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Abstract

Eshelby tensors for an ellipsoidal inclusion in a microstretch material are derived in analytical form, involving only one-
dimensional integral. As micropolar Eshelby tensor, the microstretch Eshelby tensors are not uniform inside of the ellip-
soidal inclusion. However, different from micropolar Eshelby tensor, it is found that when the size of inclusion is large
compared to the characteristic length of microstretch material, the microstretch Eshelby tensor cannot be reduced to
the corresponding classical one. The reason for this is analyzed in details. It is found that under a pure hydrostatic loading,
the bulk modulus of a microstretch material is not the same as the one in the corresponding classical material. A modified
bulk modulus for the microstretch material is proposed, the microstretch Eshelby tensor is shown to be reduced to the
modified classical Eshelby tensor at large size limit of inclusion. The fully analytical expressions of microstretch Eshelby
tensors for a cylindrical inclusion are also derived.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Microcontinuum theory summarized in the monograph by Eringen (1999) is believed to be a potential can-
didate to bridge the gap between a system of discrete atoms and a continuum. This theory incorporates inde-
pendent deformations of the microstructure inside of a material point, while the theory itself remains in a
continuum formulation. There are a number of microcontinuum theories, namely couple stress, micropolar,
microstretch and micromorphic (Eringen, 1999). These theories impose more or less constraints on the motion
of microstructure inside of a material point. Their connection with atomic information and their applicability
are recently discussed by Chen et al. (2004). In microstretch theory which we will discuss in this paper, it is
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assumed that the microstructure of each material point can undergo independently expansion or contraction
in addition to translation and rigid rotation. This theory is a generalization of micropolar theory, in which the
microstructure can have only translation and rigid rotation. It is believed that microstretch theory is more suit-
able for materials with deformable microstructures, such as materials with pores (Eringen, 1999; Liu and Hu,
2004).

To predict overall property for composite materials, the inclusion theory (Mura, 1982) was extensively uti-
lized based on the pioneering work of Eshelby (1957) for an ellipsoidal inclusion in a classical material. As
discussed by Hu et al. (2005), when the size of reinforced particle is comparable to intrinsic length of matrix
material, the nonlocal effect must be considered in a proper theoretical formulation. Homogenization tech-
niques for a micropolar composite were recently established (Sharma and Dasgupta, 2002; Xun et al.,
2004; Liu and Hu, 2005; Ma and Hu, 2006). They are all based on the micropolar Eshelby tensors for spherical
or cylindrical inclusions given by Cheng and He (1995, 1997) and for a general ellipsoidal inclusion derived by
Ma and Hu (2006). Size-dependence of the overall elastic and plastic properties has been well predicted and it
is compared favorably with experiment (Liu and Hu, 2004).

However, since only translation and rigid rotation of microstructure are taken into account in micropolar
theory, the size-dependence of bulk modulus and of plasticity under hydrostatic loading cannot be predicted
within the homogenization theory for micropolar composites. To remedy this, homogenization theory for
microstretch composites is believed to be suitable way. The building block of homogenization theory for
microstretch composites, inclusion problem, is only recently studied for a spherical inclusion (Liu and Hu,
2004; Kiris and Inan, 2005). The microstretch Eshelby tensor for a general ellipsoidal inclusion is not available
in literature. So the objective of this manuscript is to derive microstretch Eshelby tensors for a general ellip-
soidal inclusion. As a special case, the microstretch Eshelby tensors for a circular cylindrical inclusion will also
be derived in a fully analytical form. The manuscript will be arranged as follows: In Section 2, a brief theory
for a microstretch material will be recalled. In Section 3, analytical expressions of microstretch Eshelby tensors
for a general ellipsoidal inclusion will be derived. The average microstretch Eshelby tensors over the ellipsoidal
domain and the circular cylindrical domain will be given in Section 4. The characteristics of these Eshelby ten-
sors will be examined through numerical examples, and this will be presented in Section 5. The property of
these Eshelby tensors when the size of inclusion tends to infinity will be discussed in Section 6, and followed
by some conclusions.

