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a b s t r a c t

An elastic metamaterial made of lead cylinders coated with elliptical rubbers in an
epoxy matrix is considered, and its anisotropic effective dynamic mass density tensor is
numerically determined and demonstrated. To capture both dipolar resonant motion and
microstructure deformation in the composite, a new multi-displacement microstructure
continuum model is proposed. In the formulation, additional displacement and kinematic
variables are introduced to describe global and local deformations, respectively. The
macroscopic governing equations of the two-dimensional anisotropic elastic metamaterial
are explicitly derived through a simplified procedure. To verify the current model, wave
dispersion curves from the currentmodel are comparedwith those from the finite element
simulation for both longitudinal and transverse waves. Very good agreement is observed
in both the acoustic and optic wave modes. This work could provide a benchmark of
continuummodeling of elastic metamaterials with nonelementary microstructures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Metamaterials are a new class of ordered composites that exhibit exceptional electromagnetic, optic and mechanical
properties not readily observed in nature [1,2]. Although electromagnetic (EM) and acoustic metamaterials have been
studied intensively, elastic metamaterials have received much less attention, despite the fact that elastic metamaterials
offer richer behaviors as they enable both longitudinal and transverse waves to propagate. Various novel concepts and
engineering applications of elastic metamaterials have been successfully demonstrated such as mechanical filters, sound
and vibration isolators, elastic waveguides and energy harvesting [3–8].

To understand global wave mechanism in elastic metamaterials, the most important and efficient approach is
homogenization. For isotropic elasticmetamaterials, conventional homogenizationwill result in three independent effective
parameters: effectivemass density, effective bulkmodulus and effective shear modulus. Until now, several homogenization
methods have been developed to model this kind of materials as effective homogeneous elastic media. Those methods
include the plane wave expansion (PWE) technique, the coherent potential approximation (CPA), the micromechanics
analytical model or multiple scattering theory (MST) based on the long-wavelength limit [9–16]. By requiring only the
wavelength in the matrix to be much larger than the size of the microstructures, the extension of the CPA or effective
medium theory (EMT) was further developed to predict the effective properties of the elastic metamaterials [17]. However,
these analytical methods are mainly based on the analytical scattering solution of microstructures with simple geometries
(sphere or cylinder). To achieve the desirable effective properties, elastic metamaterials with complex microstructures or
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microstructure arrangements must be designed. For nonelementary microstructure geometries, an exact analytical model
is not practicable and computational techniques should be suggested such as the multiple multipole (MMP) method [18],
lumped mass method [19], and finite difference method [20]. For the acoustic metamaterial, the anisotropic effective mass
density can be achieved by changing position or distribution array of themicrostructure in the unit cell [21,22]. However, for
the elastic metamaterial, the microstructure geometry should be properly designed to obtain the anisotropic effective mass
density [23–26]. A 2D elastic resonator of arbitrary geometry was systematically studied through a finite element modal
analysis [27]. Gu et al. [28] investigated local resonance modes of elliptic cylinders coated with silicon rubber in a rigid
matrix to obtain the anisotropic effective mass density. However, most of these methods mainly focus on an understanding
of the local resonantmechanism. Practically, onemaywant to predict dynamic behavior of the elasticmetamaterial by using
an effective continuum model, wherein effects of the microstructure are included in effective properties and/or in macro-
dynamics equations. The obtained macro-dynamics equations can be applied to problems of time-dependent vibration and
transit wave propagation in the finite and infinite structures, which is important for potential engineering applications of
metamaterial devices. However, continuum homogenization of elastic metamaterials with complex microstructures is a
challenging task.

Until now, few efforts have been made to study the effective properties beyond the quasi-static limit or in higher
frequency regions, although some interestingwave phenomena occur onlywhen thewavelength is comparable to the lattice
scale. To describewave propagation problemswithwavelengths in an order of dimensions ofmicrostructures,Wozniak [29]
proposed a non-asymptotic approach of themacro-dynamicsmodeling of composite. Milton andWillis [30] andMilton [31]
presented a rigorous theoretical foundation for the dynamic effective parameters of the elastic metamaterial beyond the
quasi-static limit. The microscale effects due to non-local behavior were explained by the modification of linear continuum
elastodynamic equations. Similar efforts have been made through work on metamaterials with a macroscopic higher order
gradient or non-local elastic response [32]. An alternative approach is to employ additional kinematic variables to describe
the nonhomogeneous local deformation in the microstructure of the solid. This approach leads to Cosserat continuum
models [33,34] or micropolar models [35,36] or strain gradient theory [37] or the microstructure continuum theory
[38,39]. Microstructure continuum theory has recently been adopted to describe global dynamic behavior of isotropic elastic
metamaterialswith discretemicrostructures (amass-spring system) [40]. Accuracy of themodelwas verified by comparison
with the results obtained from the finite element method. However, the microstructure continuum model or high-order
continuum model has difficulty in capturing the dipolar motion, in which the inner inclusion moves out of phase with
respect tomotion of thematrix in elasticmetamaterials. Additional displacement variables are needed to capture the dipolar
motion.

