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Abstract

Size-dependence is well observed for metal matrix composites, however the classical micromechanical model fails to
describe this phenomenon. There are two different ways to consider this size-dependency: the first approach is to include
the nonlocal effect by idealizing the matrix material as a high order continuum (e.g., micropolar or strain gradient); the
second is to take into account the interface effect. In this work, we combine these two approaches together by introducing
the interface effect into a micropolar micromechanical model. The interface constitutive relations and the generalized
Young–Laplace equation for micropolar material model are firstly presented. Then they are incorporated into the micro-
polar micromechanical model to predict the effective bulk and shear moduli of a fiber-reinforced composite. Two intrinsic
length scales appear: one is related to the microstructure of the matrix material, the other comes from the interface effect.
The size-dependent effective moduli due to the nonlocal effect and interface effect can be synchronized or desynchronized
for nanosize fibers, depending on the nature of the interface. For the relatively large fiber size, the size-dependence is dom-
inated by the nonlocal effect. As expected, when the fiber size tends to infinity, classical result can be recovered.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Homogenization method has been recognized as a rapid developing scheme in the past decades due to a
strong desire for tailoring material microstructures. Different techniques for establishing the relation between
the effective property and the microstructure of a heterogeneous material are summarized in references
(Nemat-Nasser and Hori, 1993; Milton, 2002; Hashin, 1983; Buryachenko, 2001; Hu and Weng, 2000). How-
ever, the classical homogenization approach fails to predict the size-dependence of the effective property, well
observed in the experiment (Kouzeli and Mortensen, 2002). Since the classical methods are based on the
assumptions that there is well separation of length scales and that the interfacial bonding is perfect. In order
to consider the size effect, two different approaches have been proposed: one is based on the high order con-
tinuum model for constituent materials; the other argues that the interface effect comes into play. For the first
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doi:10.1016/j.ijsolstr.2007.06.001

* Corresponding author. Tel./fax: +86 10 68912631.
E-mail address: hugeng@bit.edu.cn (G. Hu).

mailto:hugeng@bit.edu.cn


H. Chen et al. / International Journal of Solids and Structures 44 (2007) 8106–8118 8107
approach, the strain gradient (Smyshlyaev and Fleck, 1994) or micropolar (Liu and Hu, 2005; Hu et al., 2005)
models have been incorporated into proper micromechanical models, the size-dependence of the overall elastic
and plastic properties for composite materials can be predicted. An intrinsic length has to be introduced which
is usually in micrometer scale, this length scale is believed to be related to the microstructure of the constituent
materials (Hu et al., 2005). In the second approach, the constituent materials are assumed to be local in nature,
however the stress discontinuity is allowed across the interface between the matrix and the reinforced phase,
and this discontinuity is governed by Young–Laplace equations (Huang and Wang, 2006; Huang and Sun,
2007; Duan et al., 2005). The effective modulus predicted by the interface model varies in a complicated man-
ner as a function of particle size, depending on the nature of the interface (e.g., Huang and Sun, 2007; Duan
et al., 2005; Sharma et al., 2003). An intrinsic length scale is also introduced which is related to the property of
the interface. It seems that this size effect only pronounced as the inclusions are within nanometer scales
(Huang and Sun, 2007; Duan et al., 2005; Sharma et al., 2003). The scaling law for the effective modulus with
the interface effect is also discussed recently (Wang et al., 2006; Duan et al., 2007).

It is of interest to examine both nonlocal effect and the interface effect, since with decreasing the size of the
inclusions, these two effects become more and more pronounced. In the context of strain gradient theory,
Zhang and Sharma (2005), include the interface effect to analyze the strain and stress distribution for quantum
dots structure. However, the works concerned with both nonlocal and interface effects still merit further study.

In this paper, an analytical approach is proposed to include the interface effect in a micropolar microme-
chanical model. The manuscript is arranged as follows: the constitutive relations of the interface and the gen-
eralized Young–Laplace equations across the interface for a micropolar material are presented in Section 2,
the micro–macro transition method is employed and the computation of the effective moduli of a fiber-rein-
forced composite is carried out in Section 3 in the framework of micropolar theory with interface effect, and
the scaling law of the effective modulus is discussed in Section 4, followed by concluding remarks.

