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Rectangular chiral lattices possess a two-fold symmetry; in order to characterize the
overall behavior of such lattices, a two-dimensional orthotropic chiral micropolar theory
is proposed. Eight additional material constants are necessary to represent the anisotropy
in comparison with triangular ones, four of which are devoted to chirality. Homogenization
procedures are also developed for the chiral lattice with rigid or deformable circles, all
material constants in the developed micropolar theory are derived analytically for the case
of the rigid circles and numerically for the case of the deformable circles. The dependences
of these material constants and of wave propagation on the microstructural parameters are
also examined.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Lattice materials are promising in a variety of engineering applications due to their high stiffness-to-weight ratio and
designable features [1]. Lattice structures of various topologies have been proposed and extensively investigated. An inter-
esting class of lattices is the one that exhibits negative Poisson ratios, namely auxetic lattice materials, and may find many
potential applications [2,3]. A well-known example of the auxetic lattice is a triangular chiral lattice proposed by Prall and
Lakes [4]. Its geometric pattern and behavior are controlled by a single continuously varying topological parameter, and its
unique property has been examined by many researchers under both static [5,6] and dynamic [7] loading conditions with a
number of targeted applications. The chiral lattices with other topologies, e.g. square chiral lattices, hexagonal chiral lattices,
are also investigated [5,6].

Non-chiral lattices are usually homogenized as a non-chiral micropolar continuum in order to characterize the related
size-dependent behaviors [8,9]. Although classical Cauchy elasticity theory [4,6] and non-chiral micropolar theory [10] as
well are still utilized to model the auxetic behavior of planar chiral lattice structures, few works are devoted to the charac-
terization of the chiral nature of the lattices. Actually, it is well known that the classical elasticity cannot admit chirality [11].
Therefore, in order to model the chiral lattice, a generalized continuum theory or a higher-order model has to be utilized.

There are different higher-order continuum theories which can take into account the chiral nature of the materials. For
strain gradient theory, Auffray et al. [12,13] explained the elastic tensors in two-dimensional (2D) and three-dimensional
(3D) cases for all material symmetry groups, including chiral ones. Since an up-to-6th order elastic tensor is introduced in
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Fig. 1. Geometry of the rectangular chiral lattice, shown with (a) θa, θb > 0 and (b) its reversion θa, θb < 0.

strain gradient theory, it can capture more information, including the compressibility of the microstructure. However, as in
the following, the most pronounced feature of 2D chiral materials investigated in this paper is the coupling between local
rotation and bulk deformation, which is the origin of many unusual behaviors (negative Poisson’s ratio, high compressibility,
etc.) of such materials. To this end, micropolar theory [14,15] is more intuitive and has been adopted to model the 2D chiral
lattices. The 3D isotropic chiral materials (also called hemitropic) are mostly investigated [11,16,17], where three additional
material constants compared to the non-chiral theory are introduced. The chiral parameters change their signs according to
the handedness of the microstructure. The developed theory provides an efficient tool to model chiral effect of materials
and structures, e.g., nanotubes [18,19], mechanics of bone [20], and wave propagation in chiral solids [21]. However, it was
found that 3D chiral micropolar theory cannot be applied to a 2D chiral lattice material. To remedy this problem, recently
Liu et al. [22] proposed a micropolar model for a 2D isotropic chiral solid, based on which the triangular chiral lattice is
modeled from. It was found that the 2D chiral micropolar model is completely different from that of the 3D case either in
the mathematical form or in the physical presentation. The unique mechanism of coupling between bulk deformation and
particle rotation is demonstrated for 2D chiral solids. Furthermore, the micropolar constitutive equation for 2D orthotropic
chiral solids is also established with the help of the theory of irreducible orthogonal decomposition of tensors; the effective
material constants are derived for a square lattice with rigid circles [23].

