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Abstract Based on analytical solutions of elastic waves scattered by a coated cylinder in an infinite elastic
matrix, we construct the localization relations for averaged displacement and stress fields in each phase.
Dynamic effective mass, in-plane bulk modulus and shear modulus are defined, respectively, as the ratio
between the force and acceleration, bulk stress and bulk strain, maximum shear stress and maximum shear
strain. Analytic expressions for dynamic effective parameters of two-dimensional acoustic metamaterials are
derived. Numerical examples are given to analyze dynamic effective properties of composites with coated
inclusions. It is demonstrated that the proposed model can predict negative values of effective mass and
effective bulk and shear modulus, and discover the underlying mechanisms of negative effective material
parameters. The proposed model will be helpful in designing new acoustic metamaterials.

1 Introduction

Acoustic metamaterials with local resonances have negative effective material parameters in the long-
wavelength regime. Acoustic metamaterials with unusual dynamic properties can be used to block low-
frequency noises [1–4], produce sub-wavelength images beyond the diffraction limit [5,6] and cloak objects
without scattering [7,8], etc. To explore the exotic engineering applications, it is very important to predict effec-
tive dynamic properties of metamaterials and understand the underlying mechanisms how anomalous dynamic
properties are realized. Effective dynamic properties can be determined by the transmission and reflection
method [9], which retrieves effective parameters from a homogeneous material with the transmission and
reflection spectra of metamaterials. The method can accurately predict effective dynamic parameters, but fail
to disclose the physical mechanisms of the local resonance. It has been discovered from a discrete mass-spring
model [10–12] that negative effective mass comes from the out-of-phase motion of the internal mass with
respect to its surrounding material. For locally resonant sonic crystals with rubber-coated lead spheres in an
epoxy matrix [1], the homogenization method has been presented to explain the “negative mass” [13]. But the
method cannot give a prediction for higher-order resonant effects. So, it is necessary to develop a dynamic
effective model to both predict effective properties and explore the “negative” nature of these effective material
parameters in order to provide a design guide for acoustic metamaterials.

The anomalous overall properties of metamaterials result from the locally resonant effects of their building
unit. This allows the prediction of the effective property by the dynamic effective model based on the single
inclusion theory [14]. In a previous work [15], localization relations are constructed for averaged fields in each
phase, based on analytical solutions of an elastic wave scattered by a coated sphere in an infinite elastic matrix.
The effective mass, bulk modulus and shear modulus are defined, respectively, as the ratio between the force
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Fig. 1 The analyzed model

and acceleration, bulk stress and bulk strain, maximum shear stress and maximum shear strain. It is found that
negative effective mass is induced by a negative acceleration field of the composite under a positive force. The
negative effective bulk modulus appears for composites with an increasing (decreasing) total volume under
a compressive (tensile) stress. The negative effective shear modulus describes composites with axisymmetric
deformation under an opposite axisymmetric loading.

In this work, we will derive the analytic expressions of effective mass, in-plane effective bulk and shear
moduli for two-dimensional (2D) acoustic metamaterials with cylindrical inclusions. First, analytic solutions
for elastic waves scattered by a coated cylinder are given. Then, we propose the analytic expression for
effective mass, in-plane effective bulk and shear modulus based on the averaged displacement and stress fields.
Numerical results demonstrate that the proposed model can predict 2D composites with negative effective
mass, bulk and shear modulus. These findings will help us design efficient low-frequency noise barriers and
vibration dampers.

2 Scattering solutions of a coated cylinder

The analyzed model is a three-phase composite consisting of coated cylinders embedded in a host material. The
building unit is a doubly coated cylinder, having the radii r1, r2 and r3, respectively, for the uncoated cylinder,
the coated cylinder and the outer boundary, as shown in Fig. 1. The matrix material covers the region with
radius ranging from r2 to r3 = r2/

√
φ, where φ is the filling fraction of the coated cylinders. Each region is

assumed to be elastic material characterized by mass density ρi , Lamé coefficients λi and μi with the subscript
i = 1, 2, 3 representing separately the core, the coating and the host.

