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Abstract

Eshelby tensors for an ellipsoidal inclusion in a microstretch material are derived in analytical form, involving only one-
dimensional integral. As micropolar Eshelby tensor, the microstretch Eshelby tensors are not uniform inside of the ellip-
soidal inclusion. However, different from micropolar Eshelby tensor, it is found that when the size of inclusion is large
compared to the characteristic length of microstretch material, the microstretch Eshelby tensor cannot be reduced to
the corresponding classical one. The reason for this is analyzed in details. It is found that under a pure hydrostatic loading,
the bulk modulus of a microstretch material is not the same as the one in the corresponding classical material. A modified
bulk modulus for the microstretch material is proposed, the microstretch Eshelby tensor is shown to be reduced to the
modified classical Eshelby tensor at large size limit of inclusion. The fully analytical expressions of microstretch Eshelby
tensors for a cylindrical inclusion are also derived.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Microcontinuum theory summarized in the monograph by Eringen (1999) is believed to be a potential can-
didate to bridge the gap between a system of discrete atoms and a continuum. This theory incorporates inde-
pendent deformations of the microstructure inside of a material point, while the theory itself remains in a
continuum formulation. There are a number of microcontinuum theories, namely couple stress, micropolar,
microstretch and micromorphic (Eringen, 1999). These theories impose more or less constraints on the motion
of microstructure inside of a material point. Their connection with atomic information and their applicability
are recently discussed by Chen et al. (2004). In microstretch theory which we will discuss in this paper, it is
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assumed that the microstructure of each material point can undergo independently expansion or contraction
in addition to translation and rigid rotation. This theory is a generalization of micropolar theory, in which the
microstructure can have only translation and rigid rotation. It is believed that microstretch theory is more suit-
able for materials with deformable microstructures, such as materials with pores (Eringen, 1999; Liu and Hu,
2004).

To predict overall property for composite materials, the inclusion theory (Mura, 1982) was extensively uti-
lized based on the pioneering work of Eshelby (1957) for an ellipsoidal inclusion in a classical material. As
discussed by Hu et al. (2005), when the size of reinforced particle is comparable to intrinsic length of matrix
material, the nonlocal effect must be considered in a proper theoretical formulation. Homogenization tech-
niques for a micropolar composite were recently established (Sharma and Dasgupta, 2002; Xun et al.,
2004; Liu and Hu, 2005; Ma and Hu, 2006). They are all based on the micropolar Eshelby tensors for spherical
or cylindrical inclusions given by Cheng and He (1995, 1997) and for a general ellipsoidal inclusion derived by
Ma and Hu (2006). Size-dependence of the overall elastic and plastic properties has been well predicted and it
is compared favorably with experiment (Liu and Hu, 2004).

However, since only translation and rigid rotation of microstructure are taken into account in micropolar
theory, the size-dependence of bulk modulus and of plasticity under hydrostatic loading cannot be predicted
within the homogenization theory for micropolar composites. To remedy this, homogenization theory for
microstretch composites is believed to be suitable way. The building block of homogenization theory for
microstretch composites, inclusion problem, is only recently studied for a spherical inclusion (Liu and Hu,
2004; Kiris and Inan, 2005). The microstretch Eshelby tensor for a general ellipsoidal inclusion is not available
in literature. So the objective of this manuscript is to derive microstretch Eshelby tensors for a general ellip-
soidal inclusion. As a special case, the microstretch Eshelby tensors for a circular cylindrical inclusion will also
be derived in a fully analytical form. The manuscript will be arranged as follows: In Section 2, a brief theory
for a microstretch material will be recalled. In Section 3, analytical expressions of microstretch Eshelby tensors
for a general ellipsoidal inclusion will be derived. The average microstretch Eshelby tensors over the ellipsoidal
domain and the circular cylindrical domain will be given in Section 4. The characteristics of these Eshelby ten-
sors will be examined through numerical examples, and this will be presented in Section 5. The property of
these Eshelby tensors when the size of inclusion tends to infinity will be discussed in Section 6, and followed
by some conclusions.

Index notation for a tensor (or vector) is adopted throughout this paper, except some vector representa-
tions appear in bold letter as used for convenience.