In this paper, the anisotropic dynamic mass density tensor of an elastic metamaterial made of lead cylinders coated with
elliptical rubbers in an epoxy matrix is first numerically determined. To analytically obtain global governing equations of
motion in the elastic metamaterial, the complex continuous microstructure is simplified to a discrete mass-spring system
based on strain energy equivalence. Based on the simplified system, a new multi-displacement microstructure continuum
theory is developed to capture both dipolar local resonant motion and microstructure deformation by introducing both
multi-displacement variables and micro-deformation variables, which are not considered in the conventional continuum
model. The developed model is verified and applied to investigate global wave propagation in 2D anisotropic elastic
metamaterials under the plane stress assumption.

2. Anisotropic elastic metamaterials

In this study, an anisotropic elastic metamaterial made of heavy cylinder cores coated with elliptical soft layer and
embedded in a matrix is considered, as shown in Fig. 1(a), and its representative volume element (RVE) is identified in
Fig. 1(b). The microstructure is distributed in a rectangular lattice array. In the figure, the hard inclusion core is labeled as
medium 1, the soft coating medium is labeled as medium 2, and the matrix is labeled as medium 3. The isotropic material
constants of the inclusion core, the coating layer and the matrix are ρ1, E1, ν1; ρ2, E2, ν2 and ρ3, E3, ν3, respectively. The
radius of the core is a. The lattice constants along the X2 and X3 directions are denoted as d2 and d3. The semimajor and
semiminor axes of the ellipse are denoted as b1and b2, respectively. In the unit cell (k, l), the position of the center point is
given in the global coordinate X2 = X2

l and X3 = X3
k. For convenience, we define a local polar coordinate system (r, θ) as

well as a local Cartesian coordinates (x2, x3) in the unit cell with x2 = r cos θ and x3 = r sin θ , as shown in Fig. 1(b). Strong
anisotropic properties of the metamaterial along the X2 and X3 directions can be achieved by adjusting dimensions of the
major and minor axes of the coating ellipse.

Due to geometric complexity of the microstructure, analytical-based methods cannot be applied directly for the
determination of the effective dynamic mass density [28]. In this study, a numerical-based method will be adopted [8].
Consider the unit cell in Fig. 1(b), time-harmonic displacements uα = ûαeiωt with α = 2, 3 are prescribed on the exterior
boundary, and a harmonic analysis of the unit cell is performed by using the finite element method (FEM), from which
resultant forces Fα = F̂αeiωt on the exterior boundary can be obtained. The effective mass density tensor can then be
numerically defined and determined by

F̂2
F̂3


= −ω2Ac


ρ
eff
22 ρ

eff
23

ρ
eff
32 ρ

eff
33


û2
û3


(1)
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a b

Fig. 1. (a) An anisotropic elastic metamaterial made of cylinders coated with elliptical soft layer in a matrix; (b) The (k, l) element (RVE).

Fig. 2. Coordinate systems of the unit cell with an arbitrary direction.

Table 1
The microstructure geometry parameters.

Lattice parameters Elliptical coat (mm) Circle coat (mm)

d2 = d3 20 20
a 3 5.155
b1 7 7.14
b2 5 7.14

where Ac = d2d3 is the area of the unit cell. To demonstrate that the mass density follows the coordinate transformation
law, an effective mass density tensor in an arbitrary coordinate system (x, y), as shown in Fig. 2, is similarly determined.
In the figure, (x2, x3) is a rectangular Cartesian coordinate system in principal directions and (x, y) is an arbitrary Cartesian
coordinate system. It should be mentioned that the unit cell in Fig. 2 is specifically suggested for simplification of numerical
calculation, in which the outer matrix seems to follow the unit cell transformation. This is because the outer host matrix
is mainly functioned as an effective mass in the calculation of the effective mass density of the unit cell. Therefore,
determination of the effective mass density is independent on the outer matrix geometry. Based on the numerical results of
the unit cell, it can be proved that the effective mass density follows the coordinate transformation law as

