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Abstract

The influence of the thermal residual stress on the deformation behavior of a composite has been analyzed with a new
micromechanical method. The method is based on secant moduli approximation and a new homogenized effective stress to
characterize the plastic state of the matrix. It is found that the generated thermal residual stresses after cooling and their
influence on the subsequent deformation behavior depends significantly on the aspect ratio of the inclusions. With prolate
inclusions, the presence of thermal residual stresses generate a higher compressive hardening curves of the composite, but it
is reversed with oblate inclusions. For particle reinforced composite, thermal residual stresses induce a tensile hardening
curve higher than the compressive one and this is in agreement with experimental observations. q 1998 Elsevier Science
Ltd.
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1. Introduction

Due to a mismatch in the coefficients of thermal expansion between the matrix and inclusions, change in
temperature produces an internal stress in the composite. These thermal stresses may be partially relaxed by the

Žplastic deformation of the ductile matrix and lead to additional hardening of the matrix in the composite Taya
.and Mori, 1987; Shibata et al., 1992; Ramakrishnan, 1996 . Since the thermal effects are induced before

mechanical testing, their presence can induce the asymmetry in the tensile and compressive yield stresses of the
Ž .composite Arsenault and Taya, 1987; Corbin et al., 1991 .

Because of its influence on the properties, the residual stress in composites has been the subject of several
Ž .studies, both experimentally and analytically. The equivalent inclusion method Eshelby, 1957 is usually used

Ž .to evaluate thermal residual stresses of a composite Takao and Taya, 1985; Withers et al., 1989 . The average
state of the internal stresses in the matrix can be readily calculated. A simple way to analyze the plastic behavior
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2 ² : ² :of a composite is to define the effective stress of the matrix directly by s s3r2 s : s , where s is the0 0eff
² :deviatoric part of local stress s and Ø means the volume average of the said quantity over the matrix0

Ž .phase. This approach is usually referred to as the mean stress approach Qiu and Weng, 1992 . However, for an
isotropic composite, the temperature change induces an average stress in a hydrostatic form in the matrix, so
such a defined effective stress of the matrix fails to predict the plastic flow of the composite.

Ž .To overcome this difficulty, Qiu and Weng 1992 defined an homogenized effective stress of the matrix
2 ² :directly from the average of the local effective stress, that is s s3r2 s:s , and this homogenized stress is0eff

believed to account to some extent for the influence of the local stress fluctuations in the matrix. Recently, Hu
Ž .1996 proposed a field-fluctuation method to evaluate this effective stress, and showed that the prediction of the
nonlinear properties for a composite with the homogenized effective stress and the secant moduli method
Ž .Berveiller and Zaoui, 1979; Tandon and Weng, 1988 corresponds to Ponte Castaneda’s lower bound approach
Ž .Ponte Castaneda, 1991 . A similar approach was applied to analyze thermal stress relief due to plastic flow by

Ž .Pan and Weng 1993 , and to analyze the influence of residual stresses on the flow behavior for a stable
Ž .dual-phase steel by Bhattacharyya et al. 1993 . However, in their analyses the homogenized effective stress was

only evaluated in an approximate manner. In this paper, a method will be proposed to calculate the
homogenized matrix effective stress in the presence of thermal residual stresses and afterwards it will be used
together with the secant moduli method to analyze the influence of residual stresses on the subsequent
deformation behavior of a composite.

2. Theoretical analysis

2.1. Description of problem

Ž .The representative volume element RVE of the considered composite is assumed to consist of well aligned
Ž .spheroidal inclusions and an isotropic ductile matrix. The elastic stiffness compliance tensors of the matrix and

Ž .the inclusion are denoted by L and L M and M respectively, and their thermal expansion coefficients by0 1 0 1

a and a . The volume fraction of the inclusion is represented by f. The composite is subjected to a uniform0 1
Ž .temperature change, DT , and after that a macroscopic stress S or macroscopic strain E is applied. The

temperature drop is assumed to be sufficiently fast so that the extent of plastic deformation in the matrix can be
evaluated with the properties at the service temperature. For simplicity, the inclusions will be taken to be elastic.