The scattering fields in the i th region are expressed as [16]

u(i)
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∑

n

u(i)
r,n (r) cos nθ, (1a)

u(i)
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∑

n
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θ,n (r) sin nθ (1b)

for the displacements, where
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with

E (i)
11 = nHn(αi r) − αi r Hn+1(αi r),

E (i)
12 = nHn(βi r),
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with

E (i)
31 = (n2 − n − β2
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αi and βi are, respectively, longitudinal and transverse wave vectors. When a plane longitudinal (P) wave is
incident on a coated cylinder, c(3)

0 = 1, c(3)
n = 2in (n ≥ 1), and d(3)

n = 0. In the inner region r ≤ r1, a(1)
n =

b(1)
n = 0. At the interfaces r = r1 and r = r2, the normal and tangential components of the displacement and

stress fields should be continuous. Eight equations can be constructed to determine uniquely eight unknown
scattering coefficients c(1)

n , d(1)
n , a(2)

n , b(2)
n , c(2)

n , d(2)
n , a(3)

n and b(3)
n .

3 Effective dynamic mass

For time harmonic (e−iωt ) waves, the equilibrium equation of elastic materials is written as

∇ · σ = −ρω2u. (5)

Integrate Eq. (5) on a circular region S of the radius R, one obtains

F = −ρω2ū, (6)
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where the Green formula has been used, F = ∫
dl · σ is the net force loading on the circular region, and the

overall displacement is defined to be ū = ∫
udS. By use of Eqs. (3a,3b), it is found that the net force does not

vanish only in the incident direction and is given by

F = R
∑

n

[
σrr,n (R) ln − σrθ,n (R) mn

]
, (7)

where

ln =
2π∫

0

cos nθ cos θdθ, (8a)

mn =
2π∫

0

sin nθ sin θdθ. (8b)

Based on the orthogonal property of trigonometric functions, the nonzero solutions of Eqs. (8a,8b) are l1 =
m1 = π . Therefore, the force F acting on the circular region of radius R can be computed by

F (R) = π R
[
σrr,1 (R) − σrθ,1 (R)

]
. (9)

According to Eq. (6), the macroscopic equilibrium equation for each region of a doubly coated cylinder can
be written as

F (r1) = −ρ1ω
2ū(1), (10a)

F (r2) − F (r1) = −ρ2ω
2ū(2), (10b)

F (r3) − F (r2) = −ρ3ω
2ū(3), (10c)

where ū(i) denotes the averaged displacement of the i th region. Effective mass density ρeff can be defined as

ρeff = −F (r3)

/(
ω2

∑

i

ū(i)

)
. (11)

Substitute Eqs. (10a,10b,10c) into Eq. (11) to obtain the effective mass density of the three-phase composite

ρeff = F (r3)

F (r1) (1/ρ1 − 1/ρ2) + F (r2) (1/ρ2 − 1/ρ3) + F (r3) /ρ3
. (12)

4 Effective elastic properties

The constitutive equation of an isotropic linear elastic material is written as

σ = 2λεbI + 2με, (13)

where the bulk strain εb = (1/2) trε and the strain tensor ε are related to the displacement field u by

εb = 1

2
∇ · u, (14a)

ε = 1

2
(∇u + u∇). (14b)

Integrate Eq. (14a) on a circular region S of the radius R, and use Eqs. (2a,2b) to obtain

ε̄b (R) = R

2

∑

n

[
ur,n (R) sn

]
, (15)
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where ε̄b = ∫
εbdS and

sn =
2π∫

0

cos nθdθ. (16)

In Eq. (16), the nonzero solution is s0 = 2π . Therefore, the averaged bulk stress σ̄b = (1/2) trσ in the i th
region can be calculated by

σ̄
(i)
b = 2κi ε̄

(i)
b , (17)

where κi = λi + μi is the bulk modulus. The effective bulk modulus κeff can be defined as

κeff =
∑

i

σ̄
(i)
b

/(
2

∑

i

ε̄
(i)
b

)
. (18)

Substitute Eq. (17) into Eq. (18), then the effective bulk modulus is expressed as

κeff = (κ1 − κ2) ε̄b (r1) + (κ2 − κ3) ε̄b (r2) + κ3ε̄b (r3)

ε̄b (r3)
. (19)