In this paper, a more general rectangular chiral lattice will be considered, and both cases of rigid and deformable circles
will be taken into account. The influence of deformable circles will be examined and the dependence of the effective
properties on the microstructure, the auxetic behavior as well as the wave propagation of the rectangular chiral lattice
will also be investigated. The manuscript is organized as follows. Following a description of the geometric properties of
the rectangular chiral lattice in Section 2, a homogenization procedure is developed for both cases of rigid and deformable
circles, respectively in Section 3. In Section 4, the theory is illustrated by examining the dependence of the effective material
constants and of plane wave propagation on microstructure. The main results of this work are summarized in Section 5.

2. Geometry of a rectangular chiral lattice

The geometry of the considered rectangular chiral lattice is depicted in Fig. 1, which consists of circles of radius r
arranged in a rectangular array with the horizontal and vertical lattice constants a and b, respectively. The circles are linked
by straight ligaments of lengths La and Lb along the two directions, and the ligaments are required to be tangential to the
circles. A unit cell with the area Acell = ab is highlighted by the dashed line. The angle between the line connecting the
horizontal circle centers and the horizontal ligament is denoted by θa. Accordingly, in the vertical direction, a similar angle
parameter θb can also be defined. Only three of these geometric parameters are independent and the following relations
hold:

2r = a sin θa = b sin θb, La = a cos θa, Lb = b cos θb (1)

When a < b, θa can be within the [−π/2,π/2] range, while the value of θb can only vary within the [−arcsin(a/b),

arcsin(a/b)] range, since in the limiting case when θa = ±π/2, the horizontal ligaments vanish and the circles touch each
other horizontally. θa and θb are denoted as topology parameters due to their important role on the layout and the mechan-
ical behavior of the lattice [4,10]. With the variation of these angles, the lattice configuration changes dramatically from a
traditional rectangle lattice to packed circles, as shown in Fig. 2. The variations of θa and θb also monitor the transition from
a bending dominated to an axially dominated behavior. As shown in Fig. 1, we also adopt a sign convention for θa and θb
depending on the relative orientation of the ligament and the link of circle centers. The reverse of the sign of these angles
implies that the lattice is mirror reflected, or equivalently that its handedness is reversed. This operation cannot be achieved
by an in-plane rotation due to its chiral nature. When θa = θb = 0 the circles shrink to dots and chirality disappears from
the lattice.
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Fig. 2. Lattice configurations corresponding to different topology parameters.

The wall thicknesses of the ligaments and the circle are assumed to be the same as t . Further, for convenience, a di-
mensionless parameter η = t/a is defined, which indicates the slenderness of the lattice walls. The Young modulus of the
underlying lattice material is denoted in the following by Es.

3. Micropolar modeling

In this section, the planar rectangular chiral lattice will be homogenized as a 2D micropolar medium. Therefore basic
ingredients of the 2D orthotropic chiral micropolar theory will be briefly recalled, and then the homogenizations of the
lattices with rigid circles and deformable circles are performed, respectively, to derive the effective constants in the 2D
orthotropic chiral micropolar theory.

3.1. Orthotropic chiral micropolar constitutive model

Micropolar theory endows every material point with three rotational degrees of freedom φi in addition to displacements
ui [15]. For a 2D micropolar problem defined in the x1–x2 plane, it is required that u3 = φ1 = φ2 = ∂/∂x3 = 0, and the
geometric and equilibrium equations of micropolar elasticity are reduced to:

εi j = u j,i + e jiφ, ki = φ,i (2a)

σ ji, j = ρ∂2ui/∂t2, mi,i + eijσi j = j∂2φ/∂t2 (2b)

where φ ≡ φ3 is the out of plane micro-rotation, εi j and σi j are respectively the non-symmetric strain and stress, ki ≡ ki3
and mi ≡ mi3 are respectively the reduced curvature and couple stress, ρ and j are separately the density and micro-inertia,
ei j ≡ e3i j can be considered as a 2D Levi-Civita tensor, and the Einstein summation convention is used. Here and after, the
subscripts range from 1 to 2. For a general 2D micropolar medium, the constitutive equations are reduced to the following
form:

σi j = Cijklεkl + Bijkkk, mk = Bijkεi j + Dklkl (3)

where Cijkl is the elastic tensor of rank four, Dkl is the higher order elastic tensor of rank two, and Bijk is the cross elastic
tensor relating the ordinary and higher-order quantities. The density of strain energy reads:

w = 1

2
Cijklεi jεkl + 1

2
Dijκiκ j + εi j Bi jkkk (4)

Note that a medium is called non-centrosymmetric when B �= 0, and in 3D case the B tensor contains the information of
chirality [11]. However, it has been proved that for a 2D (chiral) isotropic and orthotropic micropolar medium, the B tensor
must be zero, hence the chiral behavior can only be characterized through the C and D tensors [23]. The constitutive relation
for a general 2D orthotropic chiral micropolar medium has recently been established by using the theory of irreducible
orthogonal decomposition of tensors [23], and it is summarized here for completeness. Adopting the following Voigt form
of the strain and strain:

σ = (σ11 σ22 σ12 σ21)
T, ε = (ε11 ε22 ε12 ε21)

T

m = (m1 m2)
T, k = (k1 k2)

T (5)

the 2D orthotropic chiral micropolar constitutive relation can be expressed in a matrix form as:

σ = Cε, m = Dk (6)
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The constitutive matrices C and D possess a hierarchical structure and can be decomposed into several parts according to
the symmetry of the underlying microstructure as

C = Chemi + C4-fold + C2-fold

D = Dhemi + D2-fold (7)

where each individual part reads:

Chemi =

⎛
⎜⎜⎝

λ + 2μ λ A −A
λ λ + 2μ A −A
A A μ + κ μ − κ

−A −A μ − κ μ + κ

⎞
⎟⎟⎠ (8a)

C4-fold =

⎛
⎜⎜⎝

α −α B B
−α α −B −B

B −B −α −α
B −B −α −α

⎞
⎟⎟⎠ (8b)

C2-fold =

⎛
⎜⎜⎝

β1 + β2 0 C1 C2
0 −(β1 + β2) C2 C1

C1 C2 β1 − β2 0
C2 C1 0 −(β1 − β2)

⎞
⎟⎟⎠ (8c)

Dhemi =
(

γ 0
0 γ

)
(9a)

D2-fold =
(

γ1 γ2
γ2 −γ1

)
(9b)

respectively. If the material is hemitropic (isotropic chiral), e.g., for a triangular or a hexagonal chiral lattice, only Chemi and
Dhemi are kept in Eq. (7). According to Eqs. (8a) and (9a), besides the traditional isotropic micropolar material constants
λ, μ, κ and γ , a chiral parameter A is introduced. The chiral parameter will reverse its sign when the handedness of the
material is reversed. If the material possesses 4-fold symmetry, taking the square chiral lattice as an example, C4-fold should
be additionally included into the C matrix. Regarding Eq. (8b), besides the hemitropic constants, two additional constants α
and B are introduced, and B is the chiral parameter. If the material possesses 2-fold symmetry, as a rectangular chiral lattice
for example, C2-fold and D2-fold should further be taken into account. Regarding Eqs. (8c) and (9b), six additional material
constants β1, β2, C1, C2, γ1 and γ2 are introduced, where C1, C2 and γ2 are chiral parameters.

By using such decomposition, the transformation of the constitutive matrix can be easily calculated under any direction.
Assuming that the coordinate system rotates θ , the constants of 4-fold symmetry are transformed by(

α′
B ′

)
=

(
cos 4θ sin 4θ

− sin 4θ cos 4θ

)(
α
B

)
(10)

while the constants of 2-fold symmetry are transformed by(
β ′

2

C ′
1

)
=

(
cos 2θ sin 2θ

− sin 2θ cos 2θ

)(
β2
C1

)
(11a)

(
β ′

1

C ′
2

)
=

(
cos 2θ sin 2θ

− sin 2θ cos 2θ

)(
β1
C2

)
(11b)

(
γ ′

1

γ ′
2

)
=

(
cos 2θ sin 2θ

− sin 2θ cos 2θ

)(
γ1
γ2

)
(11c)

The hemitropic material constants remain unchanged.