The elastic case is first considered. The effect of temperature drop is simulated by an eigenstrain
) Ž .´ s a ya IDT inside of each inclusion. Now we will analyze the following situation: a composite1 0

consists of aligned spheroidal inclusions and, in each inclusion, there is an eigenstrain ´ ) and along the
Ž .boundary of RVE, a macroscopic stress S or strain E is applied. The local stress s inside the composite can

be decomposed into two parts: s I, the stress owing to the applied load S , and s II, the stress due to the
eigenstrain ´ ) , so that sss I qs II. The plastic flow of the composite is controlled by the detail local
stresses in the matrix. However, it is difficult to perform an exact analysis on such local stresses through an
analytical method. In this paper an approximate method will be proposed, in which an homogenized effective

² 2:stress of the matrix s will be used to characterize the plastic state of the matrix in the composite, noting0e

that s is the classical von Mises’ stress.e

2.2. Determination of the homogenized effectiÕe stress

Ž . ŽWith the help of Eshelby’s inclusion theory Eshelby, 1957 and Mori–Tanaka’s mean stress approach Mori
. Ž .and Tanaka, 1973 , we readily get see more details in Appendix A the compliance tensor of the composite M ,c
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² :and the average stress of the matrix s :0

y1y1y1M sM q f M M yI q 1y f IyS M , 1Ž . Ž . Ž .½ 5c 0 1 0 0

1 y1 y1 y1 )² :s s M yM M yM Sy M yM M yM yI M IyS ´ , 2Ž . Ž . Ž . Ž . Ž . Ž .� 40 1 0 1 c 1 0 1 c 01y f

where I is the unit tensor and S is the Eshelby tensor. Now following the method proposed by Bobeth and
Ž . Ž . Ž Ž ..Diener 1987 and Kreher 1990 for an elastic composite subjected to DT and S or E , the total strain

energy of the composite is

1
I II I II )² :Us s qs :´ q´ y´ . 3Ž . . Ž .

2
Ž .It can be further written by using Hill’s condition Hill, 1963 as

1 1 1 1
I I II ) II )² : ² : ² :Us s :´ y s :´ s S :M : Sy s :´ . 4Ž . Ž Ž .c2 2 2 2

The total elastic energy of the composite can also be written in the following form:

1
I II I II² :Us s qs :m: s qs . 5Ž . Ž . Ž .

2
² :where m is the local compliance tensor and Ø means the average of the said quantity over the RVE. Keeping

S and DT unchanged, while allowing the local compliance tensor m to have a variation d m, this will induce
the variations of the local stress and consequently the total strain energy of the composite

1
I II I II I II I II² : ² :dUs s qs :d m: s qs q s qs :m:d s qsŽ . Ž . Ž . Ž .

2
1

I II I II ) I ) II² : ² : ² :s s qs :d m: s qs y ´ :ds y ´ :ds . 6Ž . Ž . Ž .
2

Ž . ² Ž I II.:In the derivation of Eq. 6 , Hill’s condition and d s qs s0 were used.
Ž .From Eq. 4 we get

1 1
) II² :dUs S :d M : Sy ´ :dsc2 2

and thus

1 1 1
I II I II ) I ) II² : ² : ² :s qs :d m: s qs s S :d M : Sq ´ :ds q ´ :ds . 7Ž . Ž . Ž .c2 2 2

In order to find s of the matrix, let only the shear modulus of the matrix have a variation dm . Then usinge 0
) Ž .the fact that ´ is only prescribed in the inclusions, Eq. 7 this time becomes

1 1 1 1
I II I II ) I ) II² : ² : ² :1y f d s qs : s qs s S :d M : Sq f´ : ds q f´ : ds .Ž . Ž . Ž . 0 1 1cž /2m 2 2 20

² :Ø denotes the average of the said quantity over the inclusions. With the aid of the results given in1

² I: ² II: )Appendix A, s sQ S , s sR´ , we get1 1

3 3m2 d M 6 fm2 d Q0 c 02 I II I II )² :s s s qs : s qs sS : y : Sq´ : y : SŽ . Ž . 0eff ž / ž /2 1y f dm 1y f dm0 0

3 fm2 d R0
) )q´ : y :´ . 8Ž .ž /1y f dm0
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It is seen that the presence of residual stresses alters the yield properties of the composite through the last two
Ž .terms of Eq. 8 .