ρeff
xx ρeff

xy

ρeff
yx ρeff

yy


=


C2ρ

eff
22 + S2ρeff

33 CS(ρeff
33 − ρ

eff
22 )

CS(ρeff
33 − ρ

eff
22 ) C2ρ

eff
33 + S2ρeff

22


(2)

where C = cos δ, S = sin δ, and δ is the angle of the transformation. Therefore, the effective mass density admits the
second-order tensorial property.

Fig. 3 shows the effective mass density of the elastic metamaterial along a direction δ = 30° by using the FEM model,
where ρave = (ρ1A1 + ρ2A2 + ρ3A3) /Ac is the average static mass density for the composite. The microstructure geometry
parameters and the constituentmaterial parameters are given in Tables 1 and 2, respectively. From the figure, we can clearly
see that the effective mass density is frequency-dependent, anisotropic (ρ

eff
xx ≠ ρ

eff
yy , ρ

eff
xy ≠ 0) and becomes negative

around the resonant frequency. For the metamaterial with the current microstructure, two different resonant frequencies
along x2 and x3 directions can be found as f ∗1

= 862 Hz and f ∗2
= 950 Hz, respectively, which indicate anisotropy of the
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Table 2
The constituent material parameters.

The parameters Core: lead Coating: rubber Matrix: epoxy

Mass density ρ1 : 11.31 × 103 kg/m3 ρ2 : 0.92 × 103 kg/m3 ρ3 : 1.11×103 kg/m3

Young’s modulus E1 : 1.3 × 1010 N/m2 E2 : 1.5 × 106 N/m2 E3 : 2.35 × 109 N/m2

Poisson’s ratio ν1 : 0.435 ν2 : 0.499 ν3 : 0.38
Area A1 : πa2 A2 : π(b1b2 − a2) A3 : d2d3 − πb1b2

Fig. 3. The anisotropic effective mass density of the elastic metamaterial predicted by the FEM model along a direction δ = 30°.

Fig. 4. The effective mass density with respect to the angle δ.

metamaterial. The significant difference between ρ
eff
xx and ρ

eff
yy can be observed when the frequency is close to the resonant

frequency. It is also interesting to note that the mass density become isotropic (ρeff
xx = ρ

eff
yy , ρ

eff
xy = 0) when the frequency

is much less or much larger than the resonant frequency. Effective mass density for a 2D ternary phononic crystal with two
resonators was also discussed by Gu et al. [28].

Fig. 4 shows the effectivemass densities in functions of the angle δ at frequency f = 950 Hz. The strong anisotropy of the
effective mass density can be clearly found (ρeff

xx ≠ ρ
eff
yy , ρ

eff
xy ≠ 0) with the angle change of the incident wave. It should be

emphasized that the anisotropy of the effective mass density can be tuned by adjusting the geometry of themicrostructure.
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Fig. 5. The equivalent RVE for the (k, l) element of the elastic metamaterial.

3. Multi-displacement microstructure continuummodeling of the elastic metamaterial

In the previous section, the anisotropic effective mass density tensor of the elastic metamaterial and its mechanism
are calculated and determined through the numerical analysis, from which the anisotropic negative mass density is
illustrated. However, in order to understand global dynamic behavior of the elastic metamaterial, an analytical-based
continuummodel is needed to properly describe the dispersive behavior as well as band-gap behavior. The obtainedmacro-
dynamics equations can be applied directly to dynamic problems of the elastic metamaterial with the finite and infinite
structures,which is important for its potential engineering applications. In this section, amulti-displacementmicrostructure
continuum model will be developed analytically for the first time. First, the analytical effective mass density tensor of the
elastic metamaterial will be determined through a simplified model. Then additional displacement and kinematic variables
will be introduced to capture the local dipolar motion and microstructure deformation.