Index notation for a tensor (or vector) is adopted throughout this paper, except some vector representa-
tions appear in bold letter as used for convenience.

2. Basic equations for centrosymmetric and isotropic microstretch material

For a centrosymmetric and isotropic microstretch continuum (invariant with respect to coordinate rota-
tions and inversions (Lakes and Benedict, 1982)), the governing equations are given by Eringen (1999)

geometrical relations:
eji ¼ ui;j þ eijk/k; jji ¼ /i;j; fi ¼ h;i ð1aÞ
balance equations:
rji;j þ fi ¼ 0; mji;j þ eiklrkl þ li ¼ 0; pk;k � sþ l ¼ 0 ð1bÞ
constitutive equations:
rji ¼ Cjiklekl þ djik0h; mji ¼ Djikljkl; pi ¼ gh;i s ¼ k0ekk þ bh ð1cÞ
where ui and /i are the displacement and microrotation, respectively, and h represents the corresponding
microstretch. eji and jji are respectively the strain and torsion tensors introduced in micropolar theory, fi is
the space gradient of the microstretch. eijk is the third order permutation tensor. rji and mji are the asymmetric
stress and couple stress tensors, pk and s are the new stress quantities introduced in microstretch theory. Ther-
modynamically, they are conjugate to fi and h. fi, li and l are the generalized body forces.
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Cjikl and Djikl are the elasticity tensors of the isotropic microstretch material, and they have the following
form (Eringen, 1999):
Cjikl ¼ kdijdkl þ ðlþ jÞdjkdil þ ðl� jÞdikdjl ð2aÞ
Djikl ¼ adijdkl þ ðbþ cÞdjkdil þ ðb� cÞdikdjl ð2bÞ
where l, k are the classical Lamé constants and j, c, b, a are the elastic constants related to micropolar prop-
erty, k0, g and b are the new elastic constants due to microstretch theory. The range of their values has been
discussed by Eringen (1999).

Due to the dimensional difference between the two sets of moduli, four intrinsic characteristic lengths can
be defined for an isotropic elastic microstretch material, they can be defined as
l1 ¼ ðb=lÞ1=2
; l2 ¼ ðc=lÞ1=2

; l3 ¼ ða=lÞ1=2
; l4 ¼ ðg=lÞ1=2 ð3Þ
Following Liu and Hu (2004), in an infinitely extended microstretch body, the following impulse body
forces at the position x 0 are prescribed:
f ¼ Fdðx� x0Þ; l ¼ Ldðx� x0Þ; l ¼ Ldðx� x0Þ ð4Þ
The fundamental solutions of microstretch theory are (Liu and Hu, 2004)
ui xð Þ ¼ ½G1
ijðx� x0Þ þ Gs

ijðx� x0Þ�F j þ G2
ijðx� x0ÞLj þ Giðx� x0ÞL ð5aÞ

/i xð Þ ¼ H 1
ijðx� x0ÞF j þ H 2

ijðx� x0ÞLj ð5bÞ
h xð Þ ¼ Hjðx� x0ÞF j þHðx� x0ÞL ð5cÞ
where G1
ij, G2

ij ¼ H 1
ij and H 2

ij are the Green’s functions for micropolar theory, which have been provided by
Sandru (1966). Gs

ij, Gi, Hi and H are the additional Green’s functions related to microstretch property (Liu
and Hu, 2004). Their analytical expressions are listed in Appendix A.

3. Inclusion problem

Considering an ellipsoidal inclusion X in an infinite centrosymmetric and isotropic microstretch material, a
uniform asymmetric eigenstrain e�ji, an eigentorsion j�ji and an eigenmicrostretch-gradient f�kðxÞ are prescribed
in the inclusion. Here the inclusion means that its material constants are the same as the surrounding matrix,
as introduced by Mura (1982). It can be shown that the consequence of these eigendeformations can be sim-
ulated by distributed body loads. With the help of Green’s functions for a microstretch material, the induced
displacement, rotation and microstretch due to the prescribed eigendeformations can be expressed as
unðxÞ ¼
Z

