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Elastic wave transparency of a solid sphere coated with metamaterials
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The elastic wave transparency phenomenon of a solid sphere coated with metamaterials is investigated in a
solid host medium having nonzero shear modulus. The first three scattering coefficients of the coated sphere
are derived in the Rayleigh limit and expressed in terms of the effective parameters of the coated sphere
assemblage. It is found that the effective bulk modulus, mass density, and shear modulus of the coated sphere
system dominate the zeroth, first, and second order scattering effects, respectively. Quasistatic transparency
conditions are obtained by setting these scattering coefficients to be zero. It is also shown that the obtained
transparency conditions are the same as those derived from the neutral inclusion concept. Obtained results from
full-wave analyses show that the given conditions can well predict the transparency induced by metamaterials

even in the regime far beyond the Rayleigh limit.
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I. INTRODUCTION

Electromagnetic metamaterials that can have any property
values in material space have led to a new research area in
optics and electromagnetics.' The unusual properties of
these materials offer a great opportunity in designing supe-
rior optical and microwave devices. Recently, it has been
found that metamaterials have the unique cloaking effect,
which can be employed to make an object transparent or
invisible.*® One approach to realize the transparency is
based on the coordinate transformation method, with which
electromagnetic wave can be guided around an object, as if
the object is not there.® However, the metamaterial used for
the cloak is highly anisotropic and usually has to be simpli-
fied for experimental realization.!”

As a different approach, a small particle can be made
electromagnetically transparent by coating it with an isotro-
pic plasmonic metamaterial.> This can be further illustrated
with the concept of neutral inclusion in the quasistatic
limit.!" The underlying physical mechanism is to induce an
oppositely signed electric dipolar field within the cover to
cancel the field produced by the object. Thus, the transpar-
ency is not sensitive to the imperfection of the objects to be
cloaked.'>!® This method is suitable to cloak objects with
dimensions smaller than the operating wavelength, since
multipole contributions from a relatively large object cannot
be simply canceled by tuning the cloaking parameters. How-
ever, several transparent coated spheres joined together to
form an object with large electrical size can still be
transparent.'* This may provide a new way to achieve trans-
parency for an object with size larger than the wavelength.

Elastic media with specific microstructures can also ex-
hibit anomalous overall properties in the resonate state,'
such as negative bulk modulus,'® negative mass density,'”-!8
or both.'*?0 This type of materials can be broadly classfied as
acoustic wave or elastic wave metamaterials. Analogous to
the phenomenon of electromagnetic cloaking, a counterpart
exists correspondingly for elastic waves. Contrary to the in-
variant form of the Maxwell equation, Milton et al.?! stated
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that the equations of motion for elastodynamics are not trans-
formation invariant. However, there is a transformation in-
variant form for two-dimensional acoustic equations, and a
cylindrical metamaterial cloak with anisotropic mass densi-
ties has been validated by full-wave simulations.??

In a previous paper,” we studied the acoustic transpar-
ency realized with isotropic metamaterials in a fluid system
having zero shear modulus. The neutral inclusion concept
was used to derive the quasistatic transparency conditions for
a multilayered sphere. However, due to the fluid nature of the
material, experimental realization of the coated sphere be-
comes challenging. It is therefore of significant practical in-
terest to examine whether a solid object can be cloaked with
a solid metamaterial for an incident compressional wave and
study how the excited P (longitudinal) and S (transverse)
scattered waves are eliminated simultaneously with the cloak
when the surrounding medium has nontrivial shear modulus.
These issues will be addressed in the present paper.

II. THEORETICAL ANALYSIS

A. Scattering coefficients of a coated sphere in the
Rayleigh limit

The configuration of concern is shown in Fig. 1, where a
coated sphere is placed in a host material. Each constituent
of the composite system is characterized by bulk modulus «;,
shear modulus u;, and mass density p;, with the subscript i
=1,2,3 representing separately the sphere, the coating, and
the host medium. Let r; denote the radius of the uncoated
sphere and r, the radius of the coated sphere. A plane har-
monic compressional wave propagates along the positive di-
rection of the z axis. If the host is a solid material with a
nontrivial shear modulus, the coated sphere will scatter not
only P waves but also § waves due to the coupling mode
effect. It is necessary to study in detail the scattering coeffi-
cients of the coated sphere, since the cloaking effect of the
metamaterial cover depends on the far-field scattering
property.* Exact solutions for the scattering fields of a coated
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FIG. 1. A coated sphere embedded in a host medium and illu-
minated by a plane compressional wave.

sphere have already been obtained many years ago.”* For
completeness, a brief introduction is presented below for fur-
ther discussions.

