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Abstract

Micropolar Eshelby tensors for an ellipsoidal inclusion are derived in an analytical form, which involves only one-
dimensional integral. The numerical evaluation of the Eshelby tensors are also performed, it is found that the micropolar
Eshelby tensors are not uniform in the ellipsoidal inclusion, however, their variations over the ellipsoidal domain are not
significant. When size of inclusion is large compared to the characteristic length of the micropolar material, the micropolar
Eshelby tensor is reduced to the classical one. It is also demonstrated that for a general ellipsoidal inclusion a uniform
eigenstrain or eigentorsion produces on average only nonzero strain or torsion, and the average Eshelby relations are
uncoupled.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Material is endowed with microstructure, like atoms and molecules at microscopic scale, grains and fibers
or particulates at mesoscopic scale. Homogenization of a basically heterogeneous material depends on scale of
interest. When stress fluctuation is small enough compared to microstructure of material, homogenization can
be made without considering the detailed microstructure of the material. However, if it is not the case, the
microstructure of material must be considered properly in a homogenized formulation [1,2]. The concept of
microcontinuum, proposed by Eringen [1], can take into account the microstructure of material while the the-
ory itself remains still in a continuum formulation. The first grade microcontinuum consists a hierarchy of
theories, such as, micropolar, microstretch and micromorphic, depending on how much micro-degrees of free-
dom are incorporated. These microcontinuum theories are believed to be potential tools to characterize the
behavior of material with complicated microstructures.
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The most popular microcontinuum theory is micropolar one, in this theory a material point can still be con-
sidered as infinitely small, however, there are microstructures inside of this point. So there are two sets of var-
iable to describe the deformation of this material point, one characterizes the motion of the inertia center of
this material point; the other describes the motion of the microstructure inside of this point. In micropolar
theory, the motion of the microstructure is supposed to be an independently rigid rotation. Application of this
theory can be found in Refs. [1,3]. The inclusion problem for a micropolar medium is firstly addressed by
Cheng and He [4,5] with help of Green’s function technique. In their work an eigentorsion was introduced
in addition to the classical eigenstrain introduced by Eshelby [6], four Eshelby tensors are then introduced
for an inclusion in a micropolar material. Cheng and He [4,5] derived the analytical expressions of these four
Eshelby tensors for a spherical inclusion and a cylindrical inclusion, respectively. The results show that even
for the simplest inclusion shape (for example a sphere), the Eshelby tensors are not uniform inside of the
inclusion.

Based on the Eshelby relations for a micropolar material, Xun et al. [7], Liu and Hu [8], and Hu et al. [2]
have proposed an analytical homogenization method for micropolar composites, the influence of particle size
on the elastoplastic behavior of the composites can be successfully predicted. However, Eshelby tensors for a
general ellipsoidal inclusion are not available at present, the influence of fiber’s shape and size on overall elas-
toplastic behavior for micropolar composites has not been addressed yet. The objective of this paper is to
derive the Eshelby tensors for a general ellipsoidal inclusion, these Eshelby tensors are essential to predict
overall behavior of micropolar composites. The manuscript is arranged as follows, in Section 2, a brief theory
for a micropolar material will be recalled; in Section 3, analytical expressions of Eshelby tensors for a general
ellipsoidal inclusion will be derived, the characteristic of the derived Eshelby tensors and their average over the
ellipsoidal domain will be examined in Section 4. Index notation for a tensor (or vector) is adopted in this
paper, except some vector representations appear in bold letter as used for convenience.

2. Basic equations for a micropolar material

For a micropolar body, the governing equations are given by Eringen [1] and Nowacki [9]:
eij ¼ uj;i � ekijuk; jij ¼ uj;i ð1aÞ
rij;i þ fj ¼ 0; mij;i þ ejikrik þ lj ¼ 0 ð1bÞ
rji ¼ Cjiklekl þ Bjikljkl; mji ¼ Bjiklekl þ Djikljkl ð1cÞ
where rij and mij denote the stress and couple stress tensors, eij and jij are the strain and torsion tensors, ui and
ui are the displacement and microrotation vectors, respectively. Cijkl, Bijkl and Dijkl are the elasticity tensors of
the micropolar material, eijk is permutation tensor. fj and lj are the body force and body torque, separately.