V
�Cjikle

�
klðx0ÞðG1

in;jðx� x0Þ þ Gs
in;jðx� x0ÞÞ þ 2jeikle

�
klðx0ÞH 1

inðx� x0Þ
n
þDjiklj

�
klðx0ÞH 1

in;jðx� x0Þ � k0e
�
rrðx0ÞHnðx� x0Þ þ gf�r ðx0ÞHn;rðx� x0Þ

o
dx0 ð6aÞ

/nðxÞ ¼
Z

V
Cjikle

�
klðx0ÞG2

in;jðx� x0Þ � 2jeikle
�
klðx0ÞH 2

inðx� x0Þ � Djiklj
�
klðx0ÞH 2

in;jðx� x0Þ
n o

dx0 ð6bÞ

hðxÞ ¼
Z

V
Cjikle

�
klðx0ÞGi;jðx� x0Þ þ k0e

�
rrðx0ÞHðx� x0Þ � gf�r ðx0ÞH;rðx� x0Þ

� �
dx0 ð6cÞ
where ,j means o
oxj

.
With the help of the expressions of Green’s functions listed in Appendix A, Eq. (6c) can be written as
hðxÞ ¼ Is
klðxÞe�kl þ T s

kðxÞf
�
k ð7aÞ
It is noted that h(x) is not only a displacement quantity, but also a strain measure for the microstretch material
(see, Eq. (1c)).
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According to the constitutive equation, differentiating the both sides of Eq. (6), the induced strain, torsion
and microstretch-gradient can be written as (Liu and Hu, 2004)
emnðxÞ ¼ KmnklðxÞe�kl þ LmnklðxÞj�kl þ N s
mnkðxÞf

�
k ð7bÞ

jmnðxÞ ¼ bK mnklðxÞe�kl þ bLmnklðxÞj�kl ð7cÞ
fnðxÞ ¼ Ks

nklðxÞe�kl þ N s
nkðxÞf

�
k ð7dÞ
where
KmnjiðxÞ ¼ K1
mnjiðxÞ þ Ks

mnjiðxÞ
K1

mnjiðxÞ ¼ Ic
nji;mðxÞ þ Inji;mðxÞ � elmn

bI ljiðxÞ; Ks
mnjiðxÞ ¼ I s

nji;mðxÞ
LmnjiðxÞ ¼ J nji;mðxÞ � elmn

bJ ljiðxÞ; N s
mnkðxÞ ¼ T s

nk;mðxÞbK mnjiðxÞ ¼ bI nji;mðxÞ; bLmnjiðxÞ ¼ bJ nji;mðxÞ
Ks

nklðxÞ ¼ Is
kl;nðxÞ; Ns

nkðxÞ ¼ T s
k;nðxÞ
The tensors Kmnkl; Lmnkl; Ns
mnk;

bK mnkl; bLmnkl; Ks
nkl; N s

nk are called microstretch Eshelby tensors (Liu and
Hu, 2004). K1

mnkl; Lmnkl; bK mnkl; bLmnkl are the corresponding micropolar Eshelby tensors which have been given
by Cheng and He (1995); Ks

mnkl; Ns
mnk ; Ks

nkl; Ns
nk are the additional Eshelby tensors due to the microstretch

effect derived by Liu and Hu (2004). The detailed expressions of Ic
njiðxÞ; InjiðxÞ; bI ljiðxÞ; Is

njiðxÞ; J njiðxÞ;bJ ljiðxÞ; Is
klðxÞ; T s

klðxÞ; T s
kðxÞ are listed in Appendix B.

It can be seen from Appendix B that evaluation of microstretch Eshelby tensors depends on the following
three potential functions and their derivatives, which are defined by
wðxÞ ¼ 1

4p

Z
X

r dx0; /ðxÞ ¼ 1

4p

Z
X

1

r
dx0; Mðx; kÞ ¼ 1

4p

Z
X

e�r=k

r
dx0 ð8Þ
where r = jx � x 0j.
The first and second integrals appeared in Eq. (8) are the same as in classical Eshelby tensor (Mura, 1982),

and they have been evaluated analytically by Eshelby (1957) for a general ellipsoidal inclusion. Then, compu-
tation of the third one is the key point for evaluating the microstretch Eshelby tensors.