2. Constitutive relations of the interface and the generalized Young–Laplace equations in micropolar theory

The influence of interface effect on stress and strain fields was formulated by Gurtin and Murdoch (1975) in
a continuum framework for elastic surface of solids, and was further generalized to the case of finite deforma-
tion by Huang and Wang (2006). The surface/interface constitutive relations together with the discontinuity
conditions of the stress across the interface provide the necessary conditions for the boundary-value problem
to determine the stress and strain fields with interface effect. In the micropolar material model, a surface ele-
ment at a material point can transmit not only forces but also moments. So in the micropolar theory, three
traditional displacements, and three extra rotations are used to describe the deformable point particles. For
the micropolar theory with interface effect, additional interface constitutive relations and the jump conditions
across the interface are needed.

The geometrical relations, equilibrium equations and the constitutive relations for a centro-symmetric and
isotropic micropolar material in the bulk are given by Eringen (1999) and Nowacki (1986)
e ¼ r� u� e � u; k ¼ r� u; ð1aÞ
r � r ¼ 0; r �mþ e : r ¼ 0; ð1bÞ

r ¼ kTrðeÞIþ ðlþ jÞeþ ðl� jÞeT; m ¼ aTrðkÞIþ ðbþ cÞkþ ðb� cÞkT; ð1cÞ
where r and m are, respectively, stress and couple stress tensors, e and k are the corresponding strain and tor-
sion tensors, u and u are displacement and micro-rotation vectors, e is the permutation tensor, l, k are clas-
sical Lamé’s constants and j, c, b, a are the new elastic constants introduced in micropolar theory, I represents
the 2nd rank unit tensor in a three-dimensional space, the superscript T represents the transposition of a ten-
sor. The corresponding boundary conditions are given by
N � r ¼ �t; N �m ¼ �p on oV r; u ¼ �u; u ¼ �u on oV u; ð2Þ
where �t and �p are prescribed force and couple on the boundary oVr, �u and �u are prescribed displacement and
micro-rotation on the boundary oVu, N is outward unit normal vector to the boundary oVr. Note that r and e

are not symmetric tensors due to the presence of the couple stress and the micro-rotation. In the following, we
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will derive the constitutive relations of the interface and the jump conditions across the interface for stress and
couple stress.

Consider a smooth interface C between two solid materials X1 and X2 with the unit normal vector n directed
form X1 to X2. Both X1 and X2 are centro-symmetric and isotropic micropolar materials and they satisfy the
governing equations (1). In the following, subscript s represents the quantity on the interface. In the interface
model, the displacement u and micro-rotation u across the interface are assumed to be continuous, so the
strain es and torsion ks of the interface can be defined. However the stress r and couple stress m are discon-
tinuous across the interface. Firstly, we construct a curvilinear coordinate system on the interface, which has
covariant base vector aa (a = 1,2) on the tangent plane of the interface. The unit normal vector is denoted by
a3 or n. The interface strain es and interface torsion ks, which are 2nd rank tensors in a two-dimensional space,
can be considered as the projection of the tensors e and k in the three-dimensional space onto the tangent
plane, for example, the strain tensor in a three-dimensional space can be written as
e ¼ es þ ea3aa � a3 þ e3ba3 � ab þ e33a3 � a3 ða; b ¼ 1; 2Þ;
where es = eab aa � ab. So the interface strain es and the interface torsion ks can be expressed by
es ¼ P � e � P; ks ¼ P � k � P; ð3Þ
where P = I � n � n is the projection tensor.
With the help of Eqs. (1a, 3), we obtain
es ¼ rs � u� ðe � uÞs; ks ¼ rs � u; ð4Þ
where (Æ)s represents the projection operator onto the tangent plane of the interface, and $s denotes the gra-
dient operator of the interface. Supposed that the displacement u and the micro-rotation u on the interface can
be decomposed into a tangential part ut and a normal part un, i.e., u = ut + un and u = ut + un, where ut =
P Æ us, un = una3, ut = P Æ us and un = una3 with un and /n being the normal components of u and u at the
interface. Then by using the Weingarten formula, we have $s � un = �unb and $s � un = �/nb, where b is
the curvature tensor of the interface. Noting that, (e Æ u)s can be written as
ðe � uÞs ¼ /nes; ð5Þ
where es is the permutation tensor in the tangential plane. We obtain
es ¼ rs � ut � unb� /nes; ks ¼ rs � ut � /nb: ð6Þ
There are two kinds of interface models to predict the overall properties in the existing literature. The first one
is the interface energy model, and the second one is the interface stress model. It is noted that there should be a
residual stress field due to the presence of the surface/interface energy (and surface/interface stresses) in mate-
rials, even though there is no external loading. In the interface energy model, the above mentioned residual
surface/interface tension is taken into account. Therefore, the influence of the liquid-like residual surface ten-
sion on the effective properties of the composite materials can also be included (Huang and Sun, 2007). In the
interface stress model, there is no residual stress field induced by the surface/interface tension when the mate-
rial is not subjected to any external loading. So this is model is only valid in the special case where the residual
surface/interface tension (or the residual surface/interface energy) can be neglected, and under the infinitesimal
deformation, the interface Cauchy stress and the interface Piola-Kirchhoff stress are the same. In order to sim-
plify the discussion, only the interface stress model will be adopted in this paper.