2. Basic equations for centrosymmetric and isotropic microstretch material

For a centrosymmetric and isotropic microstretch continuum (invariant with respect to coordinate rota-
tions and inversions (Lakes and Benedict, 1982)), the governing equations are given by Eringen (1999)
geometrical relations:

&i = Uij+ ey, Ki=¢;; =0, (1a)
balance equations:

cij+fi=0, mu;+enou+1;=0 p,—s+1=0 (1b)
constitutive equations:

0ji = Cipen + 0jido0, mj = Djyky, pi=n0; s= loey + b0 (1c)

where u; and ¢; are the displacement and microrotation, respectively, and 0 represents the corresponding
microstretch. ¢; and k;; are respectively the strain and torsion tensors introduced in micropolar theory, {; is
the space gradient of the microstretch. e;; is the third order permutation tensor. g;; and m;; are the asymmetric
stress and couple stress tensors, p, and s are the new stress quantities introduced in microstretch theory. Ther-
modynamically, they are conjugate to {; and 0. f;, [; and [ are the generalized body forces.
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Ciii and Dy, are the elasticity tensors of the isotropic microstretch material, and they have the following
form (Eringen, 1999):

Ciitt = 20401 + (1t + €) 005 + (U — K)0ud (2a)

Djixt = 20041 + (B + )b + (B — 7)dudji (2b)

where p, A are the classical Lamé constants and «, y, 8, o are the elastic constants related to micropolar prop-
erty, Ao, n and b are the new elastic constants due to microstretch theory. The range of their values has been
discussed by Eringen (1999).

Due to the dimensional difference between the two sets of moduli, four intrinsic characteristic lengths can
be defined for an isotropic elastic microstretch material, they can be defined as

h=/w" h=0/w" L=/w? =0/ (3)

Following Liu and Hu (2004), in an infinitely extended microstretch body, the following impulse body
forces at the position x’ are prescribed:

f=Fé(x—x), 1=Lé(x—x), [=Lé(x—x) (4)

The fundamental solutions of microstretch theory are (Liu and Hu, 2004)

ui(x) = [G}j(x =xX)+ G, (x = xX)]F; + Gizj(x —X)L;+ Gi(x —x')L (5a)
¢i(x) = H}j(x —X)F; + HIZJ(X =X)L, (5b)
0(x) =0,(x —x)F;+ O(x —X')L (5¢)

where G}, G}, = H; and H}; are the Green’s functions for micropolar theory, which have been provided by
Sandru (1966) G}, Gi, ©; and O are the additional Green’s functions related to microstretch property (Liu
and Hu, 2004). Thelr analytical expressions are listed in Appendix A.

3. Inclusion problem

Considering an ellipsoidal inclusion 2 in an infinite centrosymmetric and isotropic microstretch material, a
uniform asymmetric eigenstrain ¢}, an eigentorsion x; and an eigenmicrostretch-gradient {; (x) are prescribed
in the inclusion. Here the 1nclu51on means that its materlal constants are the same as the surrounding matrix,
as introduced by Mura (1982). It can be shown that the consequence of these eigendeformations can be sim-
ulated by distributed body loads. With the help of Green’s functions for a microstretch material, the induced
displacement, rotation and microstretch due to the prescribed eigendeformations can be expressed as

() = [ {=Cui (X)(Gl (x = X) + G (x = X)) + 2w (X (x = X)

Dy ()L, (% = X) = fas, (X)0,(x — X) + 15 ()8, (x — x) b (6a)
0.0 = [ {c,zkzaH(x')G%,,J(x X~ 2w (H (%~ X) — Dy (XS, (x — x) by (6b)
/ {Cﬂklg,d (x —X) 4+ Aol (X)O(x —x') = (x)O ,(x — x')} dx’ (6¢)

where ; means -
Wlth the help of the expressions of Green’s functions listed in Appendix A, Eq. (6¢) can be written as

0(x) = I}, (x)e, + T (X)E (7a)

It is noted that 6(x) is not only a displacement quantity, but also a strain measure for the microstretch material
(see, Eq. (1¢)).
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According to the constitutive equation, differentiating the both sides of Eq. (6), the induced strain, torsion
and microstretch-gradient can be written as (Liu and Hu, 2004)