In the spherical coordinate system (r, 6, ¢), the incident
longitudinal wave is characterized by a displacement poten-
tial,

o0

® =, (2n+ 1)i"j,(azr)P,(cos 6). (1)
n=0

The scattered waves from the composite sphere are related to
the displacement potentials @ and W, representing, respec-
tively, the scattered P and S waves, which are expressed as

o

P=- 2 anhn(aSr)Pn(Cos 0)’ (2)
n=0

W == 2 by, (Bsr)P,(cos 0), (3)
n=0

where j,(z) is the spherical Bessel function, h,(z) is the
spherical Hankel function of the first kind, P,(x) is the Leg-
endre polynomial, and a, and b, are the unknown scattering
coefficients of longitudinal and transverse waves. The propa-
gation constants a; and S5 are given by

P3
=\ ———, 4
“wEe K3+ 4us/3 @

P3
ﬁ3=w\/;‘. (5)

3

With the potentials ® and ¥ determined, the displacements
can be expressed as

u=VQ)+V(e¢%>. (6)

Note that for incident compressional waves, W=0. The stress
components are related to the displacements as
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o=(k=2w3)(V-u)l+ u(Vu+uV). (7)

In the limiting case of n=0 order, J¥/90=0 leads to u
=V®. Thus, b is not important and can have any value. The
zeroth order scattered wave is therefore a dilational wave.

The displacement and stress fields within the coated
sphere can be defined in the same way by the corresponding
displacement potentials. Six unknown scattering coefficients
will be used to describe the P and S waves localized inside
the composite sphere. At the sphere-coating interface r=r,
and the external surface r=r,, the normal and tangential
components of displacements and stresses should be continu-
ous, resulting in eight equations for eight unknowns for ev-
ery order n except n=0. For n=0, not only the tangential
components of the displacement and stress vanish but also
there are no shear waves in the system, yielding four equa-
tions for four unknowns in this limiting case. The scattering
coefficients a,, and b, are then determined uniquely, which
are used to define the total scattering cross section Q.. of the
coated sphere as

[}

Ogea= W%E

2 @3 2
a,l"+nn+1)—=|b,|7 [, (8
e (2 1) | rL| ( )B3| n| ( )

where wsy=2m/a5 is the wavelength of the compressional
wave in the host medium.

In the Rayleigh limit (z<<1), where terms of order z> and
higher for spherical Bessel and Hankel functions j,(z) and
h,(z) appearing in the displacement potentials are negligible,
only the first few scattering coefficients contribute to the fi-
nal scattering. Under such conditions, analytical expressions
of the scattering coefficients a, and b, can be derived. For
convenience of discussion, the following parameters iy,
wlS oM and pB. are introduced:

Sl = k)

HS
Dk, = 1+ , 9
/= = plr— ) ©
with
__ 3k
p_ 3K2+4/.L2’
HS f(/-h—,U«z)
Mege/ Mo =1+ , (10)
i Mo+ (1= gl — po)
with
_9 K2+2,LL2
1= 5300+ 4y’
pi—p
PMlpr=1+f~—, (11)
P2
3f(p1=p)
pe/pr =1+ 2 (12)

3p,+2(1-Hpy—py)’

where f=(r,/r,)3. The physical meaning of the above non-
dimensional material parameters will be discussed later. With
these parameters, the first three scattering coefficients a, and
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b, (n<2) in the Rayleigh limit can be expressed in a concise
form. For different configurations classified by the solid and
fluid nature of materials, the scattering coefficients are pre-
sented below, for which those terms higher than order 2
have been neglected.

Case 1. Solid shell and solid host material.