In particular, for a centrosymmetric and isotropic micropolar body, the elasticity tensors are specified as [9]:
Bjikl ¼ 0 ð2aÞ
Cjikl ¼ kdijdkl þ ðlþ jÞdjkdil þ ðl� jÞdikdjl ð2bÞ
Djikl ¼ adijdkl þ ðbþ cÞdjkdil þ ðb� cÞdikdjl ð2cÞ
where l,k are the classical Lame’s constants and j,c,b,a are the new elastic constants introduced in micro-
polar theory.

Eq. (1) can be further arranged in the following form with the two basic variables ui,/i
Cjiklul;kj þ 2jeijkuk;j þ fi ¼ 0 ð3aÞ
Djiklul;kj � 4jui þ 2jeijkuk;j þ li ¼ 0 ð3bÞ
Four Green’s functionsGln, bG ln, Uln and bUln for a micropolar material can be derived by solving the follow-
ing equations:
CjiklGln;kj þ 2jeijlUln;j þ dindðx� x0Þ ¼ 0; DjiklUln;kj � 4jUin þ 2jeijlGln;j ¼ 0 ð4aÞ
Cjikl

bGln;kj þ 2jeijl
bUln;j ¼ 0; Djikl

bU ln;kj � 4jbUin þ 2jeijl
bGln;j þ dindðx� x0Þ ¼ 0 ð4bÞ
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where dij is the Kronercker-delta function, and d (x � x 0) is one-dimensional Dirac-delta function. The ana-
lytical expressions of Green’s functions for an infinite centrosymmetric and isotropic micropolar body have
been provided by Sandru [10], and they are listed in Appendix.

3. Inclusion problem for a micropolar medium

Considering an inclusion X in an infinite centrosymmetric and isotropic micropolar material, a uniform
asymmetric eigenstrain e* and an eigentorsion j* are prescribed in the inclusion. Here the inclusion means that
its material constants are the same as the surrounding matrix, as introduced by Mura [11]. It can be shown
that the effect of the eigenstrain and eigentorsion can be simulated by a distributed body force and body tor-
que, and further with help of Green’s functions for the micropolar material, the induced displacement and
rotation in the micropolar medium due to the prescribed eigenstrain and eigentorsion in the inclusion can
be expressed as
unðxÞ ¼ �
Z

V
ðClkjie

�
jiGkn;l þ 2jeijke

�
jiUkn � Dlkjij

�
jiUkn;lÞdx0 ð5aÞ

unðxÞ ¼
Z

V
ðClkjie

�
ji
bGkn;l þ 2jeijke

�
ji
bUkn � Dlkjij

�
ji
bUkn;lÞdx0 ð5bÞ
Differentiating the both sides of Eq. (5), the induced strain and torsion by the prescribed eigenstrain and eigen-
torsion can be written as [5]
eðxÞ ¼ KðxÞ : e� þ LðxÞ : j� ð6aÞ
jðxÞ ¼ bKðxÞ : e� þ bLðxÞ : j� ð6bÞ
where
KmnjiðxÞ ¼ IS
nji;mðxÞ þ Inji;mðxÞ � elmn

bI ljiðxÞ ð7aÞ
LmnjiðxÞ ¼ J nji;mðxÞ � elmn

bJ ljiðxÞ ð7bÞbK mnjiðxÞ ¼ bI nji;mðxÞ ð7cÞbLmnjiðxÞ ¼ bJ nji;m ð7dÞ
and
IS
nji ¼