Integrate Eq. (14b) on a circular region S of the radius R. The deviatoric part ε̄′ of the overall strain ε̄ = ∫
εdS

can be expressed as

ε̄′ = ē

[
1 0
0 −1

]
, (20)

where

ē (R) = R
∑

n

[
ur,n (R) pn − uθ,n (R) qn

]
, (21)

with

pn =
2π∫

0

cos nθ cos 2θdθ, (22a)

qn =
2π∫

0

sin nθ sin 2θdθ. (22b)

Because of the orthogonal properties of the trigonometric functions, the nonvanishing coefficients in Eqs.
(22a,22b) are p2 = q2 = π . The overall deviatoric stress τ̄ is related to the deviatoric strain ē by shear
modulus, τ̄ = 2μē. Therefore, the deviatoric stress in the i th region can be computed by

τ̄ (i) = 2μi ē
(i). (23)

The effective shear modulus can be defined as

μeff =
∑

i

τ̄ (i)

/(
2

∑

i

ē(i)

)
. (24)

Substituting Eq. (23) into Eq. (24), the effective shear modulus of the three-phase composites is

μeff = (μ1 − μ2) ē (r1) + (μ2 − μ3) ē (r2) + μ3ē (r3)

ē (r3)
. (25)
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Fig. 2 a Effective mass density of a rubber-coated lead cylinders in an epoxy matrix; b averaged acceleration of the particle,
coating and matrix versus the external force

5 Numerical examples

Numerical examples for predicting effective dynamic properties of 2D acoustic metamaterials will be given
in this section. First, consider the composite consisting of rubber-coated lead cylinders embedded in an
epoxy matrix. The material parameters are ρ1 = 11, 600 kg/m3, λ1 = 42.3 GPa, μ1 = 14.9 GPa for lead,
ρ2 = 1, 300 kg/m3, λ2 = 0.6 MPa, μ2 = 0.04 MPa for silicone rubber, and ρ3 = 1, 180 kg/m3, λ3 =
4.43 GPa, μ3 = 1.59 GPa for epoxy. The radius of the inner cylinder is 5.0 mm, the coating thickness is
2.0 mm and the volume fraction of the coated cylinder is 30 %. Figure 2a shows effective mass density of the
composite predicted by Eq. (12). It can be found that negative effective mass occurs in a narrow band above the
resonant frequency 445 Hz. To discover the mechanism of the negative mass effect, the averaged acceleration
of the lead particle a1, rubber coating a2 and epoxy matrix a3 versus the external force F3 is shown in Fig. 2b.
It can be seen that around the frequency 445 Hz, the lead cylinder resonates and applies an out-of-phase force
on the coating and matrix, so that the averaged accelerations of the coating and matrix become negative. Above
this frequency, negative acceleration/force relation overwhelms the system due to the resonant effect, resulting
in negative effective mass. The result allows us to construct a mass-spring structure equivalent to the composite
unit, as shown in Fig. 3a, where the mass m1, spring G and mass m0 represent, respectively, the lead particle,
rubber coating and epoxy matrix. The effective mass of the mass-spring structure is derived to be [10]

meff = m0

(
1 + ω2

c

ω2
0 − ω2

)
, (26)

where ωc = √
G/m0 and ω0 = √

G/m1. From Eq. (26), the inner mass resonates at ω0 and moves out of phase
with respect to the outer mass, so that effective mass becomes negative. Therefore, negative mass phenomenon
of the analyzed composite is due to the resonant effect of the lead particle.

Further consider the case that the lead particle is fixed. The equivalent mass-spring structure is shown in
Fig. 3b. Suppose that the mass m0 has a displacement u0 under a harmonic force F of angular frequency
ω. Newton’s law of motion gives the relation F = −m0ω

2u0 + Gu0. If the structure is considered as a
homogeneous structure defined by an effective mass meff , we have F = −meffω

2u0. The effective mass meff
is given by [3]

meff = m0

(
1 − ω2

c

ω2

)
. (27)
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Fig. 3 The mass-spring structure with the free inner mass (a) and fixed inner mass (b)
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Fig. 4 a Effective mass density of a rubber-coated lead cylinders in an epoxy matrix, where the lead cylinder is fixed; b averaged
acceleration of the coating and matrix versus the external force

According to Eq. (27), the effective mass is negative below the cutoff frequency ωc. For the composite analyzed
in Fig. 2, the effective mass density predicted by the proposed model is shown in Fig. 4a, when the lead particle
is fixed. It can be found that effective mass is negative below the frequency 550 Hz. We plot the averaged
acceleration a2 and a3 of the rubber coating and epoxy matrix versus the external force F3 in Fig. 4b. It is
seen that the accelerations of the coating and matrix respond out of phase with respect to the applied force, as
the result of negative effective mass below a cutoff frequency. The proposed model clearly demonstrates the
result discovered from the mass-spring model.