Emn(X) = Kokt (X) &7 + Lot (X)15;, + N, (X) G (7b)
Knn(X) = mnkz( X)e + Zmnkl(X)Kk[ (7c)
Li(x) = K (X)e + Ny (x) G (7d)
where
Ko (%) = K ,(%) + K3,,:(X)
K)i(%) = 155, (%) + L (X) = el 1(X), K3, (%) = I, (X)
Ly (%) = Jujin(X) = €mmnd 1i(X); - Nip(X) = Ty (X)

I?mnji(x) - Inﬂm X) Zmnji(x) - :]\nji,m(x)
K:zk[( ) Iicln( ’ N:tk(x) = T;;,n(x)

The tensors K., Loy, wa, I?m,,k,, L,,mk;, K3,,, N, are called microstretch Eshelby tensors (Liu and
Hu, 2004). Kmnkl, Ly, K ,,,,,k,, L, are the corresponding micropolar Eshelby tensors which have been given
by Cheng and He (1995); K, ;;; N,is Kow» Ny are the additional Eshelby tensors due to the microstretch
effect derived by Liu and Hu (2004). The detailed expressions of 7, ,(x), ,i(x), 1,:(x), L(x), Ji(X),
J1i(x), Ii,(x), T;,(x), T;(x) are listed in Appendix B.

It can be seen from Appendix B that evaluation of microstretch Eshelby tensors depends on the following
three potential functions and their derivatives, which are defined by

zp(x)—i/ dx’ / dx', M(x,k) = : /er/k dx’ (8)
T 4n Qr ’ T 4n 4n r

where r = |x — x/|.

The first and second integrals appeared in Eq. (8) are the same as in classical Eshelby tensor (Mura, 1982),
and they have been evaluated analytically by Eshelby (1957) for a general ellipsoidal inclusion. Then, compu-
tation of the third one is the key point for evaluating the microstretch Eshelby tensors.

For a spherical inclusion, the last integral of Eq. (8) has been provided analytically by Cheng and He
(1995). So the analytical expressions of microstretch Eshelby tensors for a spherical inclusion can be obtained
(Liu and Hu, 2004). However for a general ellipsoidal inclusion, it cannot be evaluated in a fully analytical
form. Ma and Hu (2006) have reduced it to the following form, which involves only one-dimensional integral:

\//\

—r/k 00
M(x, k) = 41n/er dx’:kz—kz% D A)du 9)

where the parameters in Eq. (9) are defined as
D—; 1_'_& u+ a3 exp _ar u+ a3
(u+a)3/2 k\lu+a k\lu+a
1 u a;
A =1Iy(Bp)cosh (Cx3), B=—, |——s C=—0ro
o(Bp) (Cxs) k\lu+a ky/u+a
u=aytan’0, p=/x}+x3

In the above expression, I, is the Mth order modified Bessel function of the first kind, «; is the half short axis
of the ellipsoid and «; is its half major axis. The major axis of the ellipsoid lines along the axis xj.

The derivatives of Eq. (9) are listed in Appendix C. So with the help of Eq. (9), all the microstretch Eshelby
tensors for an ellipsoidal inclusion can be obtained.




H. Ma, G. Hu | International Journal of Solids and Structures 44 (2007) 3049-3061 3053
4. Average microstretch Eshelby tensors

As in the case for Eshelby tensor in a micropolar material, the microstretch Eshelby tensors are not uniform
inside of an ellipsoidal inclusion. So in the following, the microstretch Eshelby tensors are averaged over the
ellipsoidal inclusion. The average Eshelby tensors are useful in predicting the overall properties of composite
materials. In the following, for simplicity, we examine only the following two tensors: one is the symmetric
part K3} of the Eshelby tensor K, defined by

1
K,Sjy,g:, - Z (Kijmn + Kijnm + Kjimn + Kjinm) (10)
The other is 7;,, which relates the eigenstrain ¢, to the induced microstretch 0(x). From Appendices B and C, it
is seen that tensor [}, is a symmetric quantity. The other microstretch Eshelby tensors can be evaluated in the
same way.