For a spherical inclusion, the last integral of Eq. (8) has been provided analytically by Cheng and He
(1995). So the analytical expressions of microstretch Eshelby tensors for a spherical inclusion can be obtained
(Liu and Hu, 2004). However for a general ellipsoidal inclusion, it cannot be evaluated in a fully analytical
form. Ma and Hu (2006) have reduced it to the following form, which involves only one-dimensional integral:
Mðx; kÞ ¼ 1

4p

Z
X

e�r=k

r
dx0 ¼ k2 � k2 a3

2

Z 1

0

D � Að Þdu ð9Þ
where the parameters in Eq. (9) are defined as
D ¼ 1

uþ a2
3ð Þ3=2

1þ a1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2

3

uþ a2
1

s !
exp � a1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2

3

uþ a2
1

s !

A ¼ I0 Bqð Þ cosh Cx3ð Þ; B ¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u

uþ a2
1

r
; C ¼ a1

k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2

1

p
u ¼ a2

3 tan2 h; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q

In the above expression, IM is the Mth order modified Bessel function of the first kind, a1 is the half short axis
of the ellipsoid and a3 is its half major axis. The major axis of the ellipsoid lines along the axis x3.

The derivatives of Eq. (9) are listed in Appendix C. So with the help of Eq. (9), all the microstretch Eshelby
tensors for an ellipsoidal inclusion can be obtained.
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4. Average microstretch Eshelby tensors

As in the case for Eshelby tensor in a micropolar material, the microstretch Eshelby tensors are not uniform
inside of an ellipsoidal inclusion. So in the following, the microstretch Eshelby tensors are averaged over the
ellipsoidal inclusion. The average Eshelby tensors are useful in predicting the overall properties of composite
materials. In the following, for simplicity, we examine only the following two tensors: one is the symmetric
part Ksym

ijkl of the Eshelby tensor Kijkl, defined by
Ksym
ijmn ¼

1

4
Kijmn þ Kijnm þ Kjimn þ Kjinm

� �
ð10Þ
The other is I s
kl, which relates the eigenstrain e�ij to the induced microstretch h(x). From Appendices B and C, it

is seen that tensor Is
kl is a symmetric quantity. The other microstretch Eshelby tensors can be evaluated in the

same way.

(a)Average microstretch Eshelby tensors for an ellipsoidal inclusion
With the help of the result in Appendix B and Eqs. (5), (6), we find that the expressions for Lmnkl, bK mnkl,

Ns
mnk , Ks

nkl and T s
k have only odd order terms of the argument x. So their integration over a symmetric domain

vanishes. Therefore for a general ellipsoidal inclusion, the following properties hold:
hLmnkliX ¼ hbK mnkliX ¼ hN s
mnkiX ¼ hKs

nkliX ¼ hT s
kiX ¼ 0 ð11Þ
where h•iX means the volume average of the said quantity over the inclusion domain.
Eq. (11) has been proven for a spherical inclusion by Liu and Hu (2004). The result of Eq. (11) means that

the average microstretch Eshelby relations (Eq. (7)) are uncoupled. That is,
hemnðxÞiX ¼ hKmnklðxÞiXe�kl; hjmnðxÞiX ¼ hbLmnklðxÞiXj�kl

hfnðxÞiX ¼ hNs
nkðxÞiXf�k ; hhðxÞiX ¼ hIs

klðxÞiXe�kl

ð12Þ
The average symmetric part hKsym
mnkliX of the Eshelby tensor hKmnkliX relates the symmetric part of strain to the

symmetric part of the eigenstrain by
hesym
mn iX ¼ hK

sym
mnkliXe�sym

kl ð13Þ
Following the method proposed by Ma and Hu (2006), and with help of Eq. (7), the average microstretch
Eshelby tensors for a general ellipsoidal inclusion can then be computed. It will be performed in Section 5.

