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Introduction 

An incremental micromcchanicai theory is necessary, for modeling the cyclic properues of metal matrix 

composites. Lin et al. [1] proposed an incremental theory based on Eshelby inclusion [ransformation theory[2]. 

Wakasima[3] considered the matrix plastic strata as a source of eigensU'am occurred in the inclusions; the 

constraint of the malrix on the mclnsion is always considored elastic. He formulated an mcrcmcntal theory to 

model the cyclic properties of metal matrix composites. In this paper an mcrcmontal micromochamcal mothod 

will be proposed m the context of anisolropic elasticity along the line proposed by Hill[4], and the mt~raction 

between the inclusions will be accounted for with the help of Moil-Tanaka mean field theory[5]. The method 

will be appli~ for predicting the tensile, cyclic properties and fatigue life of metal matrix composites. 

Theoretical analysis 

Composite compliance tensor 

The Mori-Tanaka mean field theory[5] will be applied in this paper to determine the elastic composite stiffness 

tensor. The studied composite is assumed to consist of two phases: the matrix and aligned isotropic inclusions, 
C/ and ~ denote the softness tensors respectively, f is the volume fraction of the inclusions. Taking a 

representative volume of such composite, a uniform stress ~ is applied along its boundary. It can be shown that 

the average matrix stress and the composite swam are related to the applied stress by[3] 
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, r  = K,V. E = M , , ~  (~) 

where K = I - C , . ( I + Q ) - ' Q C f ' ,  Q = f ( S - I ) [ ( C  - C , ) S - C  ] - ' (C , -C  ), and S is Eshelby 
tensor. M,~ is the composite effective compliance tensor and its expression is 

M~r = [ I  + ( S  - / ) - ' ( 1  + Q )  'Q]C~' (2) 

In the incremental loading case, equation ( 1 ) can be written in the incremental form 
A ~  = KA,F, AE = M # A Z '  (3) 

In this case, the malrix moduli must be taken as the tangent moduli on which the Eshelby tensor depends. When 
the matrix undergoes a plastic deformation, the above incremental relations will be applied and M #  and K will 

depend on the plastic state of the matrix through its tangent moduli. 

Eshelby tensor 

For an ellipsoidal inclusion embedded in an isotropic matrix, the Eshelby tensor has a simple analytical form 

(the readers can refer the monograph by Mura[61). However when the matrix has a plastic deformation, the 

relation between its incremental stress and strain can not be arranged into a simple form as in the elastic 

isoU'opic case. The Eshelby tensor for an anisoa'opic media has not simple analytical expression and it must be 

evaluated numerically. Assuming the matrix obeys the mixed hardening law, its yield function is: j3 
F =  ~(.,. - c~)(.~. -c~-~) - ~0  - ~ ( ?  ) = 0 14) 

where C is a constant characterizing kinetic hardening, s s is the deviatoric part of the stress tensor, ~,~ is plastic 

strain and ~p is the usual equivalent plastic strain. 

With the aid of the consistency condition and the normality flow rule, the matrix tangent compliance tensor can 

be expressed as 
3 1 

m.j' = M '  + + 3 c ( . ~ , - c ~ ) ( s ~  - c ~ )  (5) n '~" 21 2<,o' 

1 
where M% is the matrix elastic compliance tensor for an isotropic material. I =-~(s], - c ~ ) ( s , , -  c ~ )  and 

~p'=d~p d~,. When ¢p = 0  or c-O , the previous hardening law reduces to the pure kinetic or isotropic 

hardening. 

The Eshelby tensor for an ellipsoidal inclusion in an anisotropic media characterized by the compliance tensor 
M.~kt has been theoretically analyzed by Mura[6]. It can be expressed by [7] 

,% = e c~ (6> 

I I 2a" 

P"~q - 1 6 x _ ! d x ! d e k ( A ' - p ' K K  + A-~K K + A~-'K K, + A,;'K K ) and 

with K, = ( l - x 2 ) ~ c o s ~  , K 2 = ( l - x 2 ) ½ s i n ~  , K, = - x ,  A,s = , 4  =C, ps, KpK o 
C 

a, b, c are the half axes of the ellipsoidal inclusion. Tensor C,~, is the inverse of the tensor M,~ a 

P, sm can be numerally evaluated by Gauss method, so the Eshelby tensor S used in the section 2.1 for the each 

incremental step is then obtained. 