In the case of infinitesimal deformation, the interface constitutive relations can be expressed in terms of the
interfacial free energy Ws = Ws(es,ks)
rs ¼
oWs

oes

; ms ¼
oWs

oks

; ð7Þ
where rs and ms are interface stress and interface couple stress tensors, both of which are 2nd rank tensors in a
two-dimensional space.

In the following, the interface is assumed to be isotropic, and the interface constitutive relation can be
written as: rs = ksTr(es) I(2) + 2lses, where ks and ls are the material constants of the interface. For a
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centro-symmetric and isotropic material, the interface constitutive relations in the micropolar theory can be
written as
rs ¼ ksTrðesÞIð2Þ þ ðls þ jsÞes þ ðls � jsÞeT
s ; ð8aÞ

ms ¼ asTrðksÞIð2Þ þ ðbs þ csÞks þ ðbs � csÞkT
s ; ð8bÞ
where I(2) represents the 2nd rank unit tensor in two-dimensional space.
Now, we consider a micropolar composite material with interface effect, which is subjected to a displace-

ment boundary condition. If the body force is neglected, the total free energy of the composite material
can be expressed by
P ¼
Z

C
Wsðes; ksÞdCþ

Z
V 1þV 2

Wðe; kÞdV ; ð9Þ
where V1 and V2 represent the corresponding volumes of the solid materials X1 and X2, respectively. The var-
iation of the interfacial free energy Ws is
dWs ¼
oWs

oes

: des þ
oWs

oks

: dks

¼ rs � ðrs � dutÞ � ðrs � rsÞ � dut � ðrs : bÞdun � ðrs : esÞd/n

þrs � ðms � dutÞ � ðrs �msÞ � dut � ðms : bÞd/n: ð10Þ
Consider a region enclosed by an arbitrary closed smooth curve oC in the curved surface C. By using the
Green-Stokes theorem, we have
d
Z

C
Wsðes; ksÞdC ¼

Z
oC

~n � ðrs � dut þms � dutÞdl�
Z

C
½ðrs � rsÞ � dut þ ðrs : bÞdun

þ ðrs �msÞ � dut þ ðms : bÞd/n þ ðrs : esÞd/n�dC; ð11Þ

where dl is the element of the arc length on oC, ~n is outward unit normal vector to the curve oC. The variation
of the second term on the right hand side of Eq. (9) can be written as
d
Z

V
Wðe; kÞdV ¼ �

Z
C
ðn � ½r� � ðdut þ dunÞ þ n � ½m� � ðdut þ dunÞÞdC

�
Z

V 1þV 2

ðr � rÞ � dudV�
Z

V 1þV 2

ðr �mþ r : eÞ � dudV ; ð12Þ
where [Æ] represents the jump of stress or couple stress across the interface, e.g., [r] = r2 � r1. n is unit normal
vector to the interface C, directed from X1 to X2. The minimum potential energy requires dP = 0. From the
arbitrariness of dut, dun, dut and d/n, it can be seen that the vanishing of the variation of Eq. (9) leads to the
following generalized Young–Laplace equation:
n � ½r� � P ¼ �rs � rs; n � ½r� � n ¼ �rs : b; ð13aÞ
n � ½m� � P ¼ �rs �ms; n � ½m� � n ¼ �ðms : bþ rs : esÞ: ð13bÞ
Eq. (13a) is the jump condition in the classical continuum mechanics with interface effect, and the second Eq.
(13b) corresponds to the one in the micropolar theory. From the above discussion, we can see that the elastic
fields are governed by Eq. (1), the interface constitutive relations (8) and the generalized Young–Laplace equa-
tions (13), if a proper boundary condition is prescribed. In the following, we will apply the above discussions
to predict the effective moduli of a fiber-reinforced composite.

