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Summary. Based on the secant moduli framework with second-order moment of stress and the elastic
micro-mechanical method proposed by Pente Castaneda and Willis [8], a micro-mechanical method is
proposed to consider the effects of thermal residual stress on the elastic-plastic deformation of compo-
sites. The micro-structural parameters like the volume fraction. shape, orientation, and distribution of
inclusions are taken into account, and their influences on the macroscopic properties of the composites in
the presence of thermal residual stress are analyzed. The computed results show that the presence of
thermal residual stress induces asymmetric behavior in tension and compression. This depends intimately
on the micro-structural parameters ol the composite. Finite element calculations are also performed to
predict the secant thermal dilatation coefficient and stress-strain relations in tension and compression for
unidirectional composites. The proposed analytical method is found to compare favorably with the finite
element results.

1 Introduction

Because of the difference in thermal dilatation coefficients, thermal residual stress can be gen-
erated during fabrication processes of composites. This thermal residual stress can alter the
mechanical properties of the composites: asymmetric behavior in tension and compression,
plastic flow near the interface between inclusions and matrix. There is a large body of works
devoted both theoretically and experimentally to determine this residual stress and to analyze
their consequences [1]-[5]. However most of the works are focussed on aligned composites,
and few on the composite with fiber's orientation. Recently, Hu and Weng [6] showed that for
a composite with two- or three-dimensional randomly oriented inclusions Mori-Tanaka’s
method [7] can not be realized from the microstructure proposed by Ponte Castaneda and
Willis [8], thus it 1s desirable to use this new microstructure to consider the effect of fiber
orientations on the effect of thermal stresses. In this paper, based on the method proposed by
Hu and Weng [5] and the elastic model given by Ponte Castaneda and Willis [8], a method will
be proposed to predict the influence of thermal residual stress on the elastic-plastic properties
of composites. The emphasis will be placed on the effects of inclusion’s orientation and
distribution. In the end, the analytical results will be compared with some finite element
calculations.
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2 Theoretical formulation

2.1 Effective thermo-elastic properties of compaosites

Consider a representative volume element (RVE) of a composite, which consists of a continu-
ous matrix and spheroidal inclusions. Ly, L, (r = 1...., N) denote the elastic moduli tensors
of the matrix and the inclusion of type r, respectively, and ¢, the volume concentration for the
inclusion of type r. The corresponding stress-temperature tensors are denoted by [ [
(r=1.....N). Under a uniform lemperature change f. the constitutive relations for each
phases are written by g = L, 1 £ — [ #, and we havel =L, :a . wherea is the thermal dila-
tation coefficient tensor for phase r(r =0.1....,N). In this paper, the bold letter denotes a
fourth-order tensor, d denotes a second-order tensor, and d means a vector.

For the RVE under a macroscopic strain £ and a uniform temperature change 0,
the local constitutive relation can be written as (the matrix is taken as the comparison mate-
rial):
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where 7 is the stress polarization, which, according to Willis [9], has the governing equation
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(2. 2') is here the second derivative of Green’s tensor [unction associated with the infinite
medium Lj.

Now following the micro-mechanical method proposed by Ponte Castaneda and Willis [8],
and averaging Eq. (2) over the inclusion of type r and introducing the ellipsoidal distribution
for the inclusions, we get
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where P = [ IM(x,2')da/, x € @ and Py" = [ I'(z,a')da!, = € 24, 2 is the region
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occupied by the inclusion of type r. If the CO]‘ldiJliOIl‘dl probability density is expressed by
priE () = e (2 2 2')s p*(2") is the conditional probability density for finding an inclusion
of the type r centered at z, provided that there is an inclusion of the type s centered at ', and
2 =z — 2. The spheroids §2,"*, which characterize the distribution of the inclusions, are
defined by 2™ = {x : |2 :1;\2 < 1}, and inside 2,/ p"*(") = 0.

To simplify the anal;sis. the spheroids (2, are assumed to be the same for all inclusions,
this leads to Py = P,. From Eq. (3), one obtains:
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where T" = [(L, — L4 £ "
So the effective thermo-elastic properties of the composite can be obtained by using the
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In the following, the composite is assumed to consist of two isotropic phases. The moduli
(compliance tensor) and the stress-temperature tensor of the matrix are denoted by Ly(M,)
and [, and by L,(M,) and L, for the inclusion. ¢ is the volume fraction of the inclusion. The
inclusions can be aligned, two- or three-dimensional randomly oriented. In this case Egs. (4).
(5) can be rewritten as

Locw=Li+all—-a<T>P] " <T >, (6)

boow =l +all—a < T'> P < T(L - L)™' 1 (L, - 1) > . (7)

“PCW
<e> means the orientational average. It is seen that for the aligned composite Eq. (7) is
identical to that given by Laws [10], which has the following form:
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For the studied composite with isotropic phases. the operator of the orientational average
works only on T" in Eq. (7), so for the composite with aligned, two- or three-dimensional ran-
domly oriented inclusions, Eq. (8) still holds.

The average stresses in the inclusions and the matrix can be obtained by using the constitu-
tive equations for each phase. From definition
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and with the help of the equations E=Mpow: X+ et € =Mo: g, + a0 and
<g>=My:<g>1+ . the average stress in the inclusions can b‘. mlculated by
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The elastic moduli and the thermal dilatation coefficient of the composite can be com-
puted with the aid of Egs. (6). (8), in which the distribution of the inclusions is considered
through tensor P,. According to [11], tensor P; can be related to Eshelby tensors by
P' =SLy ", P;=S;Ly", where S, 8, are Eshelby tensors, which depend on the moduli of
the matrix and the aspect ratios w,w, of the spheroids 2 and £2;. For an isotropic matrix, the
Eshelby tensor has a simple analytical form [12].