3.2. Homogenization of the lattice with rigid circles

To formulate the homogenization procedure analytically, the circles of the chiral lattice are assumed in this subsection
to be rigid. Let vector ui = {ui vi φi}T denote the displacement and rotation DOFs of the center of the rigid circle i. The
rigid circle imposes a constraint on the motion of the ends of deformable ligaments ũi = {ũi ṽ i φ̃i}T, which relates ui by
ũi = T(Θi)ui with the transformation matrix being

T(Θi) =
⎛
⎝ 1 0 −r sinΘi

0 1 r cosΘi
0 0 1

⎞
⎠ (12)
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Fig. 3. Geometry and symbol definitions for the analysis of a single ligament.

where Θi is the azimuthal angle of the beam end on the circle i (see Fig. 3). The relations Θi = π/2 + θ − θa and Θ j =
3π/2 + θ − θa, giving the topological parameter θa and the direction angle θ of the circles i and j linked by the beam, are
implied. The DOFs of the beam ends ũ′ in the local system (es–en in Fig. 3) are then linked to the DOFs u = {ui u j}T at the
circle centers as ũ′ = R(θ)T(Θ1,Θ2)u, where

T(Θ1,Θ2) =
(

T(Θ1) 0
0 T(Θ2)

)
(13)

R(θ) =
(

R3×3(θ) 0
0 R3×3(θ)

)
(14)

R3×3(θ) =
⎛
⎝ cos(θ − θa) sin(θ − θa) 0

− sin(θ − θa) cos(θ − θa) 0
0 0 1

⎞
⎠ (15)

With the help of the Euler–Bernoulli beam theory, the stiffness matrix of the ligaments in its local system is expressed as

K′ = Est

6L

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0
6t2/L2 3t2/L 0 −6t2/L2 3t2/L

2t2 0 −3t2/L t2

1 0 0
sym 6t2/L2 −3t2/L

2t2

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)

where L is the beam length. In the global system, the stiffness matrix of a single ligament is obtained as

K = TT(Θi,Θ j)RT(θ)K′R(θ)T(Θi,Θ j) (17)

Referring to Fig. 1a, the strain energies of the two ligaments in a unit cell can be expressed by

w1 = 1

2
{up,q up+1,q}TK|θ=0, L=La

{
up,q up+1,q

}

w2 = 1

2
{up,q up,q+1}TK|θ=π/2, L=Lb{up,q up,q+1} (18)

respectively, and therefore the density of the deformation energy of the lattice reads

wcell
p,q = (w1 + w2)/Acell (19)

In order to express the energy density in terms of strains and curvatures, the following expansions are made based on the
Taylor series:

up+1,q = up,q + ε11�x, up,q+1 = up,q + (ε21 − φ)�y

v p+1,q = v p,q + (ε12 + φ)�x, v p,q+1 = v p,q + ε22�y

φp+1,q = φp,q + k1�x, φp,q+1 = φp,q + k2�y (20)
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where �x = a, �y = b, and the terms of higher order O (�x2,�y2) are ignored. The micropolar elastic tensors are then
obtained from:

Cijkl = ∂2 w

∂εi j∂εkl
, Dij = ∂2 w

∂ki∂k j
(21)

Finally, the homogenized material constants of rectangular chiral lattices are obtained and expressed in the principal direc-
tion of the lattices as follows.

Hemitropic:

λ = Esη

8

[
2(cot 2θb + cot 2θa) − η2

sin2 θa

(
tan θa + tan θb − tan3 θa − tan3 θb

)]
sin θb

μ = Esη

4

[(
1 + sin 2θa

sin 2θb

)
+ η2 1

cos2 θa

(
1 + sin θb cos3 θa

sin θa cos3 θb

)]
sin θb

sin 2θa

κ = Esη

2

tan θb sin(θb + θa)(sin2 θa + η2)

sin 2θa sin θa

A = Esη

4

[
η2(tan2 θb + tan2 θa

) − 2 sin2 θa
] sin θb

sin2 θa

γ = Esηa2

24

(sin 2θb + sin 2θa)(4η2 − 3 sin2 θa)

cos θb sin 2θa
(22)