(a)Average microstretch Eshelby tensors for an ellipsoidal inclusion R
With the help of the result in Appendix B and Eqgs. (5), (6), we find that the expressions for L,,.x;, K
NS . K3, and T} have only odd order terms of the argument x. So their integration over a symmetric domain

vanishes. Therefore for a general ellipsoidal inclusion, the following properties hold:
<Lmnk1>9 = <Kmnkl>g = <N:nnk>!2 = <Ki:kl>Q = <T}i>Q =0 (11)

where (e) means the volume average of the said quantity over the inclusion domain.
Eq. (11) has been proven for a spherical inclusion by Liu and Hu (2004). The result of Eq. (11) means that
the average microstretch Eshelby relations (Eq. (7)) are uncoupled. That is,

<8mn(x)>g = <Kmnkl(x)>981tla <Kmn(x)>g = <zmnk1(x)>QKZl
(G(X))o = (N (X))ol (0(x))o = (1,(X)) g8

sym

The average symmetric part (K, of the Eshelby tensor (K1) o relates the symmetric part of strain to the
symmetric part of the eigenstrain by

(e e = (K 0t (13)

‘mn mnkl

(12)

Following the method proposed by Ma and Hu (2006), and with help of Eq. (7), the average microstretch
Eshelby tensors for a general ellipsoidal inclusion can then be computed. It will be performed in Section 5.

(b)Average microstretch Eshelby tensors for a circular cylindrical inclusion

With the analytical expression for M(x, k) given by Cheng and He (1997) for a cylindrical inclusion and the
general Eqgs. (6), (7), the average microstretch Eshelby tensors for a circular cylindrical inclusion can be eval-
uated in a fully analytical from. After some mathematical manipulation, the average microstretch Eshelby ten-
sors for a cylindrical inclusion are given by

(Kauppo)g = T16456,p + (T2 + T3)05,0p, + (T2 — T3)04,0p, (14a)
(Liss)g = Os30s (14b)
(N, g = N*6p, (14c)
(I5,)q = 1’6, (14d)

g

where indices «, f3, y, p range from 1 to 2, and

_ A K 3uls 3uniy
T, 74(14-2/1)+2(K+,u)11(a/h>K1(a/h) 440+ 20 2A52p211(a/p)K1(a/p)
J+3 72 22
Ty= K/ hK (afh) + s~ g (afp)K(afp)

404 2p)  2(k+p) 44°(A+2p) 247 p2
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0
Ty = 3 K+#11(a/h)K1(a/h)

Q33 - Il (a/h)Kl (Cl/h)
N* =1Ii(a/p)Ki(a/p)
_ Bl 2oy K (afp)

In the above expression, a denotes the radius of the cylinder, I;, K are the first order modified Bessel function

[S —
A A
of the type I and II, respectively. Other constants appear in the above expression are

(H+x)(y+B) n(4+2p)

h=\["——" p= [ A = (A+2u)b— g 15
Apuc PN G app — 2 (b 20b =4 (1)

The average symmetric part (K" ), of the Eshelby tensor (K,p,,)q is given by
<Ki};np>f2 = T104p0,, + T2(5a>'5/3p + 51/15/57’) (16)

For completeness, the analytical expressions of the average microstretch Eshelby tensors for a spherical inclu-
sion are also listed for comparison (Liu and Hu, 2004)

(K)o = T10m0u1 + To (S0t + 0pidui),  (Nyp)o = N'Ou, (L) = I'0u (17)
Indices i, j, k, [ range from 1 to 3, where
r - 3, —2u  2h(a+h)x ) - s,u,oz 8(a +p)zmu.g rp)
15(A+2u)  5a3(k+ u) 154° (2 + 2u) 5634 p
3248u  3h(a+h)k 2ulg 2(a+ p)unig

T, = — T'(h - r
TG et w DT sea, P

N — p(a; p) ')

s 4o dpiopla+p)
I - 3As - a3AS F(p)
I(y) = e “"lacosh(a/y) — ysinh(a/y)]

In the expressions of 7', T, for spherical and cylindrical inclusions, the first term is the classical part, the
second item is due to the micropolar effect, and the last two terms come from the coupling microstretch effect.
It is clear that when the size of inclusion tends to infinity, contrary to micropolar Eshelby tensors, the size-
dependent terms tend to zero, T4, T, cannot be reduced to the classical ones. The reason will be explored
in Section 6. In the section followed, some numerical examples will be given to illustrate the property of
the derived microstretch Eshelby tensors.

5. Numerical examples

In this section, we assume /; =, = [3 = Iy = [,,, the other material constants used in the computation are
A =50 GPa, u =26 GPa, k = 13 GPa, /o =25 GPa, b =26 GPa, [, = 10 pm.