3.1. A simplified model of the elastic metamaterial

For the elastic metamaterial with the complicated microstructure geometry, analytical-based homogenization
approaches have difficulties in finding the exact local scattering wave field. In this study, the RVE with the continuous
microstructure is first simplified to the RVE with a discrete mass-spring microstructure with spring constants K2 and K3, as
shown in Fig. 5 [30], based on the strain energy equivalence between the two systems. The inclusion core is reduced as a
rigid mass m1 = ρ1πa2 and the coating material is replaced by the springs with the spring constants K2 and K3 because of
the large stiffness mismatch between the core and the coating material. The spring constants K2 and K3 can be numerically
determined as Kα = Fα/γα with α = 2, 3, where Fα is the restoring force on the outer fixed boundary of the coating layer
and uα = γα is the applied displacement along x2 and x3 directions of the coating layer. For the general geometry of the
coating layer, the problem can be numerically solved by using the finite element method (FEM).

Based on the analytical Lorentz model [30], four components of the effective density tensor of the composite system in
Fig. 5 along principal direction can be obtained analytically as


ρ
eff
22 ρ

eff
23

ρ
eff
32 ρ

eff
33


=

1
Ac

m3 +
2m1K2

2K2 − m1ω2
0

0 m3 +
2m1K3

2K3 − m1ω2

 (3)

where Ac = d2d3 is the area of the RVE, and m3 = ρ3A3 is the mass of the matrix in a RVE. The density tensor in an
arbitrary coordinate system (x, y) can be easily determined according to the second-order tensorial property. Fig. 6 shows a
comparison of the effectivemass density of the anisotropic elastic metamaterial with themicrostructure along the direction
δ = 30° from the numerical model and the current analytical Lorentz model. For the elliptical coat geometric parameters in
Table 1, the spring constants can be obtained as K2 = 4.93 × 106 kg/m and K3 = 6.45 × 106 kg/m. Very good agreement
between these two models can be clearly observed, which substantiates the fact that the simplified discrete mass-spring
model can be used as the dynamic equivalent system of the anisotropic elastic metamaterial in Fig. 1. A small difference
around the resonant frequencies between the two models is because the discrete Lorentz model ignores the mass of the
coating layer and assumes the matrix to be rigid.

3.2. A multi-displacement microstructure continuum model

In this subsection, a new homogeneous high-order continuum theory will be proposed to homogenize the simplified
elastic anisotropic metamaterial, as shown in Fig. 7. For the elastic metamaterial, the inner mass will move out-of-phase
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a

b

c

Fig. 6. Comparison of the effective mass density predicted by the FEM model and the analytical Lorentz model.

Fig. 7. Heterogeneous medium replaced by a homogeneous medium.

with respect to the motion of the composite when the frequency is close to the resonant frequency of the inner mass, which
is called the dipolar motion. The schematic illustration of the dipolar motion in the elastic metamaterial near the resonant
frequency is shown in Fig. 8.

The conventional continuum model cannot capture the dipolar motion, therefore, a continuum model with additional
multi-displacement variables should be introduced. Specifically, attention is also paid to the problem with wavelengths
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Fig. 8. A schematic illustration of dipolar motion in the metamaterial near the resonant frequency.

in an order of the dimension of the unit-cell. To describe the relative high-frequency dynamic behaviors, microstructure
kinetic variables are also needed. In the formulation, we assume the lead core is rigid because of its high modulus and the
local displacements in the matrix can be approximated by linear series expansions in terms of quantities which are defined
at the center of the element. The micro-deformations are assumed as follows:

(1) In the inclusion of the cell (k, l), (r < a)

u1
= u (4a)

(2) In the matrix of the cell (k, l), (r ≥ b)

u3
= v + bΦ2Θ +


r − b


Φ3Θ (4b)

where

u1
=

u1(k,l)
2 u1(k,l)

3

T
, u =


u(k,l)
2 u(k,l)

3

T
,

u3
=

u3(k,l)
2 u3(k,l)

3

T
, v =


v

(k,l)
2 v

(k,l)
3

T
, Θ =


cos θ sin θ

T
,

Φ2
=


φ

2(k,l)
22 φ

2(k,l)
32

φ
2(k,l)
23 φ

2(k,l)
33


, Φ3

=


φ

3(k,l)
22 φ

3(k,l)
32

φ
3(k,l)
23 φ

3(k,l)
33


, b =

b1b2
b12 sin2 θ + b22 cos2 θ

.

where u, v, Φ2 and Φ3 are global variables in functions of (X2, X3, t), the local displacements u1 and u3 are functions
of (X2, X3, x2, x3, t), or in other words, functions of (X2, X3, r, θ, t). Physical interpretation of the terms in Eq. (4) is
that global displacements u and v are the displacements of the center of the inclusion and the center of the matrix,
respectively; while Φ2 represents micro-deformation in the area within the inner boundary of the matrix, and Φ3

represents micro-deformation in the matrix. It should be mentioned that the additional displacement components are
necessary to capture the dipolar motion in the metamaterial, which is different from the microstructure continuum
theory [39]. In the microstructure continuum theory, additional microstructure variables were only introduced to
capture the micro-deformation in the microstructure.