It is of interest to examine in detail a spherical inclusion reinforced composite, which represents a
fundamental microgeometry of the two phase system. In this case ´ ) has a hydrostatic form, so the last two

Ž . ) ² I: )terms of Eq. 8 can be further simplified into a product of two hydrostatic terms, that is ´ : s s1r3 tr ´1

² I:tr s and tr AsA sA qA qA . From Appendix A, we have1 i i 11 22 33

k 3k k 1y f ay1Ž . Ž .1 1 0I II )² : ² :tr s s tr S , tr s s tr ´ .1 1
1y f ay1 k yk qk 1y f ay1 k yk qkŽ . Ž . Ž . Ž . Ž . Ž .1 0 1 1 0 1

Ž . Ž . Ž . Ž . Ž .Together with as 1qn r3 1yn , bs2 4y5n r15 1yn , Eq. 8 leads to0 0 0 0

22S tr SŽ .e2s s q yC tr S qD 9Ž . Ž .eff 2 2A B

where
2

1y f by1 m ym qmŽ . Ž . Ž .1 0 12A s ,2 2 2 2 2m ym 1y f b yb y1r5 fa 1ya q m ym bqmŽ . Ž . Ž .Ž . Ž .1 0 1 0 0

2
4 1y f ay1 k yk qk 24 fk k k ykŽ . Ž . Ž . Ž .1 0 1 0 1 1 02 )B s , Cs tr ´ ,2 2 2f 1ya k yk 3k k rm q4k y4 fk q4 fkŽ . Ž . Ž .1 0 0 1 0 0 0 1

36 fk 2 k 2
0 1 2

)Ds tr ´Ž .23k k rm q4k y4 fk y4 fkŽ .0 1 0 0 0 1

and S is the macroscopic von Mises’ stress related to S . It is seen that for a particle-reinforced composite, thee

presence of the residual stress influences indeed the composite yield properties through the constants C and D.
2 ² IIf the effective stress of the matrix is calculated directly from the matrix average stress s s3r2 s qeff

II .: Ž I II.: ² II:s : s qs , the variation of the temperature in the absence of the applied stress would yield s s0,0 0 0
2 ² I: ² I:so s s3r2 s : s s0. This would mean residual stresses have no influence on the plastic flow of the0eff

composite. With the new homogenized effective stress, this difficulty is removed.

3. Nonlinear behavior of the composite in the presence of residual stress

3.1. Plastic flow due to thermal stress

In the absence of the applied stress Ss0, the onset of yielding of the composite owing to thermal stress can
Ž .be determined by checking if the condition s ss is satisfied s the initial yield stress of the matrix . Wheneff y y

the thermal stresses are large enough, the plastic flow will be generated in the matrix. To account for the change
Ž .of the matrix constraint power on the inclusions during the plastic flow, as Berveiller and Zaoui 1979 did for

Ž .the self-consistent method for polycrystal plasticity and Tandon and Weng 1988 for Mori–Tanaka’s mean
field theory, the secant moduli concept will be utilized. The matrix stress–plastic strain is taken to be of a power
law type

nps ss qh ´ , 10Ž .Ž .e y e

where s , ´ p are von Mises’ effective stress and effective plastic strain respectively. The matrix secant sheare e

and bulk moduli are defined by:
ns p p sm s1r 1rm q3´ r s qh ´ , k sk . 11Ž .Ž .ž /ž /0 0 e y e 0 0
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s Ž .The corresponding secant stiffness tensor of the matrix is denoted by L which is isotropic . Now the0

induced residual stresses at the end of cooling will be analyzed by the secant moduli method. Taking a
linearized composite as the comparison composite with a matrix stiffness tensor set equal to the matrix secant
stiffness tensor of the studied composite at the end of the cooling, the homogenized effective stress of the matrix
for the linearized composite can be written as:

2 s3 fm d R 2n02 ) ) ps s´ : y :´ s s qh ´ , 12Ž .Ž .eff y ež /1y f dm0

where R s has the same expression as R with the condition that L be replaced by Ls . Henceforth the0 0

superscript s refers to the secant quantity which has the same form of expression as its elastic counterpart with
s Ž .this condition. The Eshelby tensor S in this case depends on the secant Poisson’s ratio of the matrix. Eq. 12

allows one to derive the homogenized effective plastic strain of the matrix ´ p0 at the end of cooling. Thee

induced average stresses in the matrix are determined by:
y1T s s s sy1 s )² :s s M yM M yM M IyS ´ , 13Ž . Ž .Ž . Ž .0 1 0 c 0 0

where M s is the inverse of Ls and M s is the secant compliance tensor of the composite.0 0 c

3.2. Subsequent plastic deformation due to the applied stress S

Ž .After cooling, an internal stress is stocked in the matrix and its average value is given by Eq. 13 . Besides
Ž p0 .nthis, the initial yield stress of the matrix written in the form of effective stress now becomes s qh ´ . Iny e

short, the effects induced by the temperature drop before mechanical testing on the subsequent deformation of
Ž . Ž .the composite are: a the yield stress of the matrix is enhanced and b the internal stresses in the inclusion and

the matrix are generated. If there were not such internal stresses, the composite would have had a linear region
determined by the elastic properties of the inclusion and matrix.

