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Summary. Due to statistical distribution of local material property, local stress and strain fields in a

composite are random in nature. Classical micromechanical methods can only predict the average value of

these local fields in different phases. An analytical method, which combines the maximum entropy theory

and secant moduli method, is proposed in this paper. The distribution of the local field for a planar

composite with plastic deformation is examined by the proposed method. The results show that with

increase of plastic deformation the stress field in the matrix becomes more and more inhomogeneous. The

predicted results on the stress distribution are in reasonable agreement with finite element simulation.

Some salient features near the elastic and plastic deformation transition revealed by finite element simu-

lation are also discussed.

1 Introduction

The overall elastic property of composite material can be well predicted by micromechanical

methods, developed in the past few decades (Milton [1], Torquato [2], Nemat-Nasser and

Hori [3]). The idea of these methods is to define a representative volume element (RVE)

under uniform loading conditions, and then to find the average stress and strain in each

phase. The relation between the average stress and strain in the RVE provides the effective

constitutive relation for the composite material. Such homogenization technique is further

developed for predicting the nonlinear behavior of composites. For examples Ponte

Castañeda proposed a variational method [4], Qiu and Weng [5] and Hu [6] proposed a

secant moduli method. Normally the average stress and strain in the phases can be predicted

with reasonable accuracy with these micromechanical methods. However due to the complex

morphology of the composite, especially the continuous nature for the matrix phase, the local

field distributions are extremely complicated. The information on these local stress and strain

distributions is important to assess the early plastic deformation and damage of composite

materials. However this kind of information can not be provided by the classical micro-

mechanical methods. The objective of this paper is to propose one, which combines the

classical micromechanical method and information entropy theory. This method will be

shown to be able to predict local stress and strain distributions in composite materials under

plastic deformation.
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The paper will be arranged as follows: some general relations of the micromechanical method

will be presented in Sect. 2; in Sect. 3, the information entropy theory will be applied to predict

the elastic local field distribution; the local field distribution during the plastic deformation will

be examined by the secant moduli method, which will be explained in Sect. 4; some numerical

applications of the proposed method and comparison with the finite element method will be

presented in Sect. 5.

2 General relations and overall elastic properties for composite materials

Consider a two-phase planar composite, where C0ðl0, k0Þ, C1ðl1, k1Þ denote the moduli (shear

modulus, planar bulk modulus for two-dimensional isotropic material) for the matrix and the

reinforced phase, respectively. We consider only a two-dimensional problem. The reinforced

phase is assumed to be cylindrical in shape, and its volume fraction is denoted by f . Taking a

representative volume element (RVE) of such a composite under an affine displacement

(u ¼ e � x) or uniform traction (r � n ¼ r � n) boundary condition, it is

hei ¼ e; hri ¼ r; ð1Þ

where e and r are called macroscopic strain and stress tensors, x and n are position and unit

outward normal vectors, e and r are the local strain and stress tensor in the RVE.

h�i � 1
V

R
V
� dV is defined as the volume average of the said quantity. When the ergodic

assumption is adopted, the ensemble average equals the volume average, that is:

hAi ¼ 1

V

Z

V

AdV ¼
Z

ApðAÞdA; ð2Þ

where pðAÞ is the probability density of random variable A.

Here we can define the effective stiffness tensor C and the compliance tensor M for the

composite by:

r ¼ C : e; e ¼ M : r: ð3Þ

Another important formula in micromechanics is Hill’s relation, which states that if there is

only uniform traction or only affine displacement condition on the RVE’s boundary, the

average internal energy is related to the macroscopic quantity by:

hr : ei ¼ r:e: ð4Þ
Equation (4) can also be further written in the following form with help of the local and global

elastic relations:

he : C : ei ¼ e : C : e; hr : M : ri ¼ r : M : r; ð5Þ

where C and M are the local stiffness and compliance tensors of the composite, respectively.

Equations (1) and (3)–(5) hold for any composite, they also provide constraints for per-

missible local fields, such as local stress and strain fields. C and M depend on the phase property

and the detailed microstructure. There are many micromechanical models which can estimate

these effective properties, i.e., the Mori-Tanaka model, self-consistent model, double inclusion

model, etc. (see for example Hu and Weng [7] for more details). Here in this paper, for

simplicity, Mori-Tanaka mean field theory will be used to estimate the overall elastic property

of the composite. In this case the effective elastic compliance of the composite reads [6]

M ¼ M0 þ f ½ðM1 : M�1
0 � IÞ�1 þ ð1� f ÞðI� SÞ��1 : M0; ð6Þ
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where M0 and M1 denote the compliance tensors of the matrix and randomly dispersed phase,

separately. I is the fourth order unit tensor, and S is the Eshelby tensor (see Mura [8] for the

details).