S
i Keff — 3
a —e— (anr 13a
0= 3Keff+4 3(32) (13a)
ay= PP (13b)
3ps
by=— peff P3 3,3%73, (13¢)
3ps
o 20i us( ety — 13)/3 (@)
2= 3r2) »
6y (k3 + 2p3) + 39,3 + 8 as)
(13d)
10i s (8 = 113)/3
by = - ,U«3(Meft ,U~3) (,83r2)3. (13¢)
O ptegr (K3 + 2u3) + p3(9K3 + 8 us)
Case II. Fluid shell and solid host material.
S _
Ketf 3
aAn=1""15¢ _ _\laxr 1421
0= 3(32) (14a)
Pe
ay= PP ()3, (14b)
by=- peff 353 2> (14c)
3P3
201,&3 3
=— °, 14d
a 3(9K3+8,u3)(a3r2) ( )
by=——————(Bsr,)°. 14e
= T 5a] BT (14¢)
Case I1I. Solid shell and fluid host material.
S K5
Keft — K3 3
ag=1i— r<(a3r,)°, (15a)
3K£If?
0y P17 ( ). (15b)
2Peff
Case 1V. Fluid shell and fluid host material.
S 3
_ L Peff 3
ag= l—?mgf? (a3r,)°, (16a)
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peff 3
( aszr;)”.
2peff

In every case, the parameter bo is not important and thus not
given here.

a,= (16b)

B. Transparency and resonance conditions of a coated sphere

Equations (13)-(16) convey rich information about the
cloaking effect of metamaterials. First of all, the physical
meanings of the defined parameters «', ulls, pM. and pS;
are examined. For a composite filled with coated spheres that
are randomly distributed in the host medium and have
gradual sizes in order to fill the whole space, ' and u'f
denote its effective bulk modulus and effective shear modu-
lus calculated with the Hashin-Shtrikman (HS) bound,” p;
is the effective mass density obtained by the volume aver-
aged method, whereas pZ; is the effective mass density cal-
culated with Berryman’s formula.”® With these effective pa-
rameters, Eqs. (13)—(16) represent also the solutions of a
single sphere having material parameters ', ulls, and pM;
(or p2,) embedded in a host material with properties 3, us3,
and p;.27 This implies that in the Rayleigh limit, a coated
sphere can be equivalent to a homogeneous effective sphere.
The coated sphere and its effective sphere have almost the
same scattering fields in the host medium, if contributions
from higher order scattering are omitted.

It is well known that the HS bound model corresponds to
a coated sphere assemblage system. The HS bound will give
rigorous predictions of the effective bulk and shear moduli in
the long wavelength limit. The effective mass density of a
coated sphere assemblage obeys different rules depending on
whether the cover is solid or fluid material. Rigorous deriva-
tion based on multiple scattering theory has revealed that the
mixing rule is valid in the assumption of wave field
homogeneity.”® This assumption is often implicitly valid for
the case of a solid shell. However, when the core and shell
materials have large impedance mismatch, especially in the
case of a fluid shell, the effective mass density follows the
Berryman’s formula, since the homogeneous field assump-
tion has been violated.

Based on Egs. (13)—(16), the transparency phenomenon of
a coated sphere can be investigated mathematically by sys-
tematically reducing the scattering coefﬁcients If the effec-
tive parameters satlsfy Ker§—K3, ,ue“— M3, and peﬁ— p; for a
solid shell or pB;=p; for a fluid shell, the scattering coeffi-
cients of the first three orders are zero in cases I, III, and IV.
In the Rayleigh limit (z<< 1), the total scattering cross section
will be very small. In this case, an outside observer will
hardly detect the coated sphere from the scattered waves it
receives. For case 11, a, and b, always involve terms of order
z%, which only relate to the parameters of the host material.
In this case, there are no design parameters to choose from
for the coated sphere and one has to let u;=0 for a better
transparency.