4-fold symmetry:

α = λ

B = A (23)

2-fold symmetry:

β1 = Esη

4

[
η2

(
tan θa

cos2 θa
− tan θb

cos2 θb

)
+ 2 sin2 θa

(
1

sin 2θa
− 1

sin 2θb

)]
sin θb

sin2 θa

β2 = Esη

2

[
η2(tan2 θb cot 2θb − tan2 θa cot 2θa)

sin2 θa
+ (cot 2θa − cot 2θb)

]
sin θb

C1 = Esη
3 tan θb(cos 2θb − cos 2θa)

cos θb sin2 2θa

C2 = 0

γ1 = Esηa2

24

(sin 2θb − sin 2θa)(4η2 − 3 sin2 θa)

sin 2θa cos θb

γ2 = 0 (24)

From Eqs. (22)–(24), it is easy to verify that the chiral material constants A, B and C1 change their signs when the topol-
ogy parameters θa and θb change the signs simultaneously, i.e., the handedness of the lattice is reversed, while the other
non-chiral parameters remain unchanged. For the case of θa = θb, i.e., for the square lattice, all 2-fold symmetry constants
vanish. It is worth to note that Eq. (23) holds only in the principal coordinate system as that in Fig. 1. In the other coor-
dinate system, α and B vary according to Eq. (10). Finally, when θa = θb = 0, the lattice reduces to a non-chiral traditional
rectangular lattice with the same micropolar constants as those given by Kumar and Christensen [9].

3.3. Deformable circles

When the circles are deformable, analytical expressions of the effective constants are difficult to obtain, since many
straight beam segments or curved beams are necessary to model the deformable circles. Instead, a numerical procedure
based on the finite-element calculation of the single unit cell is employed in this section. The analyzed unit cell model is
shown in Fig. 4, where the node numbering and the DOFs at the cell boundary are depicted.

Unlike the rigid circle, the motion of a deformable circle is not easy to define by three overall DOFs (u, v, φ). To this
end, the method of force-distributed constraint equations is employed. A virtual node is created at the center of the circle,
whose DOFs (called master) is related to the DOFs (called slave) of all the nodes on the deformable circle by the constraint
equations [22]. This approach allows one to specify the motion of the deformable circle in an overall average sense by
prescribing the DOFs of the virtual node at the circle center.
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Fig. 4. Finite element model of the unit cell employed to the lattice with deformable circles.

Table 1
Prescribed DOFs corresponding to independent strain states.

ε11 = 1 ε22 = 1 ε12 = 1 ε21 = 1 φ,1 = 1 φ,2 = 1

ui xi 0 yi/2 yi/2 Periodic Periodic
vi 0 yi xi/2 xi/2 Periodic Periodic
φi Periodic Periodic Periodic Periodic xi yi

φo 0 0 −1/2 1/2 0 0

According to the geometric equation (20) of the micropolar theory, the DOFs at the boundary nodes and central virtual
node corresponding to each independent strain state are determined and listed in Table 1, where (xi, yi) are the coordinates
of the ith node of the unit cell boundary, and the periodic means the corresponding DOFs of the node pairs (1, 3) and (2, 4)
are coupled.

To numerically determine the effective material constants, a series of linearly independent strain states need to be as-
sumed onto the unit cell model, and then the strain energy density is numerically evaluated. For instance, from Eqs. (4)–(9),
the energy density w = 2κ corresponds to the strain state ε = {0,0,−1,1}T. Other effective constants can be determined in
a similar manner.

4. Discussion and numerical results

4.1. Dependence of effective elastic constants on microstructure

First, the dependences of the effective micropolar elastic constants on lattice configurations are examined for rectangular
chiral lattices; both rigid circle and deformable circle are considered. In the following, in order to introduce some anisotropy
and to focus on the chiral effect, the lattice constants are fixed as a = 1 and b = 2a, while the size of the circles is dominated
by the topology parameter θa. It should be noted that θb is dependent on θa through the relationship: 2 sin θb = sin θa.
Accordingly, while the variation range of θa is [−π/2,π/2], the possible value of θb is bounded by [−π/6,π/6].