(b)Average microstretch Eshelby tensors for a circular cylindrical inclusion
With the analytical expression for M(x,k) given by Cheng and He (1997) for a cylindrical inclusion and the

general Eqs. (6), (7), the average microstretch Eshelby tensors for a circular cylindrical inclusion can be eval-
uated in a fully analytical from. After some mathematical manipulation, the average microstretch Eshelby ten-
sors for a cylindrical inclusion are given by
hKabcqiX ¼ T 1dabdcq þ T 2 þ T 3ð Þdacdbq þ T 2 � T 3ð Þdaqdbc ð14aÞ
hbLa3c3iX ¼ Q33dac ð14bÞ
hNs

bciX ¼ N sdbc ð14cÞ
hIs

cqiX ¼ Isdcq ð14dÞ
where indices a, b, c, q range from 1 to 2, and
T 1 ¼
k� l

4 kþ 2lð Þ þ
j

2 jþ lð Þ I1 a=hð ÞK1 a=hð Þ � 3lk2
0

4As kþ 2lð Þ þ
3lgk02

2As2
p2

I1 a=pð ÞK1 a=pð Þ

T 2 ¼
kþ 3l

4 kþ 2lð Þ �
j

2 jþ lð Þ I1 a=hð ÞK1 a=hð Þ þ lk2
0

4As kþ 2lð Þ �
lgk2

0

2As2
p2

I1 a=pð ÞK1 a=pð Þ
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T 3 ¼
1

2
� l

jþ l
I1 a=hð ÞK1 a=hð Þ

Q33 ¼ I1 a=hð ÞK1 a=hð Þ
N s ¼ I1 a=pð ÞK1 a=pð Þ

Is ¼ lk0

As �
2lk0

As I1 a=pð ÞK1 a=pð Þ
In the above expression, a denotes the radius of the cylinder, I1, K1 are the first order modified Bessel function
of the type I and II, respectively. Other constants appear in the above expression are
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ jð Þðcþ bÞ

4lj

s
; p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðkþ 2lÞ

ðkþ 2lÞb� k2
0

s
; As ¼ ðkþ 2lÞb� k2

0 ð15Þ
The average symmetric part hKsym
abcqiX of the Eshelby tensor hKabctiX is given by
hKsym
abcqiX ¼ T 1dabdcq þ T 2ðdacdbq þ daqdbcÞ ð16Þ
For completeness, the analytical expressions of the average microstretch Eshelby tensors for a spherical inclu-
sion are also listed for comparison (Liu and Hu, 2004)
hKsym
mnkliX ¼ T 1dmndkl þ T 2 dmkdnl þ dmldnkð Þ; hN s

kliX ¼ Nsdkl; hIs
kliX ¼ Isdkl ð17Þ
Indices i, j, k, l range from 1 to 3, where
T 1 ¼
3k� 2l

15ðkþ 2lÞ þ
2hðaþ hÞj
5a3ðjþ lÞ CðhÞ �

8lk02

15Asðkþ 2lÞ þ
8ðaþ pÞlgk2

0

5a3As2
p

C pð Þ

T 2 ¼
3kþ 8l

15ðkþ 2lÞ �
3hðaþ hÞj
5a3ðjþ lÞ CðhÞ þ

2lk2
0

15Asðkþ 2lÞ �
2 aþ pð Þlgk2

0

5a3As2
p

C pð Þ

Ns ¼ pðaþ pÞ
a3

CðpÞ

Is ¼ 4lk0

3As �
4lk0p aþ pð Þ

a3As C pð Þ

CðyÞ � e�a=y a coshða=yÞ � y sinhða=yÞ½ �
In the expressions of T1, T2 for spherical and cylindrical inclusions, the first term is the classical part, the
second item is due to the micropolar effect, and the last two terms come from the coupling microstretch effect.
It is clear that when the size of inclusion tends to infinity, contrary to micropolar Eshelby tensors, the size-
dependent terms tend to zero, T1, T2 cannot be reduced to the classical ones. The reason will be explored
in Section 6. In the section followed, some numerical examples will be given to illustrate the property of
the derived microstretch Eshelby tensors.