Physically, the above transparency conditions are equiva-
lent to those obtained with the neutral inclusion concept.
Since a coated sphere can be represented by its effective
sphere in the Rayleigh approximation, the effective param-

024101-3



ZHOU, HU, AND LU

eters of the coated sphere are the same as those of the sur-
rounding medium. The scattering due to the coated sphere
can be very small, and hence the observer will not “see” the
sphere. This is exactly the physical meaning of the neutral
inclusion concept, which has been discussed previously for
the design of transparency.!!>»?° When the shell (coating) is
fluid, the solid nature of the core is concealed by the fluid
shell so that the shear waves are localized in the inner sphere
and shielded by the cover. In the host medium, the shear
waves are excited again, independent of the material param-
eters of the coated sphere. Consequently, to achieve transpar-
ency, the shear modulus of the host material must be zero.
With the concept of neutral inclusion, nonspherical coated
objects can also be made transparent, as demonstrated for
electromagnetic wave.'!

A careful examination of Egs. (13)—(16) reveals that the
first three angular scattering channels are characterized by
the effective bulk modulus, mass density, and shear modulus,
respectively. In the Rayleigh limit, these channels are sepa-
rate and parallel, and hence by tuning material parameters,
the separate realizations of transparency in each channel can
lead to the overall transparency. Consequently, the following
general transparency conditions stand: K.g= K3, o= M3, and
Petr=p3. With the help of Egs. (9)-(12), the quasistatic trans-
parency conditions of a coated sphere are given by

(k3= k) [pr; + (1 = p)iy] _ " (17)
(k1 — k)[pK3 + (1 = p)ky] 73’
(3= polgp + (1 = Ppo] 1y (18)
(1= mlqus + (1 =q)ua] 73
3
%: % (19a)

for a cover with nonzero shear modulus, and

(p2=p3)(p2+2p) 11 (19b)

(p2=p1)(p2+2p3) - 7‘%’

for a cover with zero shear modulus, where the expressions
of p and g have been given previously. For a solid host
material, i.e., cases I and II, both the compressional and
shear waves are scattered in the region exterior of the sphere
and must be minimized simultaneously for the transparency.
From Egs. (13) and (14) as well as physical understanding
based on the neutral inclusion concept, the conditions (17)—
(19) always fulfill this requirement. In comparison, for a
fluid host material, i.e., cases III and IV, only the compres-
sional waves are scattered and the second order scattering
coefficient is negligible. Equations (17) and (19) therefore
suffice to determine the transparency.

Equations (13)-(16) can also be used to determine the
conditions for the resonance phenomenon to occur. To this
end, a coated sphere will exhibit an extremely large total
scattering cross section. Mathematically, this effect is in-
duced by the vanishing denominator of the scattering coeffi-
cients. In the fluid host case, it can be seen from Egs. (15b)
and (16b) that the n=1 scattering channel has an infinite
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amplitude if the conditions pg/f[f:—p3/2 for solid cover and
pB=—ps/2 for fluid cover are satisfied. However, a similar
resonance effect cannot exist in the case when the host ma-
terial has nonzero shear modulus, as can be seen from Egs.
(13) and (14). Consequently, with the expressions for pé‘/flf and
pgff, the quasistatic resonance condition is given by

3

20, + r
“P2tps _é’ (20)
2(pp—p1) r 2
for a cover material with nonzero shear modulus, and
(2p, + p3)(p2 +2py) _ ﬁ 1)
2p2-p3)pa—p) 1

for a cover material with zero shear modulus.

As a matter of fact, a coated sphere itself is able to exhibit
a resonance if pj=—p,/2 is satisfied in the case of the fluid
cover. Upon substitution of this condition into Eq. (12), it
follows readily that p.=p,. This implies that in the resonant
state, the dynamic behavior of the inner sphere is so remark-
able that the coated sphere can be fully replaced by the inner
sphere. In other words, the inner sphere seems to enlarge its
radius from 7| to r,, as if the cover material was absent. A
similar phenomenon has also been found in electromagnetics
and termed as the partially resonant effect.’03!

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results from full-wave dynamic
computations are presented to discuss further the transpar-
ency phenomenon of a coated sphere embedded in a solid
matrix. In a previous paper,?® the physical mechanism and
robustness of cloaking materials for acoustic transparency in
a fluid system were examined. The numerical examples pre-
sented below will focus on the influence of shear modulus of
each region on the transparency phenomenon, as a necessary
supplement. Note that for a solid host medium, A5 refers to
27\k3/ p3/ @ for better comparison of different results,
where o is the angular frequency of the incident longitudinal
wave.