The variations of (K{]}), and (K13,), as function of the aspect ratio of inclusion are shown in Figs. 1 and
2, respectively. For comparison, the corresponding classical Eshelby tensor and the micropolar Eshelby tensor
are also included. The exact values of the average microstretch Eshelby tensors for a spherical inclusion and a
cylindrical inclusion (Egs. (16) and (17)) are also included in the figures in order to access the accuracy of the
numerical computation. The size of inclusion is set to be a; = [,,. We found that our numerical results agree
very well with the exact results in the case of the spherical and cylindrical inclusions.

The variations of the components (I},), and (I%;), of the tensor (I,), as function of the aspect ratio of
inclusion are shown in Fig. 3. The exact values of the microstretch average Eshelby tensor for a spherical
inclusion or a cylindrical inclusion are also included. It is found that for a spherical inclusion, the numerical
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results have a very good agreement with the exact result. However for a circular cylindrical inclusion, due to
the finite size of the inclusion used in the numerical computation, there is a little difference between the numer-

ical and the exact results.
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6. Discussion on average microstretch Eshelby tensors

As discussed in Section 4, unlike micropolar Eshelby tensors, the average microstretch Eshelby tensor can-
not be reduced to the corresponding classical one when the size of inclusion tends to infinity. In the following
discussion, we will examine the reason why the microstretch Eshelby tensor cannot be reduced to the classical
one at large size limit of inclusion.

We will examine the response of a pure microstretch material under a hydrostatic loading. Following
micropolar theory (Hu et al., 2005), the constitutive relations (Eq. (1c)) of a microstretch material can be
rewritten as

O-/(U) = 2/,(821-1-), O'<,-j> = ZKS(U-), o =3Ke + /L()H (183)
miyy = 2Pt my) =29k, m=3NK (18b)
pi=n0; s=3E+0b0 (18¢)

where aziﬂ, 0. 0 (= 0;;/3) and szij), e4j)» € (= €i/3) denote separately the deviatoric symmetric, anti-symmet-
ric and hydrostatic parts of stress and strain tensors, and similar notations for the couple-stress and torsion
tensors. K= 2+ 2u/3 is the bulk modulus. and N = « + 2/3, which can be interpreted as the corresponding
stiffness measure for torsion.

If such a microstretch material is under a pure hydrostatic loading &, we find that

a3<zj+§u>z (19a)

2
o:2</1—%0+u)8 (19b)

for a cylindrical material sample (with ¢ = 0,,/2, & = &,,/2).

It can be seen from Eq. (19) that if 1o = 0, the micropolar field is uncoupled with microstretch, the micro-
polar results can be found, which are identical to those for the classical material. However, for the micro-
stretch material (/o # 0), the bulk modulus is not the same as the classical material. That is reason why at
large size limit of inclusion, the microstretch Eshelby tensor cannot be reduced to the classical Eshelby tensor.
From Eq. (19), we can define a modified lame constant A™ by

22
, e
== 20
=g (20)
With this modified lame constant, it can be expected that when the size of inclusion tends to infinity, the aver-
age microstretch Eshelby tensors (K>}, will be reduced to the classical Eshelby tensor with the material con-
stants (u, A™) instead of (u, 4). If we use Eq. (20) to substitute the A in the expressions of the classical terms in
the average microstretch Eshelby tensors (Eq. (17)), after some mathematical manipulations, the following
expressions are obtained:
3/ —2u 8ulg 3]+ 8u 2ul

VTS0 20 AU 420 12 T 15Gi+20) 1A+ 2 1)

Eq. (21) gives just the size-independent terms in the average microstretch Eshelby tensor when the size of inclu-
sion tends to infinity, as expected from the above reasoning. The other two terms remain unchanged, which
characterize the size-dependence of the microstretch Eshelby tensor.