5. Numerical examples

In this section, we assume l1 = l2 = l3 = l4 = lm, the other material constants used in the computation are
k = 50 GPa, l = 26 GPa, j = 13 GPa, k0 = 25 GPa, b = 26 GPa, lm = 10 lm.

The variations of hKsym
1111iX and hKsym

1122iX as function of the aspect ratio of inclusion are shown in Figs. 1 and
2, respectively. For comparison, the corresponding classical Eshelby tensor and the micropolar Eshelby tensor
are also included. The exact values of the average microstretch Eshelby tensors for a spherical inclusion and a
cylindrical inclusion (Eqs. (16) and (17)) are also included in the figures in order to access the accuracy of the
numerical computation. The size of inclusion is set to be a1 = lm. We found that our numerical results agree
very well with the exact results in the case of the spherical and cylindrical inclusions.

The variations of the components hIs
11iX and hI s

33iX of the tensor hIs
kliX as function of the aspect ratio of

inclusion are shown in Fig. 3. The exact values of the microstretch average Eshelby tensor for a spherical
inclusion or a cylindrical inclusion are also included. It is found that for a spherical inclusion, the numerical
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results have a very good agreement with the exact result. However for a circular cylindrical inclusion, due to
the finite size of the inclusion used in the numerical computation, there is a little difference between the numer-
ical and the exact results.
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6. Discussion on average microstretch Eshelby tensors

As discussed in Section 4, unlike micropolar Eshelby tensors, the average microstretch Eshelby tensor can-
not be reduced to the corresponding classical one when the size of inclusion tends to infinity. In the following
discussion, we will examine the reason why the microstretch Eshelby tensor cannot be reduced to the classical
one at large size limit of inclusion.

We will examine the response of a pure microstretch material under a hydrostatic loading. Following
micropolar theory (Hu et al., 2005), the constitutive relations (Eq. (1c)) of a microstretch material can be
rewritten as
r0ðijÞ ¼ 2le0ðijÞ; rhiji ¼ 2jehiji; �r ¼ 3K�eþ k0h ð18aÞ
m0ðijÞ ¼ 2bj0ðijÞ; mhiji ¼ 2cjhiji; �m ¼ 3N �j ð18bÞ
pi ¼ gh;i; s ¼ 3k0�eþ bh ð18cÞ
where r0ðijÞ, rhiji, �r ð� rii=3Þ and e0ðijÞ, ehiji, �e ð� eii=3Þ denote separately the deviatoric symmetric, anti-symmet-
ric and hydrostatic parts of stress and strain tensors, and similar notations for the couple-stress and torsion
tensors. K = k + 2l/3 is the bulk modulus. and N = a + 2b/3, which can be interpreted as the corresponding
stiffness measure for torsion.

If such a microstretch material is under a pure hydrostatic loading �r, we find that
�r ¼ 3 k� k2
0

b
þ 2

3
l

� �
�e ð19aÞ
for a spherical material sample, and
�r ¼ 2 k� k2
0

b
þ l

� �
�e ð19bÞ
for a cylindrical material sample (with �r � raa=2; �e � eaa=2).
It can be seen from Eq. (19) that if k0 = 0, the micropolar field is uncoupled with microstretch, the micro-

polar results can be found, which are identical to those for the classical material. However, for the micro-
stretch material (k0 5 0), the bulk modulus is not the same as the classical material. That is reason why at
large size limit of inclusion, the microstretch Eshelby tensor cannot be reduced to the classical Eshelby tensor.
From Eq. (19), we can define a modified lame constant km by
km ¼ k� k2
0

b
ð20Þ
With this modified lame constant, it can be expected that when the size of inclusion tends to infinity, the aver-
age microstretch Eshelby tensors hKsym

mnkliX will be reduced to the classical Eshelby tensor with the material con-
stants (l,km) instead of (l,k). If we use Eq. (20) to substitute the k in the expressions of the classical terms in
the average microstretch Eshelby tensors (Eq. (17)), after some mathematical manipulations, the following
expressions are obtained:
T m
1 ¼

3k� 2l
15ðkþ 2lÞ �

8lk2
0

15Asðkþ 2lÞ ; T m
2 ¼

3kþ 8l
15ðkþ 2lÞ þ

2lk2
0

15Asðkþ 2lÞ ð21Þ
Eq. (21) gives just the size-independent terms in the average microstretch Eshelby tensor when the size of inclu-
sion tends to infinity, as expected from the above reasoning. The other two terms remain unchanged, which
characterize the size-dependence of the microstretch Eshelby tensor.