Depending on the nature of macroscopic applied stresses, these internal stresses can promote or inhibit
further plastic flow of the composite. To account for the influence of the internal stresses on subsequent plastic
flow of the composite, we will define a prescribed strain ´ H in the inclusion for the elastic composite to
simulate the internal stresses at the end of cooling. Then we will consider the following problem: the composite
is subjected to a macroscopic stress S , in each inclusion there is an eigenstrain ´ H and the matrix hardening

Ž p0 p.nlaw is given by s ss qh ´ q´ . The plastic deformation of the matrix induced by the macroscopice y e e

applied stress is taken into account by ´ p. Again with the secant moduli method and the previously definede

homogenized effective stress of the matrix, the nonlinear stress and strain relation of the composite can be
derived. The method for doing this can be described as: for a composite subjected to an applied load S , if the

p Žcorresponding homogenized effective plastic strain of the matrix ´ is known thus the matrix secant stiffnesse
s . sL , the secant compliance tensor M of the nonlinear composite is taken to be equal to the elastic compliance0 c

tensor of a linear comparison composite, and the matrix of the linear comparison composite has the elastic
stiffness tensor Ls . The nonlinear composite strain E is related to the applied stress S simply by EsM s S . It0 c

is seen that to derive the stress and strain relation of a nonlinear composite, one has to provide a method to
determine the relation between S and ´ p. The way proposed in this paper is to set the previously definede

Ž Ž ..homogenized effective stress Eq. 8 into the matrix hardening law, and this provides a relationship to
determine for a given S the corresponding ´ p and then the stress–strain relation of the nonlinear compositee

can be successively evaluated.

4. Numerical applications

Ž .The proposed method is applied to a SiCrAl composite analyzed by Corbin et al. 1991, 1996 and Corbin
Ž .and Wilkinson 1994a,b . The material constants for the matrix are: E s73 GPa, n s0.33, s s160 MPa,0 0 y
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Ž .Fig. 1. The induced effective plastic strain in the matrix at the end of cooling as a function the aspect ratio of inclusions DT sy5008C .

hs577 MPa, ns0.335 and a s21.5=10y6r8C. For the inclusion E s480 GPa, n s0.17 and a s3.80 1 1 1

=10y6r8C.
Fig. 1 shows the equivalent plastic strain ´ p0 at the end of a temperature drop DTsy5008C as a functione

Ž . p0of inclusion aspect ratio a . It is seen that ´ increases with the volume fraction of the inclusions. Ate

moderate concentration, the disk shape inclusions induce most pronounced effective plastic strain in the matrix
and it is reversed for the spherical inclusion. For a temperature drop DTsy508C, during which no plastic flow
is generated in the matrix, Fig. 2 illustrates the predicted difference in the initial yield stresses of the composite

Ž .in tension and in compression S rS y1 as a function of inclusion aspect ratio. In Fig. 2, S and S are thec t c t

absolute yield stresses of the composite in compression and tension. For composites reinforced by prolate
Ž .inclusions a)1 the difference increases significantly as the aspect ratio of the inclusions increase and then

Ž .Fig. 2. The difference in the compressive and tensile yield stresses of the composite DT sy508C .
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ŽFig. 3. The predicted temperature drop to generate the first plastic flow in the matrix as a function of inclusion aspect ratio dashed lines:
.mean stress method .

Ž . Ž .stabilizes for long fiber like inclusions a)100 . For particulate-reinforced composites as1 , the predicted
initial yield stress in tension is greater than that in compression.