kþ l
kþ 2l

w;ijnðxÞ �
k

kþ 2l
dij/;nðxÞ � din/;jðxÞ � djn/;iðxÞ ð8aÞ

Inji ¼ 2lH ½h2/;ijnðxÞ � h2M ;ijnðx; hÞ þ djnM ;iðx; hÞ� ð8bÞ

J njiðxÞ ¼ �
1

2l
½ðbþ cÞenik/;jkðxÞ þ ðb� cÞenjk/;ikðxÞ�

þ 1

2l
½ðbþ cÞenikM ;jkðx; hÞ þ ðb� cÞenjkM ;ikðx; hÞ�

� a
2l

djienkl½/;kl �M ;klðx; hÞ� ð8cÞ

bI njiðxÞ ¼ �
1

2l
½kdjienkl/;klðxÞ þ jejik/;knðxÞ þ ðlþ jÞeink/;kjðxÞ þ ðl� jÞejnk/;kiðxÞ�

þ 1

2l
½kdjienklM ;klðx; hÞ þ ðlþ jÞejikM ;knðx; hÞ þ ðlþ jÞeinkM ;kjðx; hÞ

þ ðl� jÞejnkM ;kiðx; hÞ� þ
1

2
ejikM ;knðx; gÞ �

lþ j

2lh2
enjiMðx; hÞ ð8dÞ

bJ njiðxÞ ¼ �
b

2l
/;ijnðxÞ þ

lþ j
4lj

½adijM ;kknðx; hÞ þ 2bM ;ijnðx; hÞ� �
1

4j
½adijM ;kknðx; gÞ þ 2bM ;ijnðx; gÞ�

� lþ j

4ljh2
½adijM ;nðx; hÞ þ ðbþ cÞdinM ;jðx; hÞ þ ðb� cÞdjnM ;iðx; hÞ� ð8eÞ
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The constants introduced in Eq. (8) are defined by
H ¼ j=½lðlþ jÞ�; h2 ¼ ðlþ jÞðcþ bÞ
4lj

; g2 ¼ ðaþ 2bÞ
4j

ð9Þ
The tensors K ; bK ;L; bL are called micropolar Eshelby tensors [5]. It can be seen from Eqs. (6)–(8) that com-
putation of the micropolar Eshelby tensors depends on the following three potential functions and their deriv-
atives, which are defined by
wðxÞ ¼ 1

4p

Z
X

r dx0; /ðxÞ ¼ 1

4p

Z
X

1

r
dx0; Mðx; kÞ ¼ 1

4p

Z
X

e�r=k

r
dx0 ð10Þ
where r = jx � x 0j.
The first and second integrals appeared in Eq. (10) are the same as in classical Eshelby tensor [11], and they

have been evaluated analytically by Eshelby [6] for a general ellipsoidal inclusion. Therefore, the key point for
evaluating the micropolar Eshelby tensors is to calculate the last integral in Eq. (10) for a general ellipsoidal
inclusion.

For a spherical and cylindrical inclusions, the last integral has been provided analytically by Cheng and He
[4,5]. For a general ellipsoidal inclusion, this integral cannot be evaluated in a fully analytical form, however,
we will reduce this integral as simple as possible, this effort is believed to be useful for further micromechanical
modeling.

Following Michelitsch et al. [12], after some mathematical algebra, the potential M(x,k) can be reduced to
the following form, involving only one-dimensional integral for a general ellipsoidal inclusion:
Mðx; kÞ ¼ 1

4p

Z
X

e�r=k

r
dx0 ¼ k2 � k2 a3

2

Z 1

0

ðD � AÞdu ð11Þ
where the constants in Eq. (11) are defined as
D ¼ 1

ðuþ a2
3Þ

3=2
1þ a

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2

3

uþ a2

s0@ 1A exp � a
k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2

3

uþ a2

s0@ 1A;
A ¼ I0ðBqÞ coshðCzÞ; B ¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u

uþ a2

r
; C ¼ a

k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2
p ;

u ¼ a2
3 tan2 h; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q

IM is the Mth order modified Bessel function of the first kind, a is the half short axis of the ellipsoid and a3 is
its half major axis, the major axis of the ellipsoid lines with the axis z.