The variations of hKsym
1111iX and hKsym

1122iX as function of the size of inclusion are shown in Figs. 4 and 5,
respectively. The micropolar results are also included. It is found that when the size of inclusion approaches
to the characteristic length of matrix material (lm), the influence of the size of inclusion is more pronounced for
both micropolar and microstretch theory. When the size of inclusion is large enough, the micropolar results is
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reduced to the classical one, however the microstretch Eshelby tensors tend to the modified one, as discussed
previously.

The variations of hIs
11iX and hIs

33iX as function of the size of inclusion are also illustrated in Figs. 6 and 7,
respectively. It is found that when the size of inclusion approaches to the characteristic length of matrix mate-
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rial (lm), the influence of the size of inclusion is more significant. When the size of inclusion is large enough,
both hIs

11iX and hIs
33iX approach to their asymptotic values. For a spherical inclusion, our numerical results

tend to 4lk0/(3As), this is the exact value for average microstretch Eshelby tensor hIs
kliX for a spherical inclu-

sion when the size of inclusion tends to infinity.
In order to avoid the ‘‘limit problem’’ at large size limit of inclusion, we can also consider a special case of

microstretch theory by setting k0 = 0 and considering only g and b as the proper material constants. In this
case, the displacement and rotation fields are uncoupled with the microstretch, the microstretch Eshelby ten-
sors hKiX and hbLiX are identical to those of the corresponding micropolar material, which are reduced to the
classical results naturally. The tensors hNsiX and hIsiX due to the microstretch effect are checked to identically
vanish when the size of inclusion tends to infinity.
7. Conclusions

We have therefore derived the microstretch Eshelby tensor for a general ellipsoidal inclusion. The expres-
sions of these tensors involve only one-dimension integral, and can be easily computed. The fully analytical
expressions of microstretch Eshelby tensors for a circular cylindrical are also obtained. The same as micropo-
lar Eshelby tensors, the microstretch Eshelby tensors are not uniform inside of an ellipsoidal inclusion. It is
shown that when the size of inclusion tends to infinity, the microstretch Eshelby tensor will be reduced to
the modified classical Eshelby tensor. The obtained results will be useful for predicting the overall property
of microstretch composites.
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Appendix A

The analytical expressions of Green’s functions for an isotropic microstretch body are (Liu and Hu, 2004)
G1
ij x� x0ð Þ ¼ Gc

ij x� x0ð Þ � j
4pl lþ jð Þ h2 1� e�r=h

r

� �
;ij

þ dij
e�r=h

r

" #

G2
ij x� x0ð Þ ¼ H 1

ij x� x0ð Þ ¼ � 1

8pl
eijk

1� e�r=h

r

� �
;k
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H 2
ij x� x0ð Þ ¼ 1

16pl
1� e�r=h

r

� �
;ij

þ 1

16pj
e�r=g � e�r=h

r

� �
;ij

þ lþ j

16pljh2
dij

e�r=h

r

Gc
ij x� x0ð Þ ¼ 1

8pl
2dij

1

r
� kþ l

kþ 2l
r;ij

	 

is the classical Green’s function

Gs
ij x� x0ð Þ ¼ bp2 � g

4pgðkþ 2lÞ
1

2
r;ij þ p2 1� e�r=p

r

� �
;ij

( )

Gi x� x0ð Þ ¼ �Hi x� x0ð Þ ¼ k0p2

4pgðkþ 2lÞ
1� e�r=p

r

� �
;i

H x� x0ð Þ ¼ 1

4pg
e�r=p

r

where r ¼ jx� x0j; g ¼
ffiffiffiffiffiffiffiffiffiffi
aþ2bð Þ

4j

q
; h; p are given by Eq. (15).