Numerical aDulications 
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When the matrix enters the plastic deformation range, the external load must be realized m an incremental 

manner. In each incremental step, the matrix tangent compliance tensor is determined by equation (5) and the 

Eshelby tensor are obtained through equation (6). We get the composite incremental stress and strata by 

equatmns (2,3). This process is repeated until the required load or cycle is reached. In the elastic case or 
unloading, the matrix elastic compliance tensor M ~  must be used. 

Taking the AI/SiC composite as an example, two kinds of matrix are examined: one is Al+3.5%Cu[8], the other 

is Aluminum A35619]. Their materials constant are 

TABLE 1: Material constants for the matrices 

Eo (GPa) v. o0 (MPa) h (MPa) n c (MPa) 

AI+3.5%Cu 70 0.33 175 90 0.25 2500 

AI A356-T6 70 0.33 210 75 0.25 2000 

The material constant for the SiC are[8l:E~ = 450(;Pa,  v, = O. 17. 

Figure 1 illustrates the predicted tensile and cyclic hardening behavior (solid line) for the parueulate reinforced 

eomposite(Al+3.5%Cu, f=13%), together with the experimental data (dash line)[8]. In the ease of cyclic loading, 

the applied strain is controlled, the corresponding stress is taken as the maximum stress after 15 cycles. We note 

that the proposed method can give good predictions for both tensile and cyclic hardening behavior of the 

composite. 
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FIG 2 Coml:~is~n between the predicted (solid line) and 

measure°) fatigue life for the composite; 

In this paper, the composite fatigue life is assumed to be controlled by the initiation of a crack m the matrix 

material, as in references[9] The matrix average quantities will be used for the composite fatigue life prediction. 

The matrix fatigue life and the applied strain range in the matrix is related by the Coffin-Manson relation[ 10]. 

Ac  _ o', ( 2N j )*  + t:' .(2N, ) '  (7) 
2 Eo 
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where A~',, is the maximum principle strain range in the matrix, E0is the matrix elastic Young's modulus, o" r . 

~ ,  x and y are the matrix material constants. For the composite under the cyclic loading (the applied composite 

stram range is AE ), the m,cromechanical model allows one to determine the maydmum average strain range in 
the matrix A~ ' .  With the help of equation (7), die cycle to failure for the composite under the applied strain 

range AE can then be determined. 

This method will be applied to a particulate reinforced AI/SiC composite (AI A326-T6), the volume fraction of 
the SiCp is 20%. x -- - O  119, y = - 0 . 5 4 4 , 4 .  = 502MPa, e ' / =  0.0116 as determined by Ogarevic[9). 

Figure 2 shows the predicted fatigue life for the composite (solid line), together with the simula~on of the mamx 

fatigue life (dash line) and the experimental results[91, the proposed method gives also a reasonable prediction of 

fatigue life for the composite. 

Conclusiqr~ 

In this paper, an incremental method is proposed along the line given by Hill[4]. It is then applied to predict the 
cyclic behavior of metal-matrix eolnposites. In each incremental step, the matrix is considered to be an 
anisotropic material whose stiffness tensor is chosen as the tangent moduli of the studied maUix. With the aid of 
Moil-Tanaka mean field theory and numerical sohltion of the Eshelby tensor, the incremental stress and strata 
relation ofthe composite is derived. The predictions of the tensile, cyclic hardening behavior and the fatigue life 
for a particulate reinforced composite agree quantitatively well with the ones given in the literature. 

References 

1. Y.Y.Li and Y.Cben, Journal of Applied mechanics. 57, 562 (1990) 

2. J.D. Eshelby, Proceeding of Royal Society London A, 241,367 (1957) 

3. K.Wakashima and H.Tsukamoto. Material Science and Engineering A146, 291 (1991) 

4. R. Hill, J. Mech. Phys. Solids, 13, 89 (1965) 

5. T.Mori and K.Tanaka, Acta Metal. 21,571 (1973) 

6. T.Mura, Mieromechanies of defects in solids. Martinus Nijhoff, The Hague (1987) 

7. F.Ghahremani, Mech. Res. Comm 4.89 (1977) 

8. JLIorea, S.Suresh and A.Needleman, Meta. Trans. 23A, 919 (1992) 

9. V. V. Ogarevic, Ph.D. Thesis, the Graduate College of University of Iowa, (1992) 

10. S. Suresh, Fatigue of materials. Cambridge University Press, (1993) 