The ten classical material constants involved in the C tensor are selectively displayed in Fig. 5 for the rigid circle case
as a function of parameter θa. Fig. 5a shows the variation of parameters λ and A normalized by Es. It can be seen that
the chiral constant A is an odd function of θa and that |A| increases with increasing θa in the most part of the region.
It should be noted that for the case of the rigid circle, the results of the limiting case θa → 90◦ tend to be infinite and
meaningless since the deformable ligaments are vanishingly short. Two cases, η = 1/20 and η = 1/50, are compared to
show the influence of the beam slenderness ratio. It is shown that the thicker ligaments give a greater chiral constant A,
while for λ this dependence is not monotonous. In the principal coordinate system, we have the 4-fold symmetry constants
α = λ and B = A; however they should be transformed according to Eq. (10) when the system rotates. For the constants
(μ,κ) shown in Fig. 5b and (β1, β2) shown in Fig. 5c, a stiffer behavior is observed for thicker ligaments and larger circles
(i.e. larger |θa|). The 4-fold symmetry chiral parameter (C1, C2) is plotted in Fig. 5d, which shows that C1 approaches zero
within the most part of θa region, especially for lattices of thin ligaments. According to Eq. (24), C2 is always zero for the
lattice with the rigid circles.

The effective material constants for the cases of rigid and deformable circles are compared in Fig. 6, where the slen-
derness ratio is fixed at η = 1/20. It can be seen that for all the constants, the case of the deformable circles gives very
different predictions compared to that in the rigid case. However, when θa → 0, i.e. the circle tends to vanish, and the two
sets of predictions are close. This is understandable since the smaller circle is stiffer with η being fixed. When |θa| becomes
larger, a significant discrepancy is observed due to the circle distortion, the dependence of the material constants on θa is
also more complicated in compared to the rigid case. It is interesting to note from Fig. 6a that although in the principal
direction α = λ and B = A hold for the rigid circle case, the situation is different if the circles are deformable. Also, it is
observed in Fig. 6d that C2 is no longer zero for the case of the deformable circles.
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Fig. 5. Variation of effective material constants (a) λ = α, A = B , (b) μ, κ , (c) β1, β2 and (d) C1, C2 in the principal system as a function of θa .

It is also interesting to examine the auxetic behavior of the lattice with the proposed model. As shown in Ref. [22], the
Young modulus E and Poisson’s ratio ν should be redefined regarding the new constitutive relation. Assuming all the stress
components except σ11 are zero, by using Eqs. (6)–(8) we can express ν0 = −ε22/ε11 and E0 = σ11/ε11 as the predefined
material constants, where subscript 0 denotes that stress state along the principal axis x. However, the expressions are
quite complicated and not presented here. To obtain the Young’s modulus Eθ and the Poisson’s ratio νθ along an arbitrary
direction rotated from x by an angle θ , Eqs. (10) and (11) can be utilized. Fig. 7 displays the variation of Eθ and νθ as a
function of θ , with η = 1/20. Two lattice topologies of θa = 0 (traditional rectangular lattice) and θa = 60◦ are compared.
For the θa = 60◦ case, both results for rigid and deformable circles are calculated. For the non-chiral traditional lattice, the
Young modulus is much higher in the principal direction, since the ligament tension dominates the deformation, and it
drops rapidly in the other direction when the bending modes dominate. However, for the chiral lattice of the θa = 60◦ case,
since the ligament bending can always be induced, the peaks of Eθ are much lower and they do not lie in the principal
directions. Roughly the peaks happen in the directions approaching those of the ligaments. It can be proved that for the
traditional non-chiral lattice and the chiral lattice with rigid circles, the Poisson ratio is always zero along the principal
direction. As shown in Fig. 7b, νθ rapidly approaches 1 in the other direction for the traditional rectangular lattice. For
the θa = 60◦ case, νθ displays very strong directionality and can only be negative in small ranges of θ , indicating that the
auxetic behavior can only happen in a very narrow loading direction range. This is different from the case of triangular
chiral lattices. Compared with Fig. 7a, the directions of the negative peaks of νθ roughly correspond to the directions of the
peaks of Eθ .