3. Effective elastic properties of micropolar composites with interface effect

3.1. Theoretical formulation

As in the references (Liu and Hu, 2005; Hu et al., 2005; Xun et al., 2004), here we are interested in the clas-
sical effective property of a micropolar composite, which are related to the average symmetric stress and strain
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over representative volume element (RVE) by < rsym >¼ �Csym :< esym > or < esym >¼ �Msym :< rsym >. The
superscript sym means symmetric part of the corresponding quantity. To this end, we follow the method pro-
posed by Liu and Hu (2005). Consider a RVE consisting of a two-phase material occupying a volume V with
the boundary oV. The volumes of the reinforced phase X1 and the matrix X2 are V1 and V2, respectively, and N
is outward unit normal vector to oV. The micropolar composite is assumed to be centro-symmetric with the
effective modulus (compliances) �C3ðM3Þ, and the moduli (compliances) of the reinforced phase and the matrix
are denoted by C1(M1) and C2(M2), respectively. The modulus tensor can be decomposed into symmetric and
anti-symmetric parts as Ci ¼ Csym

i þ Casym
i (i = 1,2,3). The following boundary condition for the RVE will be

adopted
N � rsym ¼ N � Rsym; N �m ¼ 0: ð14Þ
This special boundary condition will allow one to derive the classical (the symmetric part) moduli of the com-
posite (Liu and Hu, 2005; Hu et al., 2005).

According to Benveniste and Miloh (2001), the symmetric average stress and average strain are related to
the remotely applied stress or strain on the boundary of the RVE as follows:
< rsym >¼ 1

2V

Z
S

N �
Xsym� �

� xþ x� N �
Xsym� �� �

dS; ð15Þ

< esym >¼ 1

2V

Z
S
ðu�NþN� uÞdS: ð16Þ
In the interface stress model, the displacement is continuous, but the stress has a jump across the interface
between the matrix and the reinforced phase. So the average symmetric strain and stress over the RVE can
be expressed by
< rsym >¼ ð1� f Þ < rsym>2 þ f < rsym>1 þ
f

2V 1

Z
C
fðn � ½rsym�Þ � xþ x� ðn � ½rsym�ÞgdC; ð17Þ

< esym >¼ ð1� f Þ < esym>2 þ f < esym>1; ð18Þ
where <Æ>i denotes the volume average of the said quantity over the region i (i = 1,2). f is the volume fraction
of the reinforced phase.

For the applied macroscopic loading condition Eq. (14), it can be shown that
< rsym > ¼ ð1� f Þ < rsym>2 þ f < rsym>1 þ
f

2V 1

Z
C
fðn � ½rsym�Þ � xþ x� ðn � ½rsym�ÞgdC

¼ 1

2V

Z
S
ðN � RsymÞ � xdSþ

Z
S

x� ðN � RsymÞdS
� �

¼ Rsym: ð19Þ
The symmetric stress concentration tensors Psym
i ði ¼ 1; 2Þ for the different phases and symmetrical stress con-

centration tensors Psym
s for the interface can be defined by
< rsym>i ¼ Psym
i : Rsym; ð20Þ

1

2V 1

Z
C
fðn � ½rsym�Þ � xþ x� ðn � ½rsym�ÞgdC ¼ Psym

s : Rsym: ð21Þ
With the help of Eqs. (17)–(21), the symmetric part of the effective compliance tensor of the micropolar com-
posite can be derived as
�Msym
3 ¼ ð1� f ÞMsym

2 : Psym
2 þ f Msym

1 : Psym
1 ; ð22aÞ
or
�Msym
3 ¼Msym

2 þ f ðMsym
1 �Msym

2 Þ : Psym
1 � f Msym

2 : Psym
s : ð22bÞ
It can be seen that once Psym
i and Psym

s are obtained, Eq. (22) can be used to evaluate the classical effective
moduli of the micropolar composite. Different methods can be used to estimate the concentration tensors
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Psym
i and Psym

s , e.g., Mori-Tanaka method (MTM) or the generalized self-consistent method (GSCM), just as in
the classical micromechanics.