In principle, the boundary condition between the unit-cell and the neighboring cells should be satisfied on every point
of the boundaries. However, the approximated local field, assumed in Eq. (4b), cannot exactly satisfy the point-to-point
continuity at the boundaries. In this study, relaxation boundary continuity conditions, which are defined as averaged
displacement continuity conditions at the interfaces of the cells, are suggested as: d2/2

−d2/2


u3(k+1,l)

α

x3=−
d3
2

− u3(k,l)
α


x3=

d3
2


dx2 = 0 (5a) d3/2

−d3/2


u3(k,l+1)

α

x2=−
d2
2

− u3(k,l)
α


x2=

d2
2


dx3 = 0 (5b)

where u3(k+1,l)
α and u3(k,l+1)

α represent displacement components of the matrix in the cells (k + 1, l) and (k, l + 1).
Eq. (5a) represents the averaged displacement continuity on the boundary between the cell (k, l) and the cell (k+ 1, l); and
Eq. (5b) represents the averaged displacement continuity on the boundary between the cell (k, l) and the cell (k, l+1). This
approximate is much more reasonable for relatively low frequency cases. Substituting the local displacement in the matrix
Eq. (4b) into Eq. (5a) results in
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v(k+1,l)
α − v(k,l)

α −
b1d3
d2

ln


1 +


1 + ξ 2

ξ


φ

2(k+1,l)
3α − φ

3(k+1,l)
3α + φ

2(k,l)
3α − φ

3(k,l)
3α


−

d3
2


φ

3(k+1,l)
3α + φ

3(k,l)
3α


= 0 (6a)

where ξ =
b1d3
b2d2

.
Similarly, another continuous condition can be obtained from Eq. (5b) as

v(k,l+1)
α − v(k,l)

α −
b2d2
d3

ln

ξ +


1 + ξ 2

 
φ

2(k,l+1)
2α − φ

3(k,l+1)
2α + φ

2(k,l)
2α − φ

3(k,l)
2α


−

d2
2


φ

3(k,l+1)
2α + φ

3(k,l)
2α


= 0. (6b)

The corresponding local strain in the matrix can be obtained as

ε3
= ∇ ⊗ u3 (7)

where ∇ is the differentiation operator in the local coordinate system (x2, x3), ε3
=


ε
3(k,l)
22 ε

3(k,l)
23

ε
3(k,l)
32 ε

3(k,l)
33


is the strain tensor of the

matrix and its components are given in Appendix A.
Based on the displacement expressions in Eq. (4), the total kinetic energy density in the cell (k, l) can be calculated as

T (k,l)
ave =

1
Ac

(T 1(k,l)
+ T 3(k,l)) (8)

where T 1(k,l) and T 3(k,l) are the kinetic energies in the inclusion and matrix, respectively.
On the other hand, the strain deformation energy in the spring within the cell (k, l) can be obtained as

W s(k,l)
= K2


v

(k,l)
2 − u(k,l)

2

2
+


b1φ

2(k,l)
22

2
+


b1φ

2(k,l)
32

2
+ K3


v

(k,l)
3 − u(k,l)

3

2
+


b2φ

2(k,l)
33

2
+


b2φ

2(k,l)
23

2
(9)

and the strain deformation energy in the matrix for the plane stress problem is

Wm(k,l)
=

E3
2(1 − ν3

2)


A3


ε
3(k,l)
22

2
+


ε
3(k,l)
33

2
+ 2ν3


ε
3(k,l)
22

 
ε
3(k,l)
33


+ 2(1 − ν3)


ε
3(k,l)
23

2
dA3. (10)

The total strain deformation energy averaged over the volume of cell (k, l) yields

W (k,l)
ave =

1
Ac


W s(k,l)

+ Wm(k,l) . (11)

To obtain a continuum model, we now introduce fields that are continuous in the global coordinate system X2 and X3,
and the values at X2 = X l

2 and X3 = Xk
3 coincide with those in the actual micro (local) field variables at the center of the cell.