The derivatives of Eq. (11) are given by
M ;iðx; kÞ ¼ �
a3

2
k2

Z 1

0

ðD � A;iÞdu ð12aÞ

M ;ijðx; kÞ ¼ �
a3

2
k2

Z 1

0

ðD � A;ijÞdu ð12bÞ

M ;ijmðx; kÞ ¼ �
a3

2
k2

Z 1

0

ðD � A;ijmÞdu ð12cÞ

M ;ijmnðx; kÞ ¼ �
a3

2
k2

Z 1

0

ðD � A;ijmnÞdu ð12dÞ
where
A;a ¼ B coshðCzÞI1ðBqÞ xa

q

A;ab ¼ B coshðCzÞ 1

2q3
½Bq½I0ðBqÞ þ I2ðBqÞ�xaxb þ 2I1ðBqÞðq2dab � xaxbÞ�



H. Ma, G. Hu / International Journal of Engineering Science 44 (2006) 595–605 599
A;abc ¼ B coshðCzÞ � � 3B
2q4

xaxbxc þ
B

2q2
ðdabxc þ dacxb þ dcbxaÞ

� �
I0ðBqÞ

�
þ 3

q5
xaxbxc þ

3B2

4q3
xaxbxc �

1

q3
ðdabxc þ dacxb þ dcbxaÞ

� �
I1ðBqÞ

þ � 3B
2q4

xaxbxc þ
B

2q2
ðdabxc þ dacxb þ dcbxaÞ

� �
I2ðBqÞ þ B2

4q3
xaxbxc

� �
I3ðBqÞ

�
A;abck ¼ B coshðCzÞ � B

q6

15

2
xaxbxcxk þ

3

8
B2q2xaxbxcxk �

3

2
q2xkðdabxc þ dacxb þ dcbxaÞ

��
� 3

2
q2ðdakxbxc þ dbkxaxc þ dckxbxaÞ þ

q4

2
ðdabdck þ dacdbk þ dakdcbÞ

�
I0ðBqÞ

þ 1

q7
� 9

2
B2q2xaxbxcxk � 15xaxbxcxk þ

3

4
B2q4xkðdabxc þ dacxb þ dcbxaÞ

�
þ 3q2xkðdabxc þ dacxb þ dcbxaÞ þ 3q2ðdakxbxc þ dbkxaxc þ dckxbxaÞ

þ 3

4
B2q4ðdakxbxc þ dbkxaxc þ dckxbxaÞ � q4ðdabdck þ dacdbk þ dakdcbÞ

�
I1ðBqÞ

þ B
q6

15

2
xaxbxcxk þ

B2q2

2
xaxbxcxk �

3

2
q2xkðdabxc þ dacxb þ dcbxaÞ

�
� 3

2
q2ðdakxbxc þ dbkxaxc þ dckxbxaÞ þ

q4

2
ðdabdck þ dacdbk þ dakdcbÞ

�
I2ðBqÞ

þ B2

q5
� 3

2
xaxbxcxk þ

q2

4
xkðdabxc þ dacxb þ dcbxaÞ þ

q2

4
ðdakxbxc þ dbkxaxc þ dckxbxaÞ

� �
I3ðBqÞ

þ B3

q4

1

8
xaxbxcxk

� �
I4ðBqÞ

�

The symbols a,b,c,k range from 1 to 2 and
A;z ¼ C sinhðCzÞI0ðBqÞ
A;zz ¼ C2 coshðCzÞI0ðBqÞ; A;az ¼ ðA;aÞ;z
A;zzz ¼ C3 sinhðCzÞI0ðBqÞ; A;azz ¼ ðA;aÞ;zz; A;abz ¼ ðA;abÞ;z
A;zzzz ¼ C4 coshðCzÞI0ðBqÞ; A;azzz ¼ ðA;aÞ;zzz; A;abzz ¼ ðA;abÞ;zz; A;abcz ¼ ðA;abcÞ;z
With help of Eq. (12), the micropolar Eshelby tensors for an ellipsoidal inclusion can then by derived by
evaluating the one-dimensional integral.