4.2. Plane wave propagation

The wave propagation behavior in the rectangular chiral lattice is also examined in this subsection with the proposed
model. In an infinite 2D micropolar medium, the plane wave propagating along the +x direction takes the following form:
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Fig. 6. Comparison of effective material constants (a) λ, α, A, B , (b) μ, κ , (c) β1, β2 and (d) C1, C2 for the case of rigid and deformable circles.

Fig. 7. Variation of effective (a) Young modulus and (b) Poisson’s ratio along different directions.

(u, v, φ) = (û, v̂, φ̂)exp(iqx − iωt) (25)

where q and ω denote the wave number and frequency, respectively, (û, v̂, φ̂) are the complex amplitudes and i = √−1.
Substituting Eq. (25) into the dynamical equations of the homogenized media governed by Eqs. (2)–(9), the following secular
equation is obtained:
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Fig. 8. (a) Dispersion curves and (b) corresponding polarization angle of the first two branches of plane wave propagation along the principal, 15◦ and 45◦ ,
directions, calculated from homogenized (lines) and discrete (dots) models. (For interpretation of the colors in this figure, the reader is referred to the web
version of this article.)

⎛
⎝ (β1 + β2 + α + λ + 2μ)q2 − ρω2 (A + B + C1)q2 (2A + C1 − C2)iq

(A + B + C1)q2 (β1 − β2 − α + κ + μ)q2 − ρω2 (β1 − β2 + 2κ)iq
−(2A + C1 − C2)iq −(β1 − β2 + 2κ)iq q2(γ1 + γ3) + 4κ − jω2

⎞
⎠

⎛
⎝ u0

v0
φ0

⎞
⎠ = 0

(26)

With the help of Eqs. (10) and (11), wave propagation along any direction other than the principal one can be easily an-
alyzed. In the following, Eq. (26) is numerically solved to obtain the dispersion and the wave mode information. Lattices
with rigid circles and the corresponding homogenized media are used in the numerical examples. For simplicity, the lig-
aments are assumed to be massless, and the mass and rotation inertia are lumped to the rigid circles and denoted by m
and J , respectively. For the homogenized micropolar media, the effective density ρ = m/Acell and the micro rotational in-
ertia j = J/Acell are defined. Lattice parameters a = 1, b = 2, η = 1/20 and m = J = 1 are fixed in the calculation. For
comparison, the exact Bloch wave solutions utilizing the corresponding discrete model are also calculated.

Fig. 8a shows the dispersion curves of the first two branches (in black and red, respectively), whose wave modes are
displacement dominated, of the lattice with the topological parameter θa = 30◦ . The third rotational-dominated branch is
not shown, since it is similar to that of a traditional micropolar medium. The wave vectors along the θ = 0◦ (principal
direction), θ = 15◦ and θ = 45◦ are calculated, respectively. The wave frequency is normalized by Ω = 2

√
η3 Es/m. The

dispersion curves obtained from the homogenized model agree well with those of the discrete lattice (shown by dots) in
the long-wave approximation. Similar to the case of triangular chiral lattices [22], all three branches are coupled together
and dispersive, and there is in general no longer pure longitudinal (P) and transverse (S) wave.

Since the particle is always linearly polarized, a polarization angle Λ measured with respect to the wave propagating
direction, tanΛ = v̂/û, is defined to characterize the wave mode shape. In Fig. 8b, the polarization angles corresponding
to each dispersive branch in Fig. 8a are plotted as a function of the wave number, where the same line types are used for
one-to-one matching. It can be seen that the polarization angle depends on the wave number (and the frequency and wave
speed). When the wave propagates in the principal direction, S-dominated (Λ ∼ 60◦) and P-dominated (Λ ∼ 30◦) waves
are observed for the 1st and 2nd branches, and the polarization angles are almost independent of the frequency. In the
θ = 15◦ and θ = 45◦ directions, we have almost the two branches exchanged, i.e., the wave with a lower phase speed is of
P-dominated type, and the wave with a higher phase speed is of S-dominated type, and the polarization angles vary with
the frequency. This feature is not found for a traditional non-chiral medium.