In the following, we will focus on the discussion of a two-dimensional fiber composite, and will derive the
size-dependent effective in plane bulk and shear moduli with interface effect.

3.2. Applications to fiber-reinforced composites

For a two-dimensional composite with cylindrical fibers, the in-plane effective bulk and shear moduli have
been derived by Xun et al. (2004) in the framework of micropolar theory without interface effect. In this paper,
we will follow the same approach and include the interface effect. For the two-dimensional problem, the gov-
erning equations are
eba ¼ ua;b þ eab3u3; ja3 ¼ u3;a; ð23aÞ
rba;b ¼ 0; mq3;q þ e3abrab ¼ 0; ð23bÞ
rba ¼ keqqdba þ ðlþ jÞeba þ ðl� jÞeab; ma3 ¼ ðbþ cÞja3: ð23cÞ
where subscripts a and b range from 1 to 2.
The corresponding boundary conditions are
rbanb ¼ ~ra; ma3na ¼ ~m3 on Cr; ð24aÞ
ua ¼ ~ua; ua ¼ ~ua on Cu: ð24bÞ
In the cylindrical coordinate, the interface constitutive relations can be written as
rs
hh ¼ ðks þ 2lsÞes

hh; ms
hz ¼ ðbs þ csÞjs

hz: ð25Þ

In order to determine the effective property of the composite, let us consider the following problem: a cylin-
drical fiber with a matrix coating is embedded in an infinite host material, and it is subjected to a uniform
remote traction. The fiber radius is denoted by R1 and the radius of the matrix coating by R2. Following
the approach employed in reference (Xun et al., 2004), the stress and the couple stress in the cylindrical coor-
dinate can be expressed in terms of the potential functions Fi, Gi in the region i (i = 1, 2, 3, respectively, rep-
resenting fiber, matrix and another infinite host material)
ri
rr ¼

1

r
oF i

or
þ 1

r2

o2F i

oh2
� 1

r
o2Gi

oroh
þ 1

r2

oGi

oh
; ð26aÞ

ri
hh ¼

1

r2

o2F i

or2
þ 1

r
o2Gi

oroh
� 1

r2

oGi

oh
; ð26bÞ

ri
rh ¼

1

r
o

2F i

oroh
þ 1

r2

oF i

oh
� 1

r
oGi

or
� 1

r2

o
2Gi

oh2
; ð26cÞ

mi
rz ¼

oGi

or
; ð26dÞ

mi
hz ¼

1

r
oGi

oh
: ð26eÞ
These potentials can be derived from the following governing equations:
o

or
ðGi � li

m
2r2GiÞ ¼ �2ð1� viÞbi

1

r
o

oh
ðr2F iÞ; ð27aÞ

1

r
o

oh
ðGi � li

m
2r2GiÞ ¼ 2ð1� viÞbi

o

or
ðr2F iÞ; ð27bÞ
where li
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbiþciÞðjiþliÞ

4liji

q
¼ bi

ffiffiffiffiffiffiffiffi
jiþli

ji

q
, vi ¼ ki

2ðkiþliÞ
, and the constants li

m or bi are the intrinsic length scales for the

micropolar materials. Eq. (27) can also be written as
r4F i ¼ 0; ð28aÞ
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r2ðGi � li
m

2r2GiÞ ¼ 0; ð28bÞ
where $2 is the Laplacian operator. The general solutions of Eq. (28) are given by
F i ¼ Ai
1R2

1 log rþ Ai
2r2 þ ðAi

3R2
1 þ Ai

4r2 þ Ai
5R4

1r�2 þ Ai
6R�2

1 r4Þ cos 2h; ð29aÞ

Gi ¼ ½Ai
7R4

1r�2 þ Ai
8r2 þ Ai

9R2
1K2ðr=li

mÞ þ Ai
10R2

1I2ðr=li
mÞ� sin 2h; ð29bÞ
where IMðr=li
mÞ and KMðr=li

mÞ are the first type and the second type modified Bessel functions. The constants
Ai

j can be determined by the interface conditions and the remote boundary condition. In the following, two
micromechanical models will be used to derive the effective moduli of the composite material, namely the
MTM and GSCM. For the MTM, the infinite host material is assumed to be the same as the matrix material.
For the GSCM, we set R2