3 Information entropy approach for local field distribution

As discussed in the previous section, the objective of this paper is to determine the local stress

and strain distributions inside of the composite, however classical micromechanics can only

deliver the expectation values of these local fields in each phase. In this paper, the overall elastic

property of the composite is estimated by Mori-Tanaka’s method, and it is given by Eq. (6).

This property is assumed to be known in the following analysis. All we know is that the local

fields must satisfy the constraints given by Eqs. (1) and (3)–(6). There are obviously many

distributions of the internal fields coherent with the previous constraints. So we have to figure

out among the possible distributions the most suitable one. To this end, an additional principle

will be needed. The information entropy approach proposed by Kreher and Pompe [9] will be

used, and will be explained briefly in the following.

Information entropy is the measure of amount of uncertainty or missing information in a

probability distribution. To avoid additional assumptions, one has to choose the probability

distribution which maximizes the information entropy. For our problem, the local material

property is a random field variable, which leads to the local field to be a random field, too.

What we are interested in is the joint probability distribution of the local strain e and the local

material property C, p ¼ pðe;CÞ. Information entropy is defined as [9]

SI ¼ �
ZZ

pðe;CÞ ln pðe;CÞ
p0

dedC ¼ � ln
pðe;CÞ

p0

� �

; ð7Þ

where p0 is an arbitrary reference value ensuring a positive value for SI . Obviously the maxi-

mum of SI must be achieved under some constraints of pðe;CÞ, expressed in terms of the local

strains by

hei ¼ e; hC : ei ¼ C : e; he : C : ei ¼ e : C : e: ð8Þ

Another constraint comes from the assumption of the probability distribution for the local

material pCðCÞ, which is expressed to be
Z

pðe;CÞde ¼ pCðCÞ: ð9Þ

Thus the determination of pðe;CÞ can be achieved by the stationary condition for the following

variational problem:

dSI ¼ 0 ð10Þ

under the constraints given by Eqs. (8) and (9).

Since the effective constant prescribes the elastic energy of the system, the maximum infor-

mation entropy method is analogous to statistical mechanics. Although lacking in all the

detailed information on microstructure, one can still determine reasonable fluctuation on

internal fields. We note that the overall quantities e, r, C and the local property distribution

pCðCÞ are considered as input. The stationary condition (10) can be solved by a standard

technique. Finally we get the Gaussian probability distributions for the local strain field whose

mean value and standard deviation are functions of the local material and the known

macroscopic quantities. The general solution is [9]:
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pðe;CÞ ¼ pCðCÞpeðejCÞ; ð11Þ

peðejCÞ ¼ 1

Z
exp � 1

2d
e� cð Þ : K�1 : e� cð Þ

� �

; ð12Þ

where peðejCÞ means the conditional probability density of e when C is given.

Z ¼
ZZ

exp � 1
2d

e� cð Þ : K�1 : e� cð Þ
� �

de; and

cðCÞ ¼ C�1:ge þ gr ¼ hejCi; ð13Þ

K ¼ C�1=2: ð14Þ

Here ge, gr and d are completely determined by the phase and the overall properties, as well as

the applied loads, they are:

ge ¼ C� : ðCþ � C�Þ�1 : ðCþ � CÞ : e; ð15:1Þ

gr ¼ ðCþ �C�Þ�1 : ðC� C�Þ : e; ð15:2Þ

d ¼ 1

3
e : ðCþ � CÞ : ðCþ � C�Þ�1 : ðC�C�Þ : e; ð15:3Þ

where Cþ ¼ hCi, C� ¼ hC�1i�1 are Voigt and Reuss bounds for the composite, respectively.

Once the above quantities are determined, the average value and variant of the random stress

field corresponding to a certain given local elastic tensor C can be readily derived as

rC ¼ hrjCi ¼ ge þ C : gr; ð16Þ

hðr� rCÞ � ðr� rCÞjCi ¼
d

2
C: ð17Þ

4 Evolution of internal field distribution during plastic deformation

In the previous section, the random local elastic stress field distribution has been determined