4. Numerical results

Unlike the Eshelby tensor in classical material (Cauchy medium), the micropolar Eshelby tensors are not
constant inside of an ellipsoidal inclusion. So in the following, the Eshelby tensors and their averages over the
ellipsoidal inclusion will be examined separately. The average Eshelby tensors are useful for determining the
effective property for a micropolar composite [7,8]. In the following, we are interested only in the symmetric
part Ksym

ijkl of the Eshelby tensor Kijkl, defined by
Ksym
ijmn ¼

1

4
ðKijmn þ Kijnm þ Kjimn þ KjinmÞ ð13Þ
The other Eshelby tensors can be evaluated in the same way.
(a) Eshelby tensor for an ellipsoidal inclusion: By evaluating the integral in Eqs. (11) and (12), and with help

of Eqs. (7)–(10), the Eshelby tensors for a general ellipsoidal inclusion in a micropolar medium can then be
computed. In the following, we assume l1 = l2 = l3 = l, the other material constants used in the computation
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are k = 50 Gpa, l = 26 Gpa, j = 13 Gpa, l = 10 lm, respectively. Fig. 1a and b illustrates the variation of the
component Ksym

1111 of the Eshelby tensor for an ellipsoidal inclusion with the aspect ratio 10 on the plane z = 0
and on the plane x2 = 0, respectively. The variations of the component Ksym

1122 on the same planes are also
shown in Fig. 2a and b. The size of the inclusion is set to be a = l. As shown in the figure, indeed the Eshelby
tensors are not uniform in the ellipsoidal domain, however, their variation in the ellipsoidal inclusion is not
significant. This is also checked for the other components of the Eshelby tensors.

(b) Average Eshelby tensor for an ellipsoidal inclusion: From Eqs. (7), (8) and (12), we find that the expres-
sions for bK and L have only odd order terms of the argument x, so their integration over a symmetric domain
vanishes. Therefore, for a general ellipsoidal inclusion, the following properties hold
Fig. 1.
x2 = 0
hLiI ¼ 0; h bK iI ¼ 0 ð14Þ
-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

x2

0.613

0.623

K
11

11

0
x1

Plane z=0  

-1
-0.5

0
0.5

1
x1 -10

-5

0

5

10

z

0.606

0.623

K
11

11

  Plane x2=0 

(a) 

(b)

Variation of component Ksym
1111 of the Eshelby tensor inside of an ellipsoidal inclusion with aspect ratio 10 (a) plane z = 0; (b) plane

.



-1

-0.5

0

       

1

x1

-1

-0.5

0

0.5

1

x2

0.125

0.117K
11

22

0.5

 Plane z=0

-1
-0.5

0
0.5

1x 1 -10

-5

0

5

10

z

0.117

0.13

K
11

22

0

  Plane x2=0

(a)

(b)

Fig. 2. Variation of component Ksym
1122 of the Eshelby tensor inside of an ellipsoidal inclusion with aspect ratio 10 (a) plane z = 0; (b) plane

x2 = 0.

H. Ma, G. Hu / International Journal of Engineering Science 44 (2006) 595–605 601
where h•iI means the volume average of the said quantity over the inclusion. Eq. (14) has been proven for a
spherical inclusion by Liu and Hu [8].

