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Inclusion problem of microstretch continuum
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Abstract

A spherical inclusion in an infinite isotropic microstretch medium is examined in this paper. By means of

Green’s function technique, the analytical expressions of the Eshelby tensor for an isotropic microstretch

medium are derived, and their volume averages over a spherical inclusion are obtained in an analytical and

simple form. These results are useful to evaluate the effective property for a heterogeneous microstretch
medium.
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1. Introduction

The concept of microcontinuum, proposed by Eringen [1], can take into account the micro-
structure effects while the theory itself is still a continuum formulation. The first grade micro-
continuum consists a hierarchy of theories, namely, micropolar, microstretch and micromorphic,
depending on how much microdegrees of freedom are incorporated. These high order continuum
theories are considered to be potential tools to model the behavior of the material with a com-
plicated microstructure. For example, in the case of a foam composite, when the size of the
reinforced phase is comparable to the intrinsic length scale of the foam, in this situation, the
microstructure of the foam must be taken into account to some degree, so a high order continuum
model must be assigned for the foam matrix. The same remains true for nanocomposites, since the
scale of the reinforced phase is so small, the surrounding matrix cannot be homogenized as a
simple material (Cauchy medium), some intrinsic microstructures of the matrix must be consid-
ered in a proper continuum model.
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Microstretch [2,3] theory is a generalization of the micropolar theory, for such a material, a
homogeneous stretch microdeformation is added to every particle, i.e., besides the translation and
rigid rotation, each particle can have an independently breathe-like degree of freedom. Such a
generalized media can catch more detailed information about the microdeformation inside a
material point, which is more suitable for modeling the overall property of the foam matrix in the
case of foam composites.

In classical Cauchy elasticity, the inclusion problem was first addressed by Eshelby [4]. The
term inclusion originally appeared in Mura’s monograph [5] represents a subdomain of a
homogeneous material, which has been prescribed with certain distribution of eigenstrain, or
stress-free strain. If such a domain has different properties from the surrounding matrix, it
is called inhomogeneity. The above inclusion theory forms the basis for micromechanics to pre-
dict the overall properties of heterogeneous materials, i.e., composites, materials with defects.
Recently by using the Green’s function technique, Cheng and He [6,7] extended the inclusion
problem to micropolar elasticity. In their work a similar term eigentorsion was introduced in
addition to the classical eigenstrain, and consequently four Eshelby tensors are obtained for a
micropolar material. Even for the simplest shape (for example a sphere), the Eshelby tensors are
not uniform inside a spherical inclusion, and to the present only the Eshelby tensors for spherical
and infinite cylindrical inclusions are analytically derived. Recently Liu and Hu [8] make use of
these results, and obtain analytically the average Eshelby tensors over a spherical region for
micropolar material. With these average Eshelby tensors, they further generalize the classical
micromechanics for a heterogeneous Cauchy medium to a micropolar composite, the influence of
the particle’s size on the overall elastic–plastic behavior of composite materials is correctly pre-
dicted.

Encouraged by these results, in the paper, we will examine the inclusion problem for a mi-
crostretch continuum, this is the first step towards the potential application of microstretch theory
to predict the overall behavior of heterogeneous materials. The microstretch version of inclusion
problem results in new Eshelby tensors due to the new strain measure introduced by the theory, of
cause when the microstretch effect is neglected, the results for a micropolar counterpart must be
recovered. Our work is limited to an isotropic material and a spherical inclusion, to facilitate
further application for micromechanics, the analytical expressions for the average Eshelby tensors
over a spherical region in a microstretch medium will also be given. The paper is arranged as the
follows, In Section 2, a brief recall and the definition of an eigenstrain problem for microstretch
theory will be outlined. In Section 3, the fundamental solution will be completed and the general
expression of the field quantities caused by the eigenstrain will be formulated; and the solution of
an inclusion problem will be presented in Section 4; finally, the average Eshelby tensors over a
spherical inclusion will be performed and the analytical expressions will be given. In most case
indices notation for a tensor (or vector) is adopted in this paper, except some vector represen-
tations appear in bold letter as used for convenience.
2. Basic equations and symbolic notations