(by Eqs. (11)–(17)) using the maximum entropy theory. Up to now all the results are applied for

elastic composites. In the following, we will make use of these results to the elasto-plastic

composite and try to derive the change of the probability distribution of the random internal

fields during plastic deformation. To this end, the secant moduli method [5], [6] will be used. We

suppose that the matrix material is an elasto-plastic material and the reinforced phase is a pure

elastic material. The plastic deformation of the matrix is characterized by the following strain

potential:

w ¼ uðreff Þ þ
1

2K0
r2; ð18Þ

where r ¼ trðrÞ=3 is hydrostatic stress, reff ¼ ð3s : s=2Þ1=2 is von Mises effective stress and K0 is

the 3D bulk modulus. When the matrix enters a plastic state, with reff exceeding the initial yield

stress of the matrix rY , its secant shear modulus ls
0 is given by

ls
0 ¼

reff

3u0ðreff Þ
; ð19:1Þ
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since the planar bulk modulus is k0 ¼ K0 þ 1
3
l0, and K0 remains unchanged during plastic

deformation due to the plastic incompressibility. The matrix’s secant planar bulk modulus ks
0 is

given by

ks
0 ¼ K0 þ

1

3
ls

0: ð19:2Þ

With such defined secant moduli for the matrix material, the secant modulus method can be

explained as the following: for any given macroscopic load r, at which the matrix has entered a

plastic state, for a given average effective stress of the matrix hreff jCi(>rY ), the secant moduli

of the matrix can be evaluated by Eq. (19). The stiffness tensors C
s
(M

s
, compliance tensor) of a

linearized elastic composite with an elastic matrix having an average secant modulus of the

actual matrix can be determined from Eq. (6), and these moduli are interpreted as the secant

moduli of the actual nonlinear composite. In order to determine the change of the matrix secant

moduli as function of the applied macroscopic load, the method based on second order stress

moment of matrix will be used [5], [6]. The average effective stress of the matrix for the

linearized composite can be written as

hreff i
2 ffi hr2

eff i0 ¼
3

2
hs : si0 ¼ r : � 3ls2

0

ð1� f Þ
@M

s

@ls
0

 !

: r: ð20Þ

By repeating hreff jCi, the nonlinear relation between the stress and strain of the composite

can then be established. We apply the previous information entropy theory for each suc-

cessive linear comparison composite, so the evolution of the local stress distribution can

then be determined. In the following, we will apply this method to determine the local stress

field variation during plastic deformation, and compare the results with finite element

simulation.

5 Numerical applications

5.1 Analytical method

Here a two-phase planar composite (plane strain condition) with an elasto-plastic matrix and

elastic circular inclusions is considered. The local materials are isotropic. The macroscopic load

is supposed to be uniaxial tension in y-direction.

Due to the isotropy of the overall stiffness tensor, the effective shear modulus l and planar

bulk modulus k, estimated by Mori-Tanaka method, are expressed as

l ¼ l0 1þ f

2ð1� f Þaþ l0=ðl1 � l0Þ

� �

; ð22:1Þ

k ¼ k0 1þ f

ð1� f Þb=2þ k0=ðk1 � k0Þ

� �

; ð22:2Þ

where a and b are the two independent components of the isotropic Eshelby tensor:

a ¼ k0 þ 2l0

4ðk0 þ l0Þ
; b ¼ 2k0

k0 þ l0

: ð23Þ

Equation (19) is further simplified, due to the overall isotropy, as

ge ¼ ð1� qkÞrIþ ð1� qlÞs; ð24:1Þ
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gr ¼
1

3kþ
qkrIþ 1

2lþ
qls; ð24:2Þ

d ¼ 1

3

kþ � k�

kþk�
qkð1� qkÞr2 þ 1

6

lþ � l�

lþl�
qlð1� qlÞs : s; ð24:3Þ

where kþ ¼ hki, k� ¼ hk�1i�1, lþ ¼ hli, l� ¼ hl�1i�1 and ql ¼ ð1=l� � 1=lÞ=ð1=l� � 1=lþÞ,
qk ¼ ð1=k� � 1=kÞ=ð1=k� � 1=kþÞ. r; s are the hydrostatic and deviatoric parts of the tensor r,

respectively.

The matrix is assumed to have a power law type hardening which can be expressed by

reff ¼ rY þ hen
ep. Accordingly the strain potential of the matrix is written as

w ¼
r2

eff

6l0

þ n

nþ 1

1

h1=n
ðreff � rY Þ

nþ1
n þ 1

2ks
0

r2; ð25Þ

where h and n are the plastic material constants, and eep is the von Mises effective plastic strain.

Then the secant moduli of the matrix material are given by

ls
0 ¼

1

ð1=l0Þ þ 3½ðreff � ryÞ=h�1=n=reff

; ks
0 ¼ K0 þ ls

0=3: ð26Þ

With the secant moduli method discussed previously, the overall nonlinear behavior and

internal field probability distribution of the considered composite system at any instant can be

calculated. The material constants in the computation are taken as: k0 ¼ 75:5 GPa,

k1 ¼ 135 GPa, l0 ¼ 25:7 GPa, l1 ¼ 89:3 GPa, rY ¼ 250 MPa, h ¼ 600 MPa, n ¼ 0:455, and

the volume fraction of the inclusion is f ¼ 0:2.