Therefore, we can consider the strain energy densityW (X2, X3, t) and the kinetic energy density T (X2, X3, t) as continuous
functions. Based on Eq. (8), the kinetic energy density T (X2, X3, t) in the continuum field is

T (X2, X3, t) = T (k,l)
ave =

1
Ac

(T 1(k,l)
+ T 3(k,l)) (12)

and the strain energy densityW (X2, X3, t) is

W (X2, X3, t) = W (k,l)
ave =

1
Ac


W s(k,l)

+ Wm(k,l) (13)

where energy densities T (X2, X3, t) and W (X2, X3, t) are given in Appendix B.
At the same time, the continuity conditions in Eq. (6) can be written in the terms of continuous variables by considering

the field variables as continuous functions of X2 and X3, as

S3α (X2, X3, t) =
∂vα

∂X3
−

2b1
d2

ln


1 +


1 + ξ 2

ξ


φ2
3α − φ3

3α +
d3
2

∂φ2
3α

∂X3
−

d3
2

∂φ3
3α

∂X3



− φ3
3α −

d3
2

∂φ3
3α

∂X3
= 0 (14a)
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and

S2α (X2, X3, t) =
∂vα

∂X2
−

2b2
d3

ln

ξ +


1 + ξ 2


φ2
2α − φ3

2α +
d2
2

∂φ2
2α

∂X2
−

d2
2

∂φ3
2α

∂X2


− φ3

2α −
d2
2

∂φ3
2α

∂X2
= 0 (14b)

where α = 2, 3.
Considering a fixed regular region V of themedium, the displacement equations of motion can be obtained by employing

Hamilton’s principle for independent variables in V and a specified time interval t0 ≤ t ≤ t1 as

δ

 t1

t0


V
FdtdV +

 t1

t0
δW1dt = 0 (15)

where F = T − W , δW1 is the variation of the work done by external forces, and dV is the scalar volume element. For the
currentmodel, there are no existing external forces and the continuity conditions can be considered as subsidiary conditions
through the use of Lagrangian multipliers, so the problem can be redefined as

δ

 t1

t0


V
FdtdV = 0 (16)

with

F = T − W −

3
α=2

(Γ2αS2α + Γ3αS3α) (17)

where the Lagrangian multipliers Γ2α and Γ3α are functions of X2, X3 and t . Since the function F as given in Eq. (17) depends
only on the global field variables (X2, X3, t) and their first order derivatives, the system of the Euler equations can bewritten
as

3
r=1

∂

∂pr

 ∂F

∂


∂ fs
∂pr


−

∂F
∂ fs

= 0 (18)

where fs(s = 1, 2, . . . , 16) represent the sixteen dependent variables uα , vα , φ2
2α , φ

2
3α , φ

3
2α , φ

3
3α , Γ2α and Γ3α (α = 2, 3); and

pr (r = 1, 2, 3) are the spatial variables X2, X3 and time variable t . A system of sixteen governing equations of motion can
be obtained from the Eq. (18), which is given in Appendix C.

4. Numerical simulation and discussions

4.1. Model verification

To verify the proposed continuum model, let us first consider a two-dimensional elastic metamaterial with a cylinder
heavy core coated with a circular soft layer and embedded in matrix in a square lattice array. The microstructure geometry
parameters are listed in Table 1 and the material parameters are provided in Table 2. Based on the simplified model for the
continuous systems, spring constants for the 2Dplane stress problemwith the circle coatedmetamaterial can be numerically
determined as K2 = K3 = 1.184 × 107 N/m. It should be mentioned that for the current microstructure geometry, when
the coating material is incompressible (the Poisson’s ratio of the coat material ν2 is about 0.5), the analytical solution for the
spring constants [41] is also available as K2 = K3 ∼=

40πµ2(a2+b2)
25(a2+b2) ln(b/a) −9(b2−a2)

, where µ2 is the shear modulus of the coating

material µ2 =
E2

2(1+ν2)
. The good agreement about the spring constant’s prediction between the two methods shows the

accuracy of the current numerical method.
For a longitudinal wave propagation along X2 direction in the metamaterial with infinite dimension in X3 direction, the

available kinematic variables include multi-displacement variables u2, v2, the microstructure field variables φ2
22, φ

3
22 and

the Lagrangian multiplier Γ22. Therefore, five governing equations can be obtained as