Consider a sphere with «;=0.2«3, w;=0.1k3, and ry
=M\3/20 covered by a material with bulk modulus «,=-3«3.
The shear modulus of the cover will be systematically var-
ied. The densities of the sphere, coating, and matrix are set to
be equal to p;=p,=ps, so that the contributions from n=1
scattering channel is minimized. When the coated sphere is
placed in a fluid medium with u;=0, then the contributions
from n=2 scattering channel is eliminated. These parameter
sets are employed mainly to evaluate the influence of shear
modulus on the transparency occurring in the n=0 channel.

The effective bulk modulus «.; of the coated sphere as-
semblage for selected values of cloak shear modulus w,=0,
Mr=0.2k3, and w,=0.4k; is shown in Fig. 2(a) as a function
of sphere radius ratio r,/r;. The effective bulk modulus is
calculated with the HS bound, which naturally reduces to the
Voigt bound when u,=0. It can be seen from Fig. 2(a) that
with the increase of shear modulus u,, the effective bulk
modulus of the composite system increases. Thus, by letting
Ker €qual to k3 for the transparency, the thickness of the
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FIG. 2. (a) Effective bulk modulus ./ x5 of a coated-sphere
assemblage calculated with HS bound and (b) normalized total scat-
tering cross section Q.,/ )\% of coated sphere as a function of ratio
ry/ry for selected values of cover shear modulus: u,=0, u,
=0.2K3, and }L2=0.4K3 (K1=0.2K3, M1=O.1K3, K2=—3K3, ,LL3=O, P1
=p,=p3, and r;=\3/20).

coating should be decreased in order to reduce the volume
fraction of the shell material. The corresponding total scat-
tering cross section Q,., of the coated sphere is shown in Fig.
2(b) as a function of r,/r;. The results of Fig. 2(b) demon-
strate that low scattering occurs when the effective bulk
modulus equals to the bulk modulus of the host material,
verifying the transparency conditions depicted in Fig. 2(a).
The low scattering “point” shifts downward when w, is in-
creased, as predicted from Fig. 2(a).

Consider next the same coated sphere as in Fig. 2(b), but
with u,=0.1k;. The effective bulk modulus k. of the sphere
embedded in a host material with varying shear mudulus
(u3=0 and u3=0.1k;) is plotted in Fig. 3(a) as a function of
ro/r;. Again, it is seen that the low scattering phenomena
exist in both cases and can be well predicted by the given
transparency conditions. It is noticed that a resonance peak
takes place at about r,/r;=2.1 in the case of u;=0, due
mainly to the n=2 scattering channel. This is further verified
in Figs. 3(b) and 3(c), which plot the first three scattering
coefficients as functions of r,/r; for u3=0 and u;=0.1k3,
respectively. The resonance is induced by higher order scat-
tering coefficients and cannot be predicted. When the host
material is replaced by a solid with finite shear modulus wu;
=0.1k3, the second order scattering effect is dominated by
the effective shear modulus and no resonance mode is found,
as can be seen from Fig. 3(c).

As another example, we investigate the scattering prop-
erty of a coated sphere with the following parameter combi-
nations: K|=Ky=Kj3, ,LL1=0.3K3, /.L3:0, p1:—0.8p3, P2
=2.5p;, and r;=N3/20. These parameters are selected to
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0.020

FIG. 3. (a) Effective bulk modulus ./ «3 of a coated-sphere
assemblage calculated with HS bound and normalized total scatter-
ing cross section Qg.,/ )\§ of coated sphere as functions of ratio
r,/ry; contributions of first three scattering coefficients of coated
sphere for (b) u3=0 and (c) u3=0.1k3 (k;=0.2k3, p;=0.1k3, Ky
=—3K3, ,LL2=O.IK3, P1=P2=P3, and r1=)\3/20).

