just traveled through the EMM. At
this time, the middle mass moves in the opposite direction with
the innermost mass, which illustrates the stored energy continues
to be dissipated within the innermost damping material. When
t = 5.62 ms, as shown in Fig. 17(d), the blast wave has traveled
far from the EMM. At this time, the middle mass still moves in
the opposite direction as the innermost mass but with larger
amplitudes. As a result, the stored energy in the resonators will
be totally absorbed in material 4. Thus, the metadamping behav-
iors have been clearly illustrated through wave energy transferred
and absorbed in time domain.

Effects of the number of unit cells, N, on blast wave mitigation
efficiency is examined and illustrated in Figs. 18 and 19. Time
domain blast wave signals measured on the incident and transmis-
sion bars of the proposed EMM with different Rayleigh damping
coefficients are presented in Figs. 18(a) and 19(a), where N = 10
and 15, respectively. Comparing Figs. 18(a) and 19(a) with
Fig. 16(a), it can be observed that signals on the incident bar with
different numbers of unit cells are almost identical. As expected,
when the number of unit cells is increased, the peak amplitude
of the transmitted signal will decrease, which indicates better
attenuation performance with larger number of unit cells. Figs. 18

(b) and 19(b) show the frequency amplitude through FFT of these
input and transmitted signals, when N = 10 and 15, respectively. In
these two figures, wave attenuation can be significantly improved
in a broad frequency region. For example, waves can be almost
completely absorbed at frequencies between 400 Hz and
4000 Hz, when bd ¼ 1� 10�4 and 15 EMM unit cells are employed.
The most efficient absorption characteristics usually coincide with
large damping parameters, however, the attenuation band will
become narrower for bd ¼ 1� 10�3 compared with those when
bd ¼ 1� 10�4. Optimization of the design is still needed however,
as some extremely low-frequency components will remain leaked
to the proceeding system.

5. Summary

This paper presents comprehensive modeling and analysis of a
dissipative EMM for application in broadband wave attenuation
at subwavelength scale. Wave dispersion behaviors of both non-
dissipative and dissipative lattice systems with multiple resonators
are studied to quantitatively determine microstructure effects on
the form of a desired wave attenuation range. To reveal the
working mechanisms, the dissipative EMM is homogenized as an

(a) 

(b) 

βd = 0

βd = 1e-4

βd = 1e-3

Signal on incident bar

Fig. 18. Signals of blast waves measured on the incident and transmitted bars of the
dissipative EMM with 10 unit cells: (a) Time domain; (b) Frequency domain.

(a) 

(b) 

βd = 0

βd = 1e-4

βd = 1e-3

Signal on incident bar

Fig. 19. Signals of blast waves measured on the incident and transmitted bars of the
dissipative EMM with 15 unit cells: (a) Time domain; (b) Frequency domain.
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effective medium with an effective mass and an effective
metadamping coefficient, from which wave attenuation can be
quantitatively interpreted by both the negative effective mass
density and effective metadamping. Finally, a microstructure
design of the dissipative EMM made of the heterogeneous
dissipative continuum media is numerically introduced as a
potential EMM candidate for broadband wave attenuation.
Hopefully, the results of the study could open new opportunities
on the development of the new multifunctional composite
material as an efficient wave mitigation material.
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