ρ1A1ü2 + 2K2 (u2 − v2) = 0 (19)

ρ3A3v̈2 + 2K2 (v2 − u2) − Ac
∂Γ22

∂X2
= 0 (20)

ρ3J1 ¨φ2
22 + ρ3 (J60 − J1) ¨φ3

22 + 2b2K2φ
2
22 +

E3
1 − ν3

2


J4

φ2
22 − φ3

22


+ J7φ3

22


+

E3
2 (1 + ν3)


J6

φ2
22 − φ3

22


− Ac

2b
d3

ln

ξ +


1 + ξ 2


Γ22 + Ac

bd2
d3

ln

ξ +


1 + ξ 2

 ∂Γ 22

∂X2
= 0 (21)
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Fig. 9. Comparison of the normalized dispersion curves by the current model, the reduced single-displacement model and the FE simulation for
longitudinal wave propagation.

ρ3

J1 + Im3 − 2J60


¨φ3
22 + ρ3 (J60 − J1) ¨φ2

22 +
E3

1 − ν3
2


A3φ

3
22 + J4


φ3
22 − φ2

22


+ J7φ2
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22
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+

E3
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
J6

φ3
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22


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
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ξ +


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
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
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∂X2
= 0 (22)

∂v2

∂X2
−

2b
d3

ln

ξ +


1 + ξ 2


φ2
22 − φ3

22 +
d2
2

∂φ2
22

∂X2
−

d2
2

∂φ3
22

∂X2


− φ3

22 −
d2
2

∂φ3
22

∂X2
= 0

(23)

where ξ =
d3
d2

for the circle-coated elastic metamaterial. For the longitudinal wave propagating in the X2 direction, the
continuum wave fields can be defined as

u2, v2, φ
2
22, φ

3
22, Γ22


= {B1, B2, B3, B4, B5} exp [i (q2X2 − ωt)] (24)

where i =
√

−1, B1, B2, B3, B4 and B5 are constant amplitudes, q2 is the wave-number in the X2 direction, and ω is the
angular frequency. Substitution of (24) into the Eqs. (19)–(23) yields five homogeneous equations for B1, B2, B3, B4 and
B5. For a nontrivial set of solutions the determinant of the coefficients must vanish to yield the dispersion relation. The
exact wave dispersion curves can also be calculated by using commercial finite element (FE) software, ANSYS 11.0. In the FE
model, Plane-82 element is used tomodel the elasticmedium, andMass-21 and Combine-14 elements are used tomodel the
spring-mass system. After properly applying boundary conditions for the model, modal analysis is conducted to obtain the
natural frequencies, fromwhich the dispersion curve can be obtained. Fig. 9 shows comparison of the normalized dispersion
curves of the longitudinal wave predicted by the currentmulti-displacementmicrostructure continuummodel, the reduced
single-displacement continuum model, and the FE simulation, where ω0L =

√
2K2/m1 = 5007.37 rad/s and the resonant

frequency is f0L = ω0L/(2π) = 797 Hz. The single-displacement model is reduced from the current model by removing the
additional global displacement variable. It is found that the multi-displacement microstructure continuum model can give
an excellent prediction for the acoustic wave mode and is also reasonably good for the optic wave mode for q2d2 < 0.9. The
band gap behavior of the elastic metamaterial can be accurately predicted by using the current model, which is very useful
for the design of the desirable elastic metamaterial. It is also very interesting to note that the band gap behavior cannot be
captured when only a single-displacement (conventional) continuum model is adopted. This is understandable because no
additional degrees of freedom are used to capture the local dipolar resonance phenomenon. In addition, it is noticed that the
current model has difficulty to capture the optic wave mode when the frequency is around ω/ω0L = 8.48 (f = 6757 Hz).
Based on the eigenmode analysis at this frequency, it can be found that the resonance deformation is focus on the coating
layer and no motions occur in the core and host matrix, which is similar to the quadrupolar resonance. To capture the
quadrupolar resonance in the metamaterial, additional microstructure kinematic variables in the coating layer may be
needed.
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Fig. 10. The displacement amplitude ratio of the matrix to the core in function of the frequency.

Fig. 11. Comparison of the normalized dispersion curves obtained by the current model and the FE simulation for transverse wave propagation.