Eq. (14) means that in the average sense, an eigenstrain only induces a nonzero average strain and an eigen-
torsion produces only a nonzero average torsion for a general ellipsoidal inclusion. The average Eshelby rela-
tions (Eq. (6)) are uncoupled. We will consider in the following only the average symmetric part hKsymiI of the
Eshelby tensor hKiI, it relates the symmetric part of strain and eigenstrain by
hesymi¼I hK symiI : e�sym ð15Þ
For a spherical and a cylindrical inclusion, hKsymiI have been evaluated analytically by Xun et al. [7] and by
Liu and Hu [8], they are listed in the following for further comparison:
hKsym
ijkl ðxÞiI ¼ T 1dijdkl þ T 2ðdikdjl þ dildjkÞ ð16Þ
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where for a cylindrical inclusion, indices i, j range from 1 to 2, and
T 1 ¼
k� l

4ðkþ 2lÞ þ
j

2ðjþ lÞ I1ða=hÞK1ða=hÞ ð17aÞ

T 2 ¼
kþ 3l

4ðkþ 2lÞ �
j

2ðjþ lÞ I1ða=hÞK1ða=hÞ ð17bÞ
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and for a spherical inclusion, indices i, j range from 1 to 3, and
Fig. 5

Fig. 6
T 1 ¼
3k� 2l

15ðkþ 2lÞ þ
2hðaþ hÞj
5a3ðjþ lÞ CðhÞ ð18aÞ

T 2 ¼
3kþ 8l

15ðkþ 2lÞ �
3hðaþ hÞj
5a3ðjþ lÞ CðhÞ ð18bÞ
where a denotes the radius of the sphere or cylinder, K1 is the first order modified Bessel function of the type
II, and C(y) = e�a/y[acosh(a/y) � y sinh(a/y)].
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The variations of hKsym
1111iI and hKsym

1122iI of the average Eshelby tensor as function of inclusion’s aspect ratio
are shown in Figs. 3 and 4, respectively. For comparison the classical Eshelby tensor is also included. The
exact values of the average Eshelby tensor for a spherical inclusion or cylindrical inclusion (Eq. (16)) are also
included in the figures to access the accuracy of the numerical computation. The size of inclusion is set to be
a = l. We found that our numerical results agree very well with the exact results in case of the spherical and
cylindrical inclusion. For a cylindrical inclusion, there is a little difference between the numerical and the exact
result, this is due to probably the finite aspect ratio used in the numerical computation.

The variations of the components hKsym
1111iI and hKsym

1122iI of the average Eshelby tensor as function of the size
of inclusion are shown in Figs. 5 and 6, respectively. It is found that when the size of the inclusion approaches
to the characteristic size of matrix material (l), the influence of inclusion size is more pronounced, and when
the size of the inclusion is large enough, the micropolar Eshelby tensor is reduced to the classical one, as
expected.

5. Conclusions

We therefore propose a method to evaluate the micropolar Eshelby tensors for a general ellipsoidal inclu-
sion, and the analytical expressions of the four micropolar Eshelby tensors are derived, which involves only
one-dimensional integral. The numerical computations of the Eshelby tensors are also performed, it is shown
that the variation of the Eshelby tensors in an ellipsoidal inclusion is not significant, and when the size of the
inclusion is large compared to the characteristic length of the material, the micropolar Eshelby tensor is
reduced to the classical one.
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Appendix

The analytical expressions of Green’s functions for a centrosymmetric and isotropic micropolar body have
been derived by Sandru [10] and they are listed as follows:
Glnðx� x0Þ ¼ GS
lnðx� x0Þ þ H

4p
h2 e�r=h � 1

r

� �
;ln

� dln

e�r=h

r

" #

Ulnðx� x0Þ ¼ bGlnðx� x0Þ ¼ 1

8pl
elnk

e�r=h � 1

r

� �
;kbU lnðx� x0Þ ¼ � 1

16pl
e�r=h � 1

r

� �
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þ 1

16pj
e�r=g � e�r=h

r

� �
;ln

þ lþ j

16pljh2
dln
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r

where
r ¼ jx� x0j; H ; g2; h2 are given by Eq: ð9Þ

GS
lnðx� x0Þ ¼ 1

8pl
2dln

1

r
� kþ l

kþ 2l
r;ln

� �
is the classical Green’s function:
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