The variations of (K}|]}), and (K}3), as function of the size of inclusion are shown in Figs. 4 and 5,
respectively. The micropolar results are also included. It is found that when the size of inclusion approaches
to the characteristic length of matrix material (/,,), the influence of the size of inclusion is more pronounced for
both micropolar and microstretch theory. When the size of inclusion is large enough, the micropolar results is
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reduced to the classical one, however the microstretch Eshelby tensors tend to the modified one, as discussed

previously.
The variations of (I3,), and (I3;), as function of the size of inclusion are also illustrated in Figs. 6 and 7,
respectively. It is found that when the size of inclusion approaches to the characteristic length of matrix mate-
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0_4_ .—.—._’_’. ''''''''''''''''''''''''''''''''''''''''
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all

1'm

Fig. 6. Variations of (I},), as function of size of inclusion for different aspect ratios 10, 1 and 0.1.
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rial (/y,), the influence of the size of inclusion is more significant. When the size of inclusion is large enough,
both (I3,), and (I3;), approach to their asymptotic values. For a spherical inclusion, our numerical results
tend to 4ulo/(34°), this is the exact value for average microstretch Eshelby tensor (f},),, for a spherical inclu-

sion when the size of inclusion tends to infinity.
In order to avoid the “limit problem” at large size limit of inclusion, we can also consider a special case of

microstretch theory by setting 1o = 0 and considering only # and b as the proper material constants. In this
case, the displacement and rotation fields are uncoupled with the microstretch, the microstretch Eshelby ten-
sors (K)o and (L), are identical to those of the corresponding micropolar material, which are reduced to the
classical results naturally. The tensors (N°)g and (F)o due to the microstretch effect are checked to identically

vanish when the size of inclusion tends to infinity.

7. Conclusions

We have therefore derived the microstretch Eshelby tensor for a general ellipsoidal inclusion. The expres-
sions of these tensors involve only one-dimension integral, and can be easily computed. The fully analytical
expressions of microstretch Eshelby tensors for a circular cylindrical are also obtained. The same as micropo-
lar Eshelby tensors, the microstretch Eshelby tensors are not uniform inside of an ellipsoidal inclusion. It is
shown that when the size of inclusion tends to infinity, the microstretch Eshelby tensor will be reduced to
the modified classical Eshelby tensor. The obtained results will be useful for predicting the overall property

of microstretch composites.

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grants Nos. 10332020
and 10325210.

Appendix A

The analytical expressions of Green’s functions for an isotropic microstretch body are (Liu and Hu, 2004)

1= efr/h efr/h
W ( ) + 8y
r Jij r

G(x—x)=H (x—x) = —Le‘w{ 1_76_%
y y 8 r A,k

K
Glix=x)=G(x=-X)—
lj(x X) U(X X) 47'5,”(/1"‘7()
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~ Tému r i Lo r oy Lemueh 7 r

: 1 1 A+up
Go(x — X)) = —— |26~ —
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GS - XY= T J_ ii 2(- >
’/(x x) 4 (A +2p) {ZF"]—’—p ( r p

r,,‘j} is the classical Green’s function

0> _ e/
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Gi _ ! :_@i _ ! —
e =x) e =x) 4ﬂf7(i+2#)< r >,-
1 e /P
— e
Ox —x) 4nn r
where r = |x — X/|, g = “‘Z—fﬂ), h, p are given by Eq. (15).

Appendix B
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2ull 1
: - Elp,nﬁ(x) - P2¢,nﬁ(x) + 0,1, (X) — 6;M (X, p) + p°M ,;i(X, p)

~

Li(x) = — ﬁ [20i€na P 1 (X) + Kejixh 1, (X) + (1t + )ik d ;(X) + (1t — K)ejmeh 1 (X)]

1

+ 2 (20 ieuaM 11 (X, 1) + (1 + K)ejuM (X, h) + (14 K)emM 45(X, h) + (1 — K)e;mM (X, h)]
1 n+x
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o
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~ 1
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B )0 (5, (B = 3003, )
20l 20l
100 = o3 M (6 p) + = [0,0(%) = Ma(x,p)]
A
T3(0) = =12 (¢ 41(x) = M.u(x.p)]

Ti(x) = =M x(x, p)

where A°, h, p are given by Eq. (15), g is the same as in Appendix A.
Appendix C

The derivatives of Eq. (9) are given as

M (x,k) = —%18/0 (D-A4,)du
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0
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The symbols «, 3, y, 4 range from 1 to 2 and
AA3 = CS]Ilh(CX3)1()(Bp)
A3z = C?cosh(Cx3)Io(Bp), Aus=(4,),
A,333 = C3 Sinh(CXS)IO(Bp)v A,ot33 = (A,zx)7337 A<1ﬁ3 = (Aﬂtlf),f;
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