Fig. 10 shows the wave amplitude ratio of the matrix to the core in a function of the frequency predicted by the current
model and the finite element method (FEM). The very good agreement between the current model and FEM is observed for
the local displacement prediction in the elastic metamaterial, which is impossible for the conventional continuum models.
Around f = 797 Hz, there exists a resonance in the metamaterial in which the displacement of the core is very large and
experience a very sharp change from the in-phase state to the out-of-phase state. A large displacement ratio enhancement
can be observed in the in-phase resonance region. From eigenmode analysis, we can find that the core inclusion moves
opposite to the motion in the matrix in the band gap frequency range, which cannot be captured through the conventional
continuummodel.

Fig. 11 shows a comparison of the normalized dispersion curves predicted by the currentmodel and the FE simulation for
transverse shear wave propagation. The material constants are the same as those used in Fig. 9, where ω0T =

√
2K3/m1 =

5007.37 rad/s = ω0L for the isotropic elastic metamaterial. The very reasonable agreement between the current model
and the FE simulation is also observed for both the acoustic wave mode and the optic wave mode. Also, it is noticed that
the current model is invalid to capture the quadrupolar resonant mechanism when the frequency is around ω/ω0L = 8.48
(f = 6757 Hz).
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Fig. 12. Comparison of the normalized dispersion curves for the anisotropic metamaterial for transverse wave propagation along X2 direction.

Fig. 13. Comparison of the normalized dispersion curves for the anisotropic metamaterial for transverse wave propagation along X3 direction.

4.2. Wave propagation in anisotropic elastic metamaterials

It is well known that for isotropic metamaterials, wave propagation behavior is identical for any wave propagation
direction. For anisotropic elastic metamaterials, wave propagation behavior is different along different directions and is
direction-dependent. Figs. 12 and 13 show the comparison of the normalized dispersion curves for the transverse shear
wavepropagation alongX2 andX3 directions for the anisotropic elasticmetamaterial, respectively. In the figures, thematerial
properties are the same as in Table 2. Themicrostructure geometry parameters are shown in Table 1with an elliptical coating
medium, from which the spring constants are numerically obtained as K2 = 4.93 × 106 kg/m, K3 = 6.45 × 106 kg/m. The
resonant angular frequencies are ω0T2 =

√
2K3/m1 and ω0T3 =

√
2K2/m1, respectively. It is found that the current model

can provide good prediction of dispersion curves for both the acoustic wave mode and the optic wave mode along different
wavepropagationdirections. The anisotropicwavepropagation behavior canbe observed from thedifferentwavedispersion
curves along different directions. From the numerical simulation, it is also concluded that the band gap frequency regime
is within the same frequency when the effective mass density becomes negative, which confirms wave mechanism in the
current anisotropic metamaterial is caused by the dipolar wave motion.
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5. Conclusions

In this paper, an anisotropic elasticmetamaterial made of lead cylinders coatedwith elliptical rubbers in an epoxymatrix
is considered. An anisotropic effective mass density tensor is first numerically determined. To describe global dynamic
behavior in the elasticmetamaterial, a newmulti-displacementmicrostructure continuummodel is developed to obtain the
macroscopic governing equations of the anisotropic elastic metamaterial. The current model is verified through comparison
of wave dispersion curves predicted by the current model and the finite element simulation for both longitudinal and
transverse shear waves. Very good agreement is observed in both the acoustic and optic wave modes. The proposed model
may provide an efficient tool for modeling of the elastic metamaterial with complex microstructures.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11072031, 10832002, 10972036) and
Natural Science Foundation EAGER program (1037569).

Appendix A. Components of the local stain tensor

The detailed components of the local strain tensor are:

ε
3(k,l)
22 = φ

3(k,l)
22 +

∂(b cos θ)

∂x2


φ

2(k,l)
22 − φ

3(k,l)
22


+

∂(b sin θ)

∂x2


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32 − φ
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
(A.1)

ε
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Appendix B. Kinetic energy density and strain energy density

The kinetic energy density T (X2, X3, t) in the continuum fields is

T (X2, X3, t) = T (k,l)
ave =

1
Ac

(T 1(k,l)
+ T 3(k,l)) =

1
Ac


1
2
ρ1A1
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u̇2
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+

u̇3
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+
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(B.1)

where

Im2 =


A3

x23 dA3, Im3 =


A3

x22 dA3, J1 =
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b
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And the strain energy densityW (X2, X3, t) in the continuum fields is
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Appendix C. Governing equations

The sixteen governing equations of motion are:
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