Appendix B
Ic
nji ¼

kþ l
kþ 2l

w;ijnðxÞ �
k

kþ 2l
dij/;nðxÞ � din/;jðxÞ � djn/;iðxÞ

Inji ¼
2j

lþ j
h2/;ijnðxÞ � h2M ;ijnðx; hÞ þ djnM ;iðx; hÞ
� �

Is
nji ¼

2lk2
0

As kþ 2lð Þ �
1

2
w;nji xð Þ � p2/;nji xð Þ þ dji/;n xð Þ � djiM ;n x; pð Þ þ p2M ;nji x; pð Þ

	 

bI njiðxÞ ¼ �

1

2l
½kdjienkl/;klðxÞ þ jejik/;knðxÞ þ ðlþ jÞeink/;kjðxÞ þ ðl� jÞejnk/;kiðxÞ�

þ 1

2l
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� 1

2
ejikM ;knðx; gÞ �

lþ j

2lh2
enjiMðx; hÞ

J njiðxÞ ¼
1

2l
½ðbþ cÞenik/;jkðxÞ þ ðb� cÞenjk/;ikðxÞ� �

1

2l
½ðbþ cÞenikM ;jkðx; hÞ þ ðb� cÞenjkM ;ikðx; hÞ�

þ a
2l

djienkl /;kl �M ;klðx; hÞ
� �

bJ njiðxÞ ¼ �
b

2l
/;ijnðxÞ þ

b lþ jð Þ
2lj

M ;ijnðx; hÞ �
1

4j
a
g2

djiM ;nðx; gÞ þ 2bM ;ijnðx; gÞ
	 


� lþ j

4ljh2
½ðbþ cÞdinM ;jðx; hÞ þ ðb� cÞdjnM ;iðx; hÞ�

Is
kl xð Þ ¼ 2lk0

g kþ 2lð Þ dklM x; pð Þ þ 2lk0

As /;kl xð Þ �M ;kl x; pð Þ
� �

T s
kl xð Þ ¼ � gk0

As /;kl xð Þ �M ;kl x; pð Þ
� �

T s
k xð Þ ¼ �M ;k x; pð Þ
where As, h, p are given by Eq. (15), g is the same as in Appendix A.

Appendix C

The derivatives of Eq. (9) are given as
M ;iðx; kÞ ¼ �
a3

2
k2

Z 1

0

D � A;ið Þdu
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M ;ijðx; kÞ ¼ �
a3

2
k2

Z 1

0

D � A;ij

� �
du

M ;ijmðx; kÞ ¼ �
a3

2
k2

Z 1

0

D � A;ijm

� �
du

M ;ijmnðx; kÞ ¼ �
a3

2
k2

Z 1

0

D � A;ijmn

� �
du
where
A;a ¼ B cosh Cx3ð ÞI1 Bqð Þ xa

q

A;ab ¼ B cosh Cx3ð Þ 1

2q3
Bq I0 Bqð Þ þ I2 Bqð Þ½ �xaxb þ 2I1 Bqð Þ q2dab � xaxb

� �� �
A;abc ¼ B cosh Cx3ð Þ � � 3B

2q4
xaxbxc þ

B
2q2

dabxc þ dacxb þ dcbxa

� �	 
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þ 3

q5
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3B2

4q3
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1
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� �	 
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þ � 3B
2q4
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B
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I2 Bqð Þ þ B2

4q3
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I3 Bqð Þ
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B
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2
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3

8
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The symbols a, b, c, k range from 1 to 2 and
A;3 ¼ C sinhðCx3ÞI0ðBqÞ
A;33 ¼ C2 coshðCx3ÞI0ðBqÞ; A;a3 ¼ ðA;aÞ;3
A;333 ¼ C3 sinhðCx3ÞI0ðBqÞ; A;a33 ¼ ðA;aÞ;33; A;ab3 ¼ ðA;abÞ;3
A;3333 ¼ C4 coshðCx3ÞI0ðBqÞ; A;a333 ¼ ðA;aÞ;333; A;ab33 ¼ ðA;abÞ;33; A;abc3 ¼ ðA;abcÞ;3
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