Ž .This has been confirmed by experimental observations Corbin et al., 1991; Corbin and Wilkinson, 1994a,b .
The difference in tensile and compressive hardening curves of the composite increases as a function of the

Ž .volume fraction of inclusion. Fig. 3 shows the needed temperature drop DT to generate first plastic flow inc

the matrix predicted by the mean stress approach and by the proposed method as a function of the inclusion’s
aspect ratio. The predicted temperature drop by the mean stress method is always higher than that predicted by
the present method, especially for particulate reinforced composites, since the mean stress approach predicts no
plastic flow. The influence of thermal residual stress on the subsequent plastic flow of their composite is given
in Fig. 4 for different inclusion aspect ratios with a temperature drop DTsy5008C. For problate inclusions

Ž . Ž .Fig. 4. Influence of residual stress on the stress–strain curves in tension solid lines and compression dashed lines of a nonlinear
Ž .composite DT sy5008C .
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Ž . Ž .Fig. 5. a Stress–strain curve of the inclusions and the matrix material. b Influence of residual stress on the stress–strain curves in tension
Ž . Ž . Ž .solid lines and compression dashed lines of a particulate composite together with experimental results Corbin and Wilkinson, 1994a
Ž .DT sy5008C .

Ž .with an aspect ratio larger than about 2 see Fig. 2 for as10 , the predicted hardening curve in compression is
Ž .superior to that in tension and the results are reversed with oblate inclusions as0.1 . In all cases the

difference in tensile and compressive hardening curves of the composite decreases rapidly as a function of
deformation. Due to the presence of internal thermal stresses in each phase, subsequent mechanical loading can
immediately induce plastic flow in the matrix. The predicted initial yield stress of the composite in compression

Ž .with problate inclusions and in tension for oblate inclusions are quite low even zero .
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Ž .Finally the theory will be compared with the experimental observations of Corbin and Wilkinson 1994a,b
for a composite with fs10%. To provide a reference the stress–strain curves of the SiC inclusions and Al

Ž .matrix are shown as Fig. 5 a and the tensile and compressive hardening curves of the composite are depicted in
Ž . Ž .Fig. 5 b . Both the theoretical calculations and experimental data in Fig. 5 b indicate a higher tensile curve than

the compressive one. The predicted difference in tensile and compressive hardening curves increases as a
function of inclusion concentration. This difference is smoothed out quickly as plastic strain increases, and this
agrees with the experimental tendency. The model, however, underestimates the hardening curves both in

Ž .tension and compression. This may be attributed to the nonhomogeneous distribution of the inclusions cluster
and to the irregular inclusion shape, which are not taken into account in the model. The presence of the cluster

Ž .of inclusions can enhance the hardening curve of the composite Corbin and Wilkinson, 1994a,b and the
irregular shape of the inclusions will certainly influence the local hardening. These effects are under
investigation.

5. Summary

The thermal residual stresses generated during a temperature variation and their influence on the subsequent
mechanical behaviors of composites reinforced with aligned inclusions are analyzed through a new method. This
method is based on a secant moduli approximation and the homogenized effective stress of the matrix, which

Ž .was proposed by Qiu and Weng 1992 and evaluated exactly in this paper in the presence of thermal residual
Ž .stresses. The analytical results show that the induced plastic strain after a temperature change and their

influence on the mechanical behavior depends significantly on the inclusion shape. With prolate inclusions, the
presence of thermal residual stresses generate a higher compressive hardening curve of the composite, but it is

Ž .reversed with oblate inclusions. For particle reinforced composite as1 , thermal residual stresses induce a
tensile hardening curve higher than the compressive one and this is in agreement with experimental observa-
tions. In all cases the induced asymmetry in tensile and compressive hardening curves is smoothed out quickly
with the plastic deformation of the ductile matrix.

Appendix A

Ž .Consider a representative volume element RVE , with aligned spheroidal inclusions homogeneously
Ž .dispersed in the matrix. A macroscopic stress S or strain E is applied along the boundary of RVE. In each

inclusion, there is a uniform eigenstrain ´ ). Both phases are assumed to be elastic. Taking the matrix as the
comparison composite, E is defined by SsL E , and the matrix average stress in the composite is given by0 0 0

Ž .s sL E q´ and the average strain in the matrix is ´ sE q´ . The average strain in the inclusions0 0 0 p0 0 0 p0

differs further from the matrix average strain by ´ , so that the average stress of the inclusions isp1

s sL E q´ q´ y´ ) sL E q´ q´ y´ ) y´ T , A.1Ž .Ž . Ž .1 1 0 p0 p1 0 0 p0 p1

T Ž .where ´ is the eigenstrain introduced by Eshelby 1957 and

´ sS ´ ) q´ T , A.2Ž . Ž .p1

² : Ž .² : ² :S being the Eshelby tensor. Using the fact s s 1y f s q f s sS , we get0 1