5. Conclusions

In this work, a rectangular chiral lattice is characterized in the framework of 2D orthotropic chiral micropolar theory. By
assuming that the lattice circles are rigid, we derive analytically the expressions of a total of 13 effective micropolar material
constants. A numerical homogenization procedure is also developed when the circles of the lattice are deformable. It is
shown that the deformability of the circle has a great influence on the mechanical, chiral, and auxetic behavior of the lattice,
especially for large deformable circles. The auxetic behavior of rectangular lattices is very different from that of triangular
ones; Poisson’s ratio can only be negative in a narrow range of loading directions. For plane wave propagation, transition of
P- and S-wave modes for the first two branches along different propagating directions is observed. The proposed theory can
serve as a valuable tool for modeling and designing rectangular chiral lattice structures.



Y. Chen et al. / C. R. Mecanique 342 (2014) 273–283 283
Acknowledgement

This work was supported in part by National Natural Science Foundation of China under Grants Nos. 11221202,
11290153, 11072031, 11128204, and 11372035.

References

[1] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997.
[2] R. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (1987) 1038–1040.
[3] K.E. Evans, A. Alderson, Auxetic materials: functional materials and structures from lateral thinking, Adv. Mater. 12 (2000) 617–624.
[4] D. Prall, R.S. Lakes, Properties of a chiral honeycomb with a Poisson’s ratio ≈ −1, Int. J. Mech. Sci. 39 (1996) 305–314.
[5] A. Alderson, K.L. Alderson, D. Attard, K.E. Evans, R. Gatt, J.N. Grima, W. Miller, N. Ravirala, C.W. Smith, K. Zied, Elastic constants of 3-, 4- and 6-connected

chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol. 70 (2010) 1042–1048.
[6] J. Dirrenberger, S. Forest, D. Jeulin, C. Colin, Homogenization of periodic auxetic materials, Proc. Eng. 10 (2011) 1847–1852.
[7] A. Spadoni, M. Ruzzene, S. Gonella, F. Scarpa, Phononic properties of hexagonal chiral lattices, Wave Motion 46 (2009) 435–450.
[8] J.Y. Chen, Y. Huang, M. Ortiz, Fracture analysis of cellular materials: a strain gradient model, J. Mech. Phys. Solids 46 (1998) 789–828.
[9] R.S. Kumar, D.L. McDowell, Generalized continuum modeling of 2-D periodic cellular solids, Int. J. Solids Struct. 41 (2004) 7399–7422.

[10] A. Spadoni, M. Ruzzene, Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mech. Phys. Solids 60 (2012) 156–171.
[11] R.S. Lakes, R.L. Benedict, Noncentrosymmetry in micropolar elasticity, Int. J. Eng. Sci. 20 (1982) 1161–1167.
[12] N. Auffray, R. Bouchet, Y. Bréchet, Strain gradient elastic homogenization of bi-dimensional cellular media, Int. J. Solids Struct. 47 (2010) 1698–1710.
[13] N. Auffray, H. Le Quang, Q.C. He, Matrix representations for 3D strain-gradient elasticity, J. Mech. Phys. Solids 61 (2013) 1202–1223.
[14] E. Cosserat, F. Cosserat, Théorie des corps Déformables, Hermann, Paris, 1909.
[15] A.C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, Springer, New York, 1999.
[16] R. Lakes, Elastic and viscoelastic behavior of chiral materials, Int. J. Mech. Sci. 43 (2001) 1579–1589.
[17] D. Natroshvili, I.G. Stratis, Mathematical problems of the theory of elasticity of chiral materials for Lipschitz domains, Math. Methods Appl. Sci. 29

(2006) 445–478.
[18] K. Chandraseker, S. Mukherjee, Coupling of extension and twist in single-walled carbon nanotubes, J. Appl. Mech. 73 (2006) 315–326.
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