Consider the composite made of bubble-contained-water cylinders embedded in an epoxy matrix. Material
parameters are ρ1 = 1.23 kg/m3, λ1 = 0.142 MPa for air and ρ2 = 1, 000 kg/m3, λ2 = 2.22 GPa for water.
The radius of the air cylinder is 2.0 mm, the coating thickness is 78.0 mm and the volume fraction of the coated
cylinder is 10 %. It has been demonstrated that such a kind of composite could realize an negative effective
bulk modulus based on the monopolar resonance of the inclusions [15,17]. Figure 5a, b show, respectively,
the effective bulk modulus κeff of the composite and the averaged bulk strain εi = ε̄

(i)
b of each phase versus

the total bulk strain εt = ∑
ε̄
(i)
b . In Fig. 5a, a negative effective bulk modulus can be observed at frequencies

ranging from 1,520 to 1,770 Hz. The underlying mechanism can be understood from Fig. 5b. Assume the
composite cylinder is in the state of expansion εt > 0, then the water coating can be greatly compressed due
to the resonant effect. Since the modulus of water is much greater than that of air, the composite is under
compressive stress, as the result of a negative effective bulk modulus.

As final example, consider rubber-coated epoxy cylinders embedded in the polyethylene foam HD115.
Material parameters of the polyethylene foam are ρ3 = 115 kg/m3, λ3 = 6 MPa, μ3 = 3 MPa [15]. The radius
of the epoxy cylinder is 5 mm, the coating thickness is 7 mm and the filling fraction of the coated cylinder
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Fig. 5 a Effective bulk modulus κeff of the composite with bubble-contained-water cylinders embedded in an epoxy matrix;
b averaged bulk strain εi of each phase versus the total bulk strain εt
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Fig. 6 a Effective shear modulus μeff of the composite composed of rubber-coated epoxy cylinders embedded in the polyethylene
foam; b averaged shear strain ei of each phase versus the total shear strain et

is 30 %. The effective shear modulus μeff of the composite and the averaged shear strain ei = ē(i) of each
phases versus the total shear strain et = ∑

ē(i) are shown in Fig. 6a, b, respectively. It is seen that the proposed
model predicts negative effective shear modulus in the frequency band around 780 Hz. With help of Fig. 6b,
the mechanism of negative effective shear modulus can be analyzed. The shear deformation of the inner core
is trivial at all frequencies. A resonant effect takes place at around 780 Hz, so that the foam matrix undergoes
the negative shear strain when the total shear strain is positive. Since the polyethylene foam is stiffer than the
soft rubber, negative shear stress dominates the whole composite. Negative effective shear modulus is defined
for composites with positive shear strain under the loading of negative shear stress.
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In a previous paper [15], the physical mechanisms of negative effective mass, bulk modulus and shear
modulus have been explored based on the proposed model for the case of spherical inclusions. Here, we
have demonstrated that similar mechanisms can be observed in 2D acoustic metamaterials with cylindrical
inclusions. The proposed method can predict negative effective parameters of 2D acoustic metamaterials and
disclose the physical mechanism of anomalous properties.

6 Conclusion

In conclusion, we propose dynamic effective model for predicting negative effective mass, bulk and shear
moduli of metamaterials with cylindrical inclusions. The model derives the analytic expressions for effective
material parameters based on the averaged displacement and stress fields. Numerical examples demonstrate
that the out-of-phase resonant response of inclusions is the origin of negative effective mass, bulk and shear
modulus. In addition, the proposed model can also predict effective properties of composites with negative
effective mass below a cutoff frequency. The proposed method will be helpful for the design of acoustic
metamaterials with resonant microstructures.
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