minimize the influence of zeroth order and second order scat-
terings, so that the focus can be placed on the analysis of the
influence of cloak shear modulus on the transparency in the
n=1 channel. Figure 4(a) plots the effective mass density pes
of a coated sphere assemblage computed separately with the
mixing rule and Berryman’s formula as a function of r,/r;.
The results of Fig. 4(a) can be used to predict where the
transparency (i.e., pesr=p3) and resonance (i.e., per=—p3/2)
may take place. Figure 4(b) presents the total scattering cross

024101-5



ZHOU, HU, AND LU

2.0 T

,,;;‘l\—/lixihg rule (a)

J g Transparency
1.0 ; Berryman

<
\% 05+ / 1
Q

0.5 J”>< 4
; Resonance

1.0 1.5 2.0 25 3.0

0.010
'
i
0.008 fil

~ ¢, 0.006 [
<

=
»

0.004 by

0.002

0.000 L - =
1.0 15 2.0 25 3.0

r2/ r,

FIG. 4. (a) Effective mass density p./p3; of a coated-sphere
assemblage calculated with mixing rule and Berryman’s formula,
and (b) normalized total scattering cross section Qsca/)\g of coated
sphere, all plotted as functions of ratio r,/r; for selected values of
coating shear modulus w@,=0, u,=0.2k3, and w,=0.4k3 (k;=kKy
=k3, w1 =0.3k3, u3=0, p;=—0.8p3, p,=2.5p3, and r;=\3/20).

section for different values of cloak shear modulus wu,=0,
Mmr=0.2k3, and u,=0.4xk5. Both the mixing rule and Berry-
man’s formula give excellent predictions for the transparency
and resonance phenomena. The results of Fig. 4(b) reveal
that the resonance occurring at a larger cover radius for the
case u,=0.2k5 is caused by higher order scattering, which
cannot be predicted with the quasistatic conditions.

For further investigations, Fig. 5(a) plots the total scatter-
ing cross section of the same coated sphere as that in Fig. 4
as a function of r,/r; for the case u,=0.3k3; the sphere is
embedded in different surrounding media with u;=0 and
3=0.3k3. The contributions from the first three order scat-
tering coefficients are presented in Figs. 5(b) and 5(c). It can
be seen that, for both types of host medium, the transparency
is achieved in channel n=1 and can be well predicted by the
mixing rule given in Fig. 4(a). In addition, two resonant
peaks that occur in the case of u;=0 (fluid host) disappear
for a solid host medium with u3;=0.3k3. The first peak with
smaller cover radius vanishes because the first order natural
mode does not exist for solid surroundings. The vanishing of
the second peak with larger cover radius is because the sec-
ond order scattering effect for a solid host is dominated by
the effective shear modulus of the system, which does not
support a resonance mode, as indicated by Egs. (13d) and
(13e).

Consider next a sphere with «;=35«3, u;=15k3, and p,;
=2.7ps, representative of an aluminum sphere immersed in
water.’> When the radius of the sphere is taken to be r,
=\;/5, its total scattering cross section is Qsca=0.043)\§. A
fluid cover with outer radius r,=1.3r; is used here to cloak
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FIG. 5. (a) Normalized total scattering cross section Qm/)\g of
a coated sphere plotted as a function of ratio r,/r;; contributions of
first three scattering coefficients of the coated sphere for (b) u3=0
and (¢) u3=03k3 (Kj=rr=k3, p1=ur=03k3, p;=—0.8p3, p»
=2.5p;3, and r;=\3/20).

the aluminum sphere. According to the transparency condi-
tions (17) and (19b), the cloaking material must have a bulk
modulus k,=0.58«; and a mass density p,=0.55p;, which
are both lower than those of water. However, the effective-
ness of this cover lies within the Rayleigh limit. For the case
of r;=N3/5, the parameters for a minimized value of the
scattering may be further tuned to the desirable values of
Kk,=0.47k5 and p,=0.4p; by varying «; and p; around the
target values of x,=0.58k; and p,=0.55p;. As a result, the
total scattering cross section of the composite sphere is re-
duced by 99.8% to Qy.,=7.36 X 10‘4)\3. Materials with these
optimized parameter combinations are not readily available
in nature, but can be purposely fabricated as an acoustic
metamaterial. Figures 6(a) and 6(b) present the near-field
contour plots of the radial component of the scattered dis-
placement fields for a uncoated aluminum sphere and that
with an optimized cloak, respectively. The scheme of the
system is shown in Fig. 1 and the wave vector is along the z
direction. It can be seen that a sphere without metamaterial
cover leads to strong, nonuniform scattering field in the solid

024101-6



ELASTIC WAVE TRANSPARENCY OF A SOLID SPHERE...