1=R2
2 ¼ f and the infinite host material is taken to be the yet-unknown composite

material. Both for the MTM and GSCM, the stress and couple stress jump conditions across the interface
between the fiber and the matrix at r = R1 are given by Eqs. (13a, 13b). For the GSCM, a perfectly bonded
interface is assumed between the matrix and the unknown composite (r = R2). The continuity conditions of
the displacement and rotation, and the jump conditions for the stress and couple stress at r = R1 can be
expressed by
u1
r ðR1Þ ¼ u2

r ðR1Þ; u1
hðR1Þ ¼ u2

hðR1Þ; u1
z ðR1Þ ¼ u2

z ðR1Þ; ð30aÞ

r2
rr � r1

rr ¼
1

R1

ouh

oh
þ ur

R1

� �
ðks þ 2lsÞ=R1; ð30bÞ

r2
rh � r1

rh ¼ �
o

oh
1

R1

ouh

oh
þ ur

R1

� �
ðks þ 2lsÞ=R1

� �
; ð30cÞ

m2
rz � m1

rz ¼ �
o

oh
1

R1

o/z

oh

� �
ðbs þ csÞ=R1: ð30dÞ
In the GSCM, the interface conditions at r = R2 are given by
u2
r ðR2Þ ¼ u3

r ðR2Þ; u2
hðR2Þ ¼ u3

hðR2Þ; u2
z ðR2Þ ¼ u3

z ðR2Þ; ð31aÞ

r2
rrðR2Þ ¼ r3

rrðR2Þ; r2
rhðR2Þ ¼ r3

rhðR2Þ; m2
rzðR2Þ ¼ m3

rzðR2Þ: ð31bÞ
In this paper, the fiber material is assumed to be classical Cauchy material and the effective composite is also
considered as a classical Cauchy material (Hu et al., 2005). In this case, the fiber imposes zero micro-rotation
at the interface. Hence only the matrix material is of micropolar type with j, lm as additional elastic constants.

3.2.1. Bulk modulus of the fiber composite

In order to predict the effective bulk modulus of the composite, it is convenient to apply a hydrostatic stress
on the remote boundary, i.e., Rxx = Ryy = R. Both for the MTM and GSCM, the unknown constants are
determined from the corresponding interface conditions and the remote boundary condition. After some
tedious mathematical calculations, it is found that the bulk moduli determined by the MTM and GSCM
are the same, and can be expressed as
�k3

k2

¼ 2k1ð1þ f l2=k2Þ þ l2½2ð1� f Þ þ ðls=R1Þð1þ f l2=k2Þ�
2ð1� f Þk1 þ 2fk2 þ ½2þ ðls=R1Þð1� f Þ�l2

; ð32Þ
where ls = (ks + 2ls)/l2, denoting the intrinsic length related to the interface. As expected, the micropolar the-
ory gives the same result as the classical model, since the micropolar theory only involves a rigid micro-rota-
tion of a material point. The result given by Eq. (32) is the same as that in the reference (Chen et al., 2007;
Karihaloo et al., 2006) for the classical material model with interface effect.

3.2.2. In-plane effective shear modulus of the fiber composite

In order to obtain the effective in-plane shear modulus of the composite, a pure shear loading is applied on
the remote boundary, i.e., Rxx = �Ryy = R. Due to the complicated nature of the micropolar theory, the
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GSCM can not deliver a closed-form expression for the effective shear modulus. However, a closed-form
expression of the effective shear modulus can be derived by the MTM, and it is given by
�l3

l2

¼ f0 þ f1lm=R1 þ f2lmls=R2
1 þ f3ls=R1

f00 þ f1lm=R1 þ f2lmls=R2
1 þ f03ls=R1

; ð33Þ
where
f0 ¼ H 0K2ðR1=lmÞ; f1 ¼ H 1K1ðR1=lmÞ; f2 ¼ H 2K1ðR1=lmÞ;
f3 ¼ H 3K2ðR1=lmÞ; f00 ¼ H 4K2ðR1=lmÞ; f03 ¼ H 5K2ðR1=lmÞ:
H 0 ¼ �2½2l1l2 þ k1ðl1 þ l2Þ�½2l1l2 þ k2½l1ð1þ f Þ þ l2ð1� f Þ��;