We denote ui and /i as the displacement and microrotation of a material point respectively, and
h represents the microstretch (or contraction) to that point. The strain measures of a microstretch
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media consist of these quantities themselves and their space gradients, the three sets of governing
relations for an isotropic microstretch continuum are:

geometrical relations:
eji ¼ ui;j þ eijk/k kji ¼ /i;j fi ¼ h;i ð1Þ
where eijk is the third order permutation tensor, a comma preceded by a subscript means space
derivative. The stress quantities, as the strain measure’s dual part, must satisfy the balance
equations:

balance equations:
tji;j þ fi ¼ 0 mji;j þ eikltkl þ li ¼ 0 pk;k � sþ l ¼ 0 ð2Þ
where tji, mji are asymmetric stress and couple-stress, pk and s is new stress quantities additional to
micropolar theory, which are thermodynamically conjugate to h;i and h. fi, li and l are body loads
which make balance in the three equations. Finally, for an isotropic microstretch solid, the stress
and strain are related by the following constitutive equation:

constitutive equations:
tji ¼ Cjiklekl þ djik0h mji ¼ Djiklkkl pi ¼ gh;i s ¼ k0ekk þ bh ð3Þ
where Cjikl, Djikl is the isotropic modulus tensors of the following form:
Cjikl ¼ kdjidkl þ l
�

þ j
2

�
djkdil þ l

�
� j

2

�
djldik

Djikl ¼ adjidkl þ cdjkdil þ bdjldik
ð4Þ
There are in total nine independent material constants, k, l, j, a, b, c are micropolar constants,
and k0, g and b are new constants due to the generalization to microstretch theory. For a well-
posed boundary value problem, the following boundary conditions must be provided:
tjinj ¼ �ti mjinj ¼ �mi pknk ¼ �p on Sr

ui ¼ �ui /i ¼ �/i h ¼ �h on Su
ð5Þ
where nj is the outer normal of the boundary.
Eigenstrain, or stress-free strain, is usually used to simulate the thermal expansion, phase

transformation, initial strains, plastic strain or misfit strains. The incompatibility of eigenstrain
will result in a self-equilibrium stress field in a material free from any external load. Here this
concept from a classical Cauchy media is generalized for a microstrech continuum as an eigen-
strain eþji ðxÞ, an eigentorsion kþji ðxÞ, an eigenmicrostretch-gradient fþk ðxÞ and an eigenmicrostretch
hþðxÞ, all these eigenvariables are called eigendeformation in the following.
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Consider an infinitely extended microstretch elastic body with a distribution of eigendefor-
mation
eþji ðxÞ kþji ðxÞ fþk ðxÞ and hþðxÞ
the constitutive equation (3) must be modified due to the introduction of such nonelastic defor-
mation
tji ¼ Cjiklðekl � eþklÞ þ djik0ðh� hþÞ mji ¼ Djiklðkkl � kþklÞ
pi ¼ gðh;i � fþi Þ s ¼ k0ðekk � eþkkÞ þ bðh� hþÞ

ð6Þ
In absence of body force, by substitution of the geometrical equation (1) into the constitu-
tive relation (6) and then into the balance equations (2), we obtain the following governing
equations:
Cjiklul;kj þ jeikl/l;k þ k0h;i þ f þ
i ¼ 0

Djikl/l;kj þ jeiklul;k � 2j/i þ lþi ¼ 0

gh;kk � k0ur;r � bhþ lþ ¼ 0

ð7Þ
where
f þ
i ¼ �ðCjikle

þ
kl;j þ k0h

þ
;i Þ lþi ¼ �ðjeikleþkl þ Djiklkþkl:jÞ lþ ¼ k0e

þ
kk þ bhþ � gfþk;k ð8Þ
Here the role of the introduced eigendeformation is transformed as the equivalent body forces.
3. Solution of elastic field

Determination of ui, /i and h can apply standard Green’s function technique. The Green’s
functions of a microstretch media are not explicitly at hand, However Eringen [1] has indicated a
way to obtain the fundamental solution for a microstretch media. We give directly the expressions
of Green’s function here and the detail derivation is explained in Appendix A. Assuming in an
infinitely extended body there exist impulse body loads at the position x0
f ¼ Fdðx� x0Þ l ¼ Ldðx� x0Þ l ¼ Ldðx� x0Þ ð9Þ
Then the fundamental solution of microstretch theory can be summarized in the following
expressions:
ui ¼ G1
ij