0 Positive Max

FIG. 6. (Color online) Contour plots of radial component of
scattered displacement field for (a) uncoated aluminum sphere with
p1=2.7p3, k1=35k3, 1 =15k3, and r;=\3/5; (b) same sphere with
fluid cover having parameters «;=0.47«3, p;=0.4p;, and r,=1.3r.

matrix, especially in the region adjacent to the sphere. How-
ever, when cloaking metamaterial is employed as the cover,
the scattering is dramatically reduced, while the field
strength within the cloak is large. In both cases, the displace-
ment field inside the aluminum sphere is negligibly small
due to its large modulus. It is thus demonstrated that, with
the cloaking metamaterial, the impenetrable sphere can in-
deed achieve acoustic transparency. This property of the
composite system can lead to potential applications in under-
water stealth technology.

Finally, for a fluid system, consider a hollow sphere with
inner radius r;=N3/20. The cavity of the hollow sphere is
filled with the host material. The cover has the same bulk
modulus as the host (i.e., xk,=k3), but has a different mass
density p,. The total scattering cross section of the hollow
sphere is calculated as a function of p,/p; for selected values
of cover radius: r,=1.1r|, r,=1.15ry, and r,=1.2r|, as plot-
ted in Fig. 7. It can be seen from Fig. 7 that there is low
scattering around p,=-2.1p;, independent of cover radius.
As mentioned in Sec. II, the quasistatic partially resonate
state of a coated sphere takes place at its n=1 scattering
channel, when p,=-2p; is satisfied. When the resonance oc-
curs, the solid shell is absent and the coated sphere can be
fully represented by the inner sphere, i.e., cavity in this case.
It is evident that the transparency phenomenon shown in Fig.
7 is due to the partially resonant effect of the hollow sphere,
but the low scattering point has been shifted to p,=—-2.1p; as
a result of the large particle effect. When the partially reso-
nance is excited, the hollow sphere is inherently transparent,
independent of the cover thickness.

Analyses concerning the transparency condition (18) are
not presented here, since matematerials with negative shear
modulus have not been proposed. Normally, Egs. (17) and
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FIG. 7. Total scattering cross sections of a hollow sphere plotted
as a function of p,/p; for selected values of cover radius: r,
=1.1r, r,=1.15r, and ry,=1.2r; (kK;=Ky=kK3, p1=pr=u3=0, p;
=p3, and r =}\';/20)

(18) are sufficient to predict the transparency phenomenon,
since the surrounding medium of interest is often fluid ma-
terial. In this case, the scattering induced by shear modulus
in the Rayleigh limit always vanishes. As a result, the above
analyses reveal that a coated solid sphere can be made trans-
parent for an incident compressional wave. The cloaking ma-
terials are isotropic and can be readily manufactured with the
techniques developed recently.'®->° Hence, potential applica-
tions in the stealth technology can be anticipated.

IV. CONCLUSIONS

The elastic wave transparency phenomenon of a coated
solid sphere embedded in a host solid (or fluid) medium was
analytically studied for incident compressional waves. In the
Rayleigh limit, the first three scattering coefficients were de-
rived, and it is found that the coated sphere can be repre-
sented by a single effective sphere. The Hashin-Shtrikman
bound, the volume averaged method, and the Berryman’s
formula were used to estimate the effective modulus and
density parameters of the coated sphere (assemblage of the
coated sphere system). Quasistatic transparency conditions
were obtained by setting the first three scattering coefficients
as zero, which are exactly the results predicted by the neutral
inclusion concept. The resonance phenomenon and partially
resonance effect of a coated sphere induced by mass densi-
ties were also studied. Numerical results with full-wave com-
putations reveal that the given quasistatic conditions give
excellent prediction of the transparency and resonance phe-
nomena in the dynamic case.
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