H 1 ¼
1

jþ l2

½4jð1� f Þðl1 � l2Þðk2 þ l2Þð2l1l2 þ k1ðl1 þ l2ÞÞ�;

H 2 ¼
1

jþ l2

½2jl2ð1� f Þðk2 þ l2Þ½k1ð2l1 � l2Þ þ l1ð3l1 � 2l2Þ��;

H 3 ¼ �l2½l1½2l2ð3l1 þ l2Þ þ k2½3ð1þ f Þl1 þ 2ð2� f Þl2�� þ k1½l2ð4l1 þ l2Þ
þ k2½2ð1þ f Þl1 þ ð2� f Þl2���;

H 4 ¼ H 0

2l2ðl1 � f l1 þ f l2Þ þ k2ðl1 � f l1 þ l2 þ f l2Þ
2l1l2 þ k2ðl1 þ f l1 þ l2 � f l2Þ

;

H 5 ¼ �l2½ð1� f Þk2l1ð2k2 þ 3l1Þ þ l2½ð2þ f Þk1k2 þ 4ð1� f Þk1l1 þ 2l1½ð2þ f Þk2

þ 3ð1� f Þl1�� þ ð1þ 2f Þðk1 þ 2l1Þl2
2�:
It is easy to check that when ks and ls tend to zero, the result (33) reduces to the effective shear modulus of
micropolar theory without interface effect (Xun et al., 2004)
�l3

l2

¼ f0 þ f1lm=R1

f00 þ f1lm=R1

: ð34Þ
When neglecting the nonlocal effect, the classical result with the interface effect can be recovered
�l3

l2

¼ f0 þ f3ls=R1

f00 þ f03ls=R1

¼ H 0 þ H 3ls=R1

H 4 þ H 5ls=R1

: ð35Þ
When R1 tends to infinity, the effective shear modulus reduces to the classical one without the surface effect,
namely �l3=l2 ¼ H 0=H 4.

3.3. Numerical examples

In the following, some numerical calculations are performed in order to illustrate the previous theoretical
prediction. An aluminum metal containing cylindrical voids (l1 = k1 = 0, f = 0.2) is chosen as the sample
material, and the matrix material constants are l2 = 34.7 GPa, m2 = 0.3. High-order material constant
j = 34.7 GPa is assumed for the matrix material. The free-surface properties are taken from the paper of
Sharma et al. (2003). Two sets of the surface moduli are examined, namely, I: ks = 6.842 N/m,
ls = �0.3755 N/m for the surface [1 1 1]; II: ks = 3.48912 N/m, ls = �6.2178 N/m for the surface [1 0 0].
The intrinsic lengths of the interface are ls = 0.18 nm for type I, and ls = �0.26 nm for type II.

The variation of the effective bulk modulus as the function of void radius is shown in Fig. 1, the classical
modulus without surface effect is independent of void radius, however the effective modulus involving surface
effect becomes sensitive to void radius at nano-scale, it will decrease or increase with decreasing the void
radius, depending on the nature of the surface. It is noted that both for the micropolar theory and classical
continuum mechanics give the same bulk modulus.

The effective shear modulus involves two intrinsic length scales, namely lm and ls. In order to facilitate the
following analysis, let lm = d|ls|. The variations of the effective shear modulus as the function of void radius are
shown in Figs. 2 and 3 for the two types of the surface. For the nonlocal effect (micropolar), the predicted
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effective modulus always increases with decreasing void size. For the surface of type I, nonlocal effect and sur-
face effect are synchronized, and the effective shear modulus increases with the decreasing of the void size. It is
found also that with the increase of d, the size influential zone becomes large, and the size-effect is dominated
by the nonlocal effect. For the surface of type II, the size-dependency due to the nonlocal and surface effect are
desynchronized, and the present theory (micropolar with interface effect) predicts a decreasing effective shear
modulus when the void size is smaller than a critical value. For the large void size, again the nonlocal effect
dominates, and this is clearly illustrated in Fig. 4.