�
þ GStretch

ij

�
Fj þ G2

ijLj þ GiL

/i ¼ H 1
ijFj þ H 2

ijLj

h ¼ HjFj þHL

ð10Þ
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where G1
ij, G

2
ij ¼ H 1

ij and H 2
ij are the Green’s functions for micropolar theory, one can refer to

Sandru [9] for their detail expressions, and GStretch
ij , Gi, Hi and H are the additional Green’s

functions due to the incorporation of microstretch effect, they read
GStretch
ij ¼ bp2 � g

4pgðkþ 2lÞ
1

2

o2r
oxioxj

�
þ p2

o2

oxioxj

1� e�r=p

r

� ��

Gi ¼ �Hi ¼
k0p2

4pgðkþ 2lÞ
o

oxi

1� e�r=p

r

� �

H ¼ 1

4pg
e�r=p

r

ð11Þ
where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðkþ2lÞ

ðkþ2lÞb�k2
0

q
has a dimension of length, and r ¼ x� x0j j.

With the help of the obtained fundamental solutions, the whole displacement fields ui, /i and h
under the previously prescribed eigendeformation can be readily obtained. To do this we firstly
use the work reciprocal theorem of a microstretch media
Z
V

fiu0i
�

þ li/
0
i þ lh0

�
dx ¼

Z
V

f 0
i ui

�
þ l0i/i þ l0h

	
dx ð12Þ
where the quantities with and without a prime are two distinct independent sets of the load and
the resulted displacement fields. By taking respectively,
f 0
i ; l

0
i; l

0; u0i;/
0
i; h

0
� �

¼ dikdðx
�

� x0Þ; 0; 0;G1
ik þ GStretch

ik ;H 1
ik;Hk

	
¼ 0; dikd x

��
� x0	; 0;G2

ik;H
2
ik; 0

	
¼ 0; 0; d x

��
� x0	;Gi; 0;H

	
ð13Þ
we have the general expressions of ui, /i and h for an infinitely extended body under the body
loads fiðxÞ, liðxÞ, lðxÞ
ukðxÞ ¼
Z
V

fiðx0Þ½G1
ikðx



� x0Þ þ GStretch

ik ðx� x0Þ� þ liðx0ÞH 1
ikðx� x0Þ � lðx0ÞHkðx� x0Þ

�
dx0

/kðxÞ ¼
Z
V

fiðx0ÞG2
ikðx



� x0Þ þ li x0� 	

H 2
ikðx� x0Þ

�
dx0

hðxÞ ¼
Z
V



� fiðx0ÞGiðx� x0Þ þ lðx0ÞHðx� x0Þ

�
dx0

ð14Þ
By substituting the expression of body loads defined by Eq. (8) into Eq. (14), and integrating by
parts, the final solutions for the local displacement fields due to the prescribed eigendeformation
read
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unðxÞ ¼ �
Z
V

Cjikle
þ
klðxÞ G1

in;j

�n
þ GStretch

in;j

�
þ jeikleþklðxÞH 1

in þ DjiklkþklðxÞH 1
in;j

þ k0h
þðxÞ G1

in;i

�
þ GStretch

in;i

�
þ k0e

þ
rrðxÞHn þ bhþðxÞHn � gfþr ðxÞHn;r

o
dx0

/nðxÞ ¼ �
Z
V

Cjikle
þ
klðxÞG2

in;j

n
þ jeikleþklðxÞH 2

in þ DjiklkþklðxÞH 2
in;j

o
dx0

hðxÞ ¼
Z
V

Cjikle
þ
klðxÞGi;j



þ k0h

þðxÞGi;i þ k0e
þ
rrðxÞHþ bhþðxÞH� gfþr ðxÞH;r

�
dx0

ð15Þ
These general expressions, together with aid of Eqs. (11), (1), (6), provide the complete local
elastic displacement, strain and stress fields due to any eigendeformation. In the next section, this
general result will be applied to the inclusion problem.
4. Inclusion problem

Consider an infinite extended elastic body, in a spherical subdomain X, there is a uniform
eigendeformation (eþij , k

þ
ij , f

þ
i , h

þ) and this eigendeformation is zero outside of X.
Eq. (15) can be rearranged in the following form:
unðxÞ ¼ upolarn ðxÞ þ IStretchnkl ðxÞeþkl þ IStretchnk ðxÞfþk þ IStretchn ðxÞhþ