2.2 Homogenized effective stress.of ductile matrix

In this paper. the method based on second-order moment of stress developed by Qiu and
Weng [13]. Suquet [14], and Hu [15] will be utilized to compute the average effective stress in
the matrix. According to Hu and Weng [5], for a composite under a macroscopic loading P))
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and a uniform temperature change 6, the homogenized effective stress in the matrix can be
calculated by:
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where fi, %, are respectively the shear and bulk moduli of the matrix. By setting the above
effective stress equal to the initial yield stress of the matrix (o = 7,), the macroscopic yield
function of the composite can be determined. and the influence of the thermal residual stress
and inclusion’s orientation and distribution can be analyzed.

When a plastic deformation takes place in the matrix, its secant moduli will be utilized to
consider the change of the constraint on the inclusions. Assuming the power law type harden-
ing for the matrix o, = o, + he,", where o, £, are von Mises effective stress and effective plas-
tic strain. the secant shear and bulk moduli of the matrix py*, 3¢" at £, are of the following
forms (the plastic incompressibility is assumed for the matrix):
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Using the secant moduli tensor L* instead of Ly, the plastic deformation of the composite
can be decomposed into a series of elastic problems (for more details. see [16]. [17]). In the
presence of thermal-residual stress, we follow the method developed by Bhattacharyya et al.
[18]. and Hu and Weng [3].

3 Numerical applications

The proposed analytical model will be applied to a SiC/Al composite system. The elastic con-
stants for the inclusions are: E; =490 GPa, 1, = 0.17; and the constants for the matrix:
Ey = 68.3 GPa, vy = 0.33; 0, = 250 MPa, h = 577 MPa, n = 0.355, and the thermal coeffi-
cients are ¢y = 21.6 x 107%/°C, ey = 3.8 x 107%/°C. The volume fraction is kept constant
¢; = 15% and @ = =500 “C in the following analysis. The method for computing the orienta-
tional average can be found in [6].

Figure 1 shows the secant thermal dilatation coefficients o (fiber direction for aligned
composites, in-plane for composites with 2-d randomly oriented inclusions and overall for the
3-d orientations). Here the inclusion’s distribution is assumed as isotropic, w; = 1. For pro-
late inclusions (w > 1), the composites with aligned inclusions gives minimum o *, and those
with three-dimensional randomly oriented inclusions predict maximum a,“. The results are
reversed [or the composites with oblate inclusions.

Figure 2 illustrates stress-strain curves in tension and compression for the composites with
aligned. 2- or 3-d randomly oriented inclusions (wy = 1.4 = 2). Here the white circles show
the distribution of inclusions (104), whereas the dark regions represent the shape of the inclu-
sions (w). For the composites with aligned and 2-d randomly oriented inclusions. owing to
the presence of thermal residual stress, the compressive curves are superior to the tension
ones. and for the composite with 3-d randomly oriented inclusions, the difference in tension
and compression is small, but the tension curve is a little superior to the compressive one. The
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Fig. 1. Secant dilatation coelficient of the com-
posite as function of the aspect ratio of inclu-
sions (0 = =500 "C, wy = 1)

Fig. 2. Stress-strain curves in tension and
compression of the composites for differ-
ent inclusion’s orientations (¢ = —500 “°C,
wy = 1, w=2)

Fig. 3. Stress-strain curves in {ension and
compression of the composites with
aligned inclusions of different aspect ratios
(w=025w=1.00w=2 and
f = =500 'C)

wy =1,
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stress-strain curves in tension and compression for a composite with aligned inclusions for the
inclusion’s aspect ratios w = 2,w = 1,w = (.25 are depicted in Fig. 3 (wy = 1). It is seen that
the difference is most pronounced for w = 0.25, and that the tension curve in this case is
superior to the compressive one.

It must be mentioned that the elastic model proposed by Ponte Castaneda and Willis
assumed the ellipsoidal symmetry for the distribution of the inclusions, and that this limits sig-
nificantly the possible choice of the inclusion’s aspect ratio for a fixed distribution of the
inclusions [8].

Finally the proposed analytical method is also compared with a finite element calculation
(unit cell model) for the composites with aligned inclusions. The spheroid (2, characterizing
the distribution of inclusions is taken to have the same form as the inclusion £2; this leads to
wy = w. In this case, the proposed model corresponds to the Mori-Tanaka mean field theory
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[6]. [8]. [11]. The finite element calculation is carried out by ANSYS finite element program.
Figure 4 gives the comparison results for the secant dilatation coefficient a.* for the compo-
sites with wy = w = 10,0.1. For the composite with the aligned oblate inclusions {w = (.1),
" is larger than that of the matrix. The plastic deformation of the matrix increases o, “. The
situation is reversed for the composite with aligned prolate inclusions (w = 10). The compari-
son results of the stress-strain curves in tension and compression for the composite with and
without thermal residual stress are also given in Fig. 5 (w = 10): it is seen that the predictions
by the proposed analytical model agree quantitatively with those given by the finite element
model.

4 Conclusions

An analytical method has been proposed to predict the influence of residual stress on the elas-
tic-plastic behavior of a general composite. The model incorporates the micro-structural para-
meters like fiber shape, orientation, distribution and volume fraction. The computed results
show that the influence of residual stress on the macroscopic properties depends closely on
the microstructures of the composite. The predicted results of secant dilatation coefficient and
stress-strain curves for aligned composites agree reasonably with those calculated by the finite
element method.
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