Fig. 5 illustrates the effective in-plane shear modulus predicted by the MTM and GSCM, respectively, for
two void volume fractions for the surface of type I. The material constants are the same as those in the pre-
vious example, but d is taken to be 1. It is seen that both methods predict the same trend and the classical
results can be recovered when the size of the void becomes large. The same results can also be found for
the surface of the type II.
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4. Scaling law

Let us consider the material property with length scale L, described by F(L). In the classical material model
with interface effect, Wang et al. (2006) and Duan et al. (2007) found that the ratio of F(L) at small scale L to
F(1) can be written as
F ðLÞ
F ð1Þ ¼ F X j;

lin

L

� �
; ð36Þ
where lin is the intrinsic length scale of the material (it is related to the interface effect in Wang et al. (2006) and
Duan et al. (2007)), L is the characteristic size of the material, and Xj represent some parameters. For a com-
posite material, L denotes the radius of inhomogeneity R, Eq. (36) can be further expanded as in the case of lin/
R < 1
F ðRÞ
F ð1Þ ¼ 1þ v

lin

R
þO

lin

R

� �2

: ð37Þ
Now we will examine the corresponding scaling law for the effective shear modulus with both interface and
nonlocal effects. There are two intrinsic length scales, and usually ls is in the order of nanometer and in poly-
crystalline metals lm has the order of grain size, i.e., micrometer. In the following we suppose that ls/R < 1, and
lm/R can be either greater or less than unity.

(1) Case ls/R < 1, lm/R < 1
In this case, we have
F ðLÞ
F ð1Þ ¼ 1þ v1

lm

L
þ v2

ls

L
þO

lm

L
;
ls

L

� �2

: ð38Þ
From Eq. (33) and by dropping the high order terms, we can obtain the following scaling law:
lðRÞ
lð1Þ ¼ 1þ H 1ðH 4 � H 0Þ

H 4H 0

lm

R
þ ðH 3H 4 � H 0H 5Þ

H 4H 0

ls

R
; ð39Þ
When lm = 0, the scaling law for effective shear modulus predicted by classical material model with interface
effect is retrieved, and when ls = 0, Eq. (39) gives the scaling law for effective shear modulus predicted by
micropolar material model without interface effect.

(2) Case ls/R < 1, R/lm < 1
In this case, we expand Eq. (33) at the point R/lm = 1. From Eq. (33), and by dropping the high order

terms, we have the following scaling law:
lðRÞ
lð1Þ ¼ v0 þ v1

R
lm

� 1

� �
þ v2

ls

R
; ð40Þ
where
v0 ¼
H 4½H 1K1ð1Þ þ H 0K2ð1Þ�
H 0½H 1K1ð1Þ þ H 4K2ð1Þ�

;

v1 ¼
H 1H 4ðH 4 � H 0Þ½K2

1ð1Þ � K0ð1ÞK2ð1Þ � 2K1ð1ÞK2ð1Þ � K2
2ð1Þ þ K1ð1ÞK3ð1Þ�

2H 0½H 1K1ð1Þ þ H 4K2ð1Þ�2
;

v2 ¼
H 4K2ð1Þ½½H 2H 4 � H 0H 2 þ H 1½H 3 � H 5��K1ð1Þ þ ½H 3H 4 � H 0H 5�K2ð1Þ�

H 0½H 1K1ð1Þ þ H 4K2ð1Þ�2
:

It is found that when the high-order elastic constant j vanishes, the second term of the right hand side of Eq.
(40) is zero, v0 reduces to the unity and the coefficient of ls/R in Eq. (40) is equal to that in Eq. (39). This means
the classical result with interface effect is recovered, as expected. As an approximation of the general expres-
sion (33), the accuracy of Eq. (40) is displayed in Fig. 6. It is found that there is some discrepancy for R/ls! 1,
when R/ls increases, this approximation agrees well with the exact solution.
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5. Concluding remarks

We have formulated a theoretical framework to examine the size effect due to both nonlocal effect and inter-
face effect for a composite material. The nonlocal effect is considered by idealizing the matrix material as a
micropolar material model. The interface constitutive relations and the generalized Young–Laplace equations
for a micropolar material with interface effect are presented. A micropolar micromechanics with interface
effect is employed to predict the effective moduli of a fiber-reinforced composite material. The effective bulk
modulus is found to be the same as that predicted by the classical micromechanics with interface effect. There
are two intrinsic length scales for the effective shear modulus, one comes from nonlocal effect, and the other
comes from the interface effect. It is found that at nano-scale both nonlocal and surface effects dominate the
size-dependent effective property of the composite. With the increase of the fiber size, the nonlocal effect
becomes a dominant mechanism. When the fiber size tends to infinity, classical result will be recovered.
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