/nðxÞ ¼ /polar
n ðxÞ

hðxÞ ¼ JStretch
kl ðxÞeþkl þ JStretch

k ðxÞfþk þ JStretchðxÞhþ
ð16Þ
where upolarn ðxÞ and /polar
n ðxÞ are just the micropolar elastic fields of the corresponding inclusion

problem given by Cheng and He [6,7]. We just give in the following the other six coefficient
functions with a superscript Stretch indicating the relevant quantities due to the microstretch
effect. From above equations, we note that the microrotation /n is independent of the micro-
stretch effect, it just remains the same form as that in micropolar theory. The other six coefficient
functions are
IStretchnkl ¼ �Cjikl

Z
X
GStretch

in;j dV � k0dkl

Z
X
Hn dV

IStretchnk ¼ g
Z
X
Hn;k dV

IStretchn ¼ �k0

Z
X

G1
in;i

�
þ GStretch

in;i

�
dV � b

Z
X
Hn dV

JStretch
kl ¼ Cjikl

Z
X
Gi;jdV þ k0dkl

Z
X
HdV

JStretch
k ¼ �g

Z
X
H;k dV

JStretch ¼ k0

Z
X
Gi;idV þ b

Z
X
HdV

ð17Þ
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With help of Eqs. (11) and (4), we obtain finally
IStretchnkl ¼ k
kþ 2l

�
� bk� k20

A

�
dkl/;nðxÞ þ

l
kþ 2l

�
� bl

A

�
w;nklðxÞ �

k20
A
dklM;nðxÞ

þ bgðkþ 2lÞ
A2

�
� g
A

�
½kdklM;iinðx; pÞ þ 2lM;nklðx; pÞ � 2l/;nklðxÞ�

IStretchnk ¼ � gk0
A

½/;nkðxÞ �M;nkðx; pÞ�

IStretchn ¼ �k0 Bh2Mðx; hÞ;nii
�

� BMðx; hÞ;n þ
1

kþ 2l
/ðxÞ;n




� k0
b
A

�
� 1

kþ 2l

�
/ðxÞ;n

n
� p2Mðx; pÞ;nii

o
þ bk0

A
½/ðxÞ;n �Mðx; pÞ;n�

JStretch
kl ¼ k0

g
dklMðx; pÞ þ k0

A
½2l/;klðxÞ � 2lM;klðx; pÞ � kdklM;iiðx; pÞ�

JStretch
k ¼ �M;kðx; pÞ

JStretch ¼ b
g
Mðx; pÞ � k20

A
Mðx; pÞ;ii

ð18Þ
where A ¼ ðkþ 2lÞb� k20, B ¼ j=½lð2lþ jÞ�, h2 ¼ ð2lþ jÞc=4lj and
wðxÞ ¼ 1

4p

Z
X
rdx0 /ðxÞ ¼ 1

4p

Z
X

1

r
dx0 Mðx; kÞ ¼ 1

4p

Z
X

e�r=k

r
dx0 ð19Þ
The analytical solution of the above three integrations is hard to obtain for a general shape of
inclusion, especially for the third one. For a spherical inclusion, the analytical expression of
Mðx; kÞ is given by Cheng and He [6], and for the other two integrations in (19), we refer the
readers to the Ref. [5]. In Appendix B we explicitly list these integrals for spherical domain.

The associated strain measures can be obtained without any difficulty through Eq. (1)
emnðxÞ ¼ KmnklðxÞ
�

þ KStretch
mnkl ðxÞ

�
eþkl þ LmnklðxÞkþkl þ NStretch

mnk ðxÞfþk þ T Stretch
mn ðxÞhþ

kmnðxÞ ¼ bKmnklðxÞeþkl þ bLmnklðxÞkþkl
fnðxÞ ¼ KStretch

nkl ðxÞeþkl þ NStretch
nk ðxÞfþk þ T Stretch

n ðxÞhþ
ð20Þ
where Kmnji Lmnji
bKmnji and bLmnji are the four Eshelby tensors for a micropolar medium (see Ref.