5.2 FEM calculation

Finite Element calculation for the same composite is also performed, which is shown in Fig. 1.

There are 60 circular inclusions randomly scattered within the matrix, whose radius is adjusted

to satisfy the volume fraction of the inclusion f ¼ 0:2. All the material parameters are taken to

be the same as those in the analytical model. The sample was stretched by a uniform dis-

placement on the boundary in the y-direction, and in the x-direction, the periodic condition is

prescribed.

The local stress fields and the probability distribution of various stress components as well as

the overall nonlinear behavior of the composite can then be analyzed numerically.

5.3 Comparison results

The overall stress-strain curves of the composite, estimated by the previous two models are

shown in Fig. 2. It is seen that there is a good agreement between these two methods on the

overall nonlinear stress and strain relation. There is no sharp yielding point in the curve

predicted by FEM calculation due to the more precise consideration for the local yielding

happening in the matrix material.

The probability distributions of three stress components ry; rx; sxy in the matrix at different

loading levels are computed with the analytical method proposed in the previous sections, they

are also compared with the Finite Element calculation. The results are illustrated in Figs. 3, 4

and 5, respectively.

144 Q. Guo et al.



pe
ri

od
ic

y

x
pe

ri
od

ic
Fig. 1. Finite element model of a RVE
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With the increase of loading, the yielding and hardening phenomena take place in the matrix

in a non-uniform manner. Both the proposed method and FEM calculation show that the

distributions of the local stress fields becomes more and more smooth and flat. This indicates

that the scatter of these local fields becomes more and more important during plastic defor-

mation. The distributions for rx; sxy are around zero, as expected for a uniaxial loading ry. It is

also seen that with an increase of loading the predictions by the analytical method and Finite

Element calculation show more discrepancy. The analytical method predicts more important

stress variation in the matrix than that by FEM simulation, probably due to the simplification

made by the secant moduli method. However, the proposed analytical method can indeed

capture the major change of the local field distribution in the composite under plastic defor-

mation.

We also note that near the yielding point of the matrix material the stress distribution (ry)

obtained from FEM simulation shows an abnormal change. For example, when the macro-

scopic stress varies from 280 MPa to 305 MPa, the variant of the stress distribution decreases

(see Fig. 3). This is because there is a substantial rearrangement in the internal stress field when

the local stress reaches the yielding threshold of the matrix material. This issue will be examined

in detail later. The proposed method based on the secant moduli method cannot consider such

phenomena.
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From the probability distribution of the stress components, we can evaluate the distribution

qðreff Þ of the von Mises effective stress. Analytical determination of qðreff Þ needs a high

dimensional infinite integration. Here as a convenient alternative, Monte-Carlo method has

been used to obtain qðreff Þ. The distributions of the von Mises stress at different loading levels

are shown in Fig. 6. Obviously the distribution of the von Mises stress is no longer of Gaussian

type because of the non-negativity of reff . The evolution of the probability distribution of reff

during plastic deformation has the same trend similar for ry. Again, when the matrix is passing

through the yielding point (rY ¼ 250 MPa), there is an abrupt rebuilt of the stress distribution

from the FEM calculation. After completely entering into the plastic range, the change of the

distribution curves follows again the classical way, which means the local fields become more

inhomogeneous during plastic deformation.

Now we come back to the abnormal change of the stress distribution near the matrix’s

yielding point revealed by FEM simulation. This can be clarified by zooming several stress

distribution curves of close states near the yielding point of the matrix material. Two distri-

butions of reff in such states are shown in Fig. 7; clearly we observe that when the stress in the

matrix reaches the yielding point, another peak develops in the stress range larger than the

initial yielding stress (see the first column of Fig. 7). This new peak implies that another group

of points in the matrix with similar stress state will develop. With increase of loading, the

matrix material passes through the yielding point gradually. The newly developed peak grows

up, and the original one fades away (see the second column of Fig. 7). Finally, when all the

matrix material comes to yield, the original peak vanishes, and the new one is completely

formed, which is shown in Fig. 8.

6 Conclusions

In this paper the local field distribution of a planar composite under plastic deformation was

considered. An analytical micromechanical method based on the maximum information theory

and secant moduli method has been proposed. This method can predict not only the average

stress (strain) in the phase material but also the stress variation. The predicted results with the

proposed analytical method compare favorably with finite element simulation. It is shown that

with increase of loading the stress distribution curves in the nonlinear matrix become more
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smooth and flat, indicating that the stress in the matrix becomes more and more inhomoge-

neous.
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