´ q f ´ y´ ) y´ T s0. A.3Ž .Ž .p0 p1
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Ž . Ž . Ž . TFrom Eqs. A.1 , A.2 and A.3 , the unknown quantities ´ , ´ , ´ can be evaluated and the compositep1 p0

strain is calculated by

Es 1y f ´ q f´ sE q f ´ ) q´ T ,Ž . Ž .0 1 0

where

y1y1 y1T y1 y1´ s M M yI q 1y f IyS E y 1y f M M yIŽ . Ž . Ž .½ 5 ½1 0 0 1 0

y1
)q 1y f IyS IyS ´Ž . Ž . Ž .5

and the composite compliance tensor has the form

y1y1y1M sM q f M M yI q 1y f IyS M .Ž . Ž .½ 5c 0 1 0 0

The average stresses of the matrix and inclusions can be found as:

1 y1 y1 y1 )² :s s M yM M yM Sy M yM M yM yI M IyS ´ ,Ž . Ž . Ž . Ž . Ž .� 40 1 0 1 c 1 0 1 c 01y f

1 1y fy1 y1 y1 )² :s s M yM M yM Sy M yM M yM M IyS ´Ž . Ž . Ž . Ž . Ž .1 1 0 c 0 1 0 c 0 01y f f

or separately in terms of the applied stress S and the eigenstrain ´ )

1 y1I² :s s M yM M yM S ,Ž . Ž .0 1 0 1 c1y f

y1II y1 )² :s sy M yM M yM yI M IyS ´ ,Ž . Ž . Ž .� 40 1 0 1 c 0

1 y1I² :s s M yM M yM S ,Ž . Ž .1 1 0 c 0f

1y f y1II y1 )² :s s M yM M yM M IyS ´ .Ž . Ž . Ž .1 1 0 c 0 0f

Ž . Ž .For a particulate composite as1 , the composite as a whole is isotropic and the stress or strain can be
Ž .decomposed as s ss q1r3sd for a strain ´ se q1r3ud . The elastic constitutive relationship fori j i j i j i j i j i j

an isotropic material reads

s s2me , ss3ku .i j i j

Ž Ž .. p1 Ž ) T .The Eshelby relationship Eq. A.2 for a particle-reinforced composite can be written as e sb e qe ,i j i j ij
p1 Ž ) T . Ž . Ž . Ž . Ž .u sa u qu , where as 1qn r3 1yn , bs2 4y5n r15 1yn and for a macroscopic stress0 0 0 0

S sS q1r3trSd .i j i j i j
Ž . Ž . Ž .By rewriting Eqs. A.1 , A.2 and A.3 into the deviatoric and spherical parts and following the same

procedure, we can get:

k f k yk m f m ymŽ . Ž .c 1 0 c 1 0
s1q , s1q .

k 1y f a k yk qk m 1y f b m ym qmŽ . Ž . Ž . Ž .0 1 0 0 0 1 0 0
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The average stresses in the inclusions are

k 3k k 1y f ay1Ž . Ž .1 0 1I II )² : ² :s s tr S , s s u ,1 1
1y f ay1 k yk qk 1y f ay1 k yk qkŽ . Ž . Ž . Ž . Ž . Ž .1 0 1 1 0 1

m 3m m 1y f by1Ž . Ž .1 0 1I II )² : ² :s s S , s s e ,1 1i j i j i j i j1y f by1 m ym qm 1y f by1 m ym qmŽ . Ž . Ž . Ž . Ž . Ž .1 0 1 1 0 1

whereas the average stresses in the matrix are

a k yk qk 3k k f ay1Ž . Ž .1 0 0 0 1I II )² : ² :s s tr S , s sy u ,0 0
1y f ay1 k yk qk 1y f ay1 k yk qkŽ . Ž . Ž . Ž . Ž . Ž .1 0 1 1 0 1

b m ym qm 3m m f by1Ž . Ž .1 0 0 0 1I II )² : ² :s s S , s sy e .0 0i j i j i j i j1y f by1 m ym qm 1y f by1 m ym qmŽ . Ž . Ž . Ž . Ž . Ž .1 0 1 1 0 1
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