[6]), and
KStretch
mnkl ðxÞ ¼ IStretchnkl;m ðxÞ KStretch

nkl ðxÞ ¼ JStretch
kl;n ðxÞ

NStretch
mnk ðxÞ ¼ IStretchnk;m ðxÞ NStretch

nk ðxÞ ¼ JStretch
k;n ðxÞ

T Stretch
mn ðxÞ ¼ IStretchn;m ðxÞ T Stretch

n ðxÞ ¼ JStretch
;n ðxÞ

ð21Þ
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These are the additional Eshelby tensors due to the microstretch effect.
With help of the analytical expressions for the integrals (19), all the Eshelby tensors for a

microstretch continuum can be obtained through Eqs. (18)–(21). As for the micropolar contin-
uum, the derived Eshelby tensors are position dependent even inside of a spherical inclusion. In
order to be used for predicting the overall property of a heterogeneous microstretch medium, we
will give in the following the analytical expressions for the average Eshelby tensors. Averaging
both side of Eq. (20) and the third one of Eq. (16) over a spherical region, we get
hemniX ¼ ½hKmnkliX þ hKStretch
mnkl iX�eþkl þ hLmnkliXkþkl þ hNStretch

mnk iXf
þ
k þ hT Stretch

mn iXh
þ

hkmniX ¼ hbKmnkliXeþkl þ hbLmnkliXkþkl
hfniX ¼ hKStretch

nkl iXeþkl þ hNStretch
nk iXf

þ
k þ hT Stretch

n iXh
þ

hhiX ¼ hJStretch
kl iXeþkl þ hJStretch

k iXf
þ
k þ hJStretchiXh

þ

ð22Þ
Here h�iX ¼
R
X �ðxÞdx, representing the volume average with respect to the inclusion domain. For

a spherical inclusion and an isotropic microstretch material, the average Eshelby tensors over the
inclusion are isotropic and have the following form:
hKmnkliX ¼ K1dmndkl þ ðK2 þ K3Þdmkdnl þ ðK2 � K3Þdmldnk
hKStretch

mnkl iX ¼ KStretch
1 dmndkl þ ðKStretch

2 þ KStretch
3 Þdmkdnl þ ðKStretch

2 � KStretch
3 Þdmldnk

hbLmnkliX ¼ bL1dmndkl þ ðbL2 þ bL3Þdmkdnl þ ðbL2 � bL3Þdmldnk
hNStretch

nk iX ¼ dnkNStretch

hT Stretch
mn iX ¼ dmnT Stretch

hbKmnkliX ¼ hLmnkliX ¼ hKStretch
nkl iX ¼ 0

hNStretch
mnk iX ¼ hT Stretch

n iX ¼ hJStretch
k iX ¼ 0

ð23Þ
We denote that tensors with odd order eventually averages to zero. After a lengthy mathematical
manipulation, we get
K1 ¼
3k� 2l

15ðkþ 2lÞ þ
2hðaþ hÞj
5a3ðjþ 2lÞCðhÞ

K2 ¼
3kþ 8l

15ðkþ 2lÞ �
3hðaþ hÞj
5a3ðjþ 2lÞCðhÞ

K3 ¼
4jþ 3l

6l
� 2hðaþ hÞðlþ jÞ2

a3lðjþ 2lÞ CðhÞ � gðaþ gÞ
2a3

CðgÞ

bL1 ¼
ðaþ gÞð5aþ bþ cÞl

10a3gjl
CðgÞ � ðhþ aÞðbþ cÞðjþ 2lÞ

20a3hjl
CðhÞ

bL2 ¼
ðaþ gÞðbþ cÞl

10a3gjl
CðgÞ þ 3ðaþ hÞðbþ cÞðjþ 2lÞ

40a3hjl
CðhÞ
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bL3 ¼
ðaþ hÞðc� bÞðjþ 2lÞ

8a3hjl
CðhÞ

KStretch
1 ¼ 8ðaþ pÞlgk20

5a3A2p
CðpÞ � 8lk20

15Aðkþ 2lÞ

KStretch
2 ¼ � 2ðaþ pÞlgk20

5a3A2p
CðpÞ þ 2lk20

15Aðkþ 2lÞ
KStretch

3 ¼ 0

NStretch ¼ pðaþ pÞ
a3

CðpÞ

T Stretch ¼ pðaþ pÞk0
a3ðkþ 2lÞCðpÞ

hJStretch
kl iX ¼ k0ð3kþ 4lÞ

3A
� 4pðaþ pÞlk0

a3A
CðpÞ

hJStretchiX ¼ p2b
g

� 3pðaþ pÞ
a3

CðpÞ

ð24Þ
where
CðyÞ ¼ e�a=y aCosh
a
y

�
� y Sinh

a
y



ð25Þ
h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð2lþ jÞ=4lj

p
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bþ cÞ=2j

p ð26Þ
notice that h, g and p can be regarded as the characteristic length of a microstretch material; a is
the radius of the spherical inclusion.
5. Conclusion

We therefore derive the analytical expressions of the Eshelby tensors for a spherical inclusion in
an isotropic microstretch medium, the volume averages of the derived Eshelby tensors over a
spherical inclusion are also obtained in a simple and analytical form. These results can be used to
evaluate the average local fields in a spherical inhomogeneity for a microstretch material, which is
essential for predicting the overall property for a heterogeneous microstretch medium.
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Appendix A
The fundamental solution of a microstretch continuum has been discussed by Eringen [1], here
we complete the final small step left. The balance equations read with the vector presentation
k0rhþ ðkþ 2lÞrr � u� ðlþ j=2Þr �r� uþ jr� uþ f ¼ 0

ðaþ bþ cÞrr � u� cr�r� uþ jr� u� 2juþ l ¼ 0

gr2h� bh� k0r � uþ l ¼ 0

ðA:1Þ
where the impulse body loads take the form defined by Eq. (9). Green’s functions come out from
solution of the previous problem for an infinite extended microstretch elastic solid.

The decomposition of the displacement and rotation into scalar and vector potentials in a
micropolar media is still valid in microstretch context, among various decomposition, we make
use of Sandru’s [9] representation
u ¼ rK0 þr� ð}4KÞ � jr� ðr� K�Þ where r � K ¼ 0

u ¼ rK�
0 � jr� ðr� KÞ þ r � ð}2K

�Þ where r � K� ¼ 0
ðA:2aÞ

f ¼ rsþr�P where r �P ¼ 0

l ¼ rs0 þ r �P0 where r �P0 ¼ 0
ðA:2bÞ
and where
}1 ¼ ðkþ 2lÞr2 }2 ¼ ðlþ j=2Þr2

}3 ¼ ðaþ bþ cÞr2 � 2j }4 ¼ cr2 � 2j
ðA:3Þ
By such manipulation, the balance equations (A.1) are transformed to the following five equa-
tions:
ð}2}4 þ j2r2ÞK� þP0 ¼ 0 ðA:4aÞ

ð}2}4 þ j2r2ÞKþP ¼ 0 ðA:4bÞ

}3K
�
0 þ s0 ¼ 0 ðA:4cÞ

k0hþ}1K0 þ s ¼ 0 ðA:4dÞ

gr2h� bh� k0r2K0 þ l ¼ 0 ðA:4eÞ
Here, fortunately, we find that the governing equations for a microstretch media are quite similar
to the micropolar version after the decomposition by the potentials. In fact, the first three
equations are uncoupled and identical to those in a micropolar media; only the last two coupled
equations with the unknown variables h (microdilatation) and K0 (scalar potential of displace-
ment) need to be solved here.
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Eqs. (A.2b) and (9) lead to
s ¼ � 1

4p
F � r 1

r

� �
where r ¼ x

�� � x0�� ðA:5Þ
using Fourier transformation technique, we obtain the following solution:
K0 ¼
p2F�

4pgðkþ 2lÞ
b
2
rr

�
� ðg� bp2Þr 1� e�r=p

r

�
þ k0p2L
4pgðkþ 2lÞ

1� e�r=p

r

h ¼ �k0p2F�
4pgðkþ 2lÞr

1� e�r=p

r
þ L
4pg

e�r=p

r

ðA:6Þ
Substitution of the above expressions and the micropolar solutions of K�
0, K and K� (see for

example Ref. [8]) into (A.2a), after some manipulation, we obtain Eqs. (10) and (11) in the text.
Appendix B

The integrals appeared in Eq. (19) for a spherical inclusion are evaluated by Cheng and He [6],
the results are
wðxÞ ¼
� 1

60
ðx4 � 10a2x2 � 15a4Þ x 2 X

a3

15
5xþ a2

x

� �
x 62 X

8>><
>>:

/ðxÞ ¼
� 1

6
ðx2 � 3a2Þ x 2 X

a3

3x
x 62 X

8>><
>>:

Mðx; kÞ ¼
k2 � k2ðk þ aÞe�a=k Sinhðx=kÞ

x
x 2 X

k2 aCosh a
k � kSinh a

k

� 	 e�x=k

x
x 62 X

8>><
>>:
where x ¼ jxj.
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