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Abstract

Overall linear and non-linear properties for micropolar composites containing 3D and in-plane randomly oriented inclusions are
examined with an analytical micromechanical method. This method is based on Eshelby solution for a general ellipsoidal inclusion in
a micropolar media and secant moduli method. The influence of inclusion’s shape, size and orientation on the classical effective moduli,
yielding surface and non-linear stress and strain relation are examined. The results show that the effective moduli and non-linear stress–
strain curves are always higher for micropolar composites than the corresponding classical composites. When the inclusion’s size is suf-
ficiently large, the classical results can be recovered.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the past decades, size-dependence of material
behavior was confirmed repeatedly by experiment and
becomes an important fact in engineering design. The most
known experiences are that for some tiny structures, the
dimensionless torsion or bending response becomes stiffer
when the size of the structures is reduced [1]. Heteroge-
neous materials (composites or polycrystalline metals)
exhibit another kind of size effect: when size of constituents
is refined, the overall properties are strengthened [2]. These
two different but relevant size-related phenomena have the
same origin in nature: that is, when the characteristic size
of structure or microstructure is small, non-local effect
becomes important [3]. This paper aims at the second
size-dependence phenomenon, especially for fiber-rein-
forced composites.

To establish relation between overall property of com-
posites and their constituents, micromechanical methods
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were particularly developed; many micromechanical mod-
els have been proposed. Briefly, they fall into the following
four groups: (a) Universal rigorous principles for compos-
ites whatever the involved microstructure of the composite,
this is due to CLM theorem [4]. (b) Bounding methods, by
which the range of overall property can be estimated with
limited microstructural information [5,6]. (c) Approximate
methods, where complex interaction of phases is replaced
by certain simple pattern, then such single pattern is
embedded in a reference material to build localization rela-
tion. Mori–Tanaka’s mean field method, self-consistent
and generalized self-consistent method or double inclusion
methods are the known examples, see more details in the
monograph given by Nemat-Nasser and Hori [5]. Their
interconnection is established recently by Hu and Weng
[7]. (d) Computational methods, where a sample of micro-
structure is realized and whole solution is obtained through
numerical discretization [8]. However, since taking Cauchy
continuum model (any surface of an infinitesimal material
element transmits only force, not couple) as its back-
ground, none of the mentioned methods can take size
parameter into account.
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To include the size effect into a continue formulation,
many efforts have been made to remedy the traditional con-
tinuum theory; such theory is usually referred as high order

continue theory. In this paper, micropolar theory termed by
Eringen [9] is utilized as a basic high order continuum
description for matrix material response. For a micropolar
material, each material point can experience not only trans-
lation but also independent rigid rotation. This theory is
relevant for granular materials, polycrystalline or multi-
molecular bodies. Muhlhaus and Vardoulakis [10], de
Borst [11] have constructed micropolar plasticity theory
for studying strain localization phenomenon. If more inde-
pendent degrees of freedom are introduced to describe the
response of a material point, more complex theories can be
obtained, namely, microstretch, micromorphic [12]. In
addition, Fleck and Huchinson [13] and Gao et al. [15] pro-
posed a strain gradient theory, and Aifantis [14] proposed a
gradient plasticity theory, the two theories can also
describe the well-observed size effect. All of the mentioned
high order theories introduce some intrinsic length param-
eters, however their determination remains unsolved.

As concerning as predicting the size-dependence of
composite materials, much works have been conducted
recently. There are two different approaches to tackle these
problems, one is based on strain gradient theory or its
modification; the other is based on micropolar theory.
Smyshlyaev and Fleck [16,17] used strain gradient theory
to bound or estimate the effective elastic and plastic behav-
ior of composite with strain gradient effect, Fleck and
Willis [18] evaluated effective plastic property of isotropic
composites with a modified strain gradient theory. The
influence of the particle size on the overall plastic property
of composite can be captured with their methods. As far as
concern with micropolar theory for composite materials,
Yuan and Tomita [19] evaluated the effective elastic moduli
of a micropolar matrix with periodic voids; Chen and
Wang [20] examined the overall non-linear properties of a
micropolar composite with aligned short fibers. Both of
these two works utilized finite element calculation on a
periodic unit cell. Recently, efforts have been made to
propose analytical micromechanical method. With help
of micropolar Eshelby solutions for spherical and cylindri-
cal inclusions given by Cheng and He [21,22], Sharma and
Dasgupta [23], Liu and Hu [24] and Xun et al. [25,26]
extended independently the classical Mori–Tanaka method
to estimate effective elastic properties for particulate com-
posites, as well as long fiber composites. To predict the
non-linear overall properties for micropolar composites,
Liu and Hu [24], Xun et al. [26] proposed an analytical
micromechanical method by extending classical secant
moduli scheme with second-order stress moment [27–29],
and such method was further shown to have a variational
structure [3] similar to Ponte Castañeda variational princi-
ple for a Cauchy composite [30]. The proposed method can
also successively predict the size-dependence well observed
for metal–matrix composites. Since the methods based on
micropolar theory generalize directly the classical microme-
chanical methods to micropolar composite, and there are
simple analytical expressions for the Eshelby tensors, so
this method provides a simple alternative to predict the size
effect for composite materials.

Recently, a simple form of Eshelby’s solution for a gen-
eral ellipsoidal inclusion embedded in a micropolar matrix
have been obtained semi-analytically by Ma and Hu [31].
Based on this solution, Ma and Hu [32] further examined
the overall non-linear properties of a micropolar composite
with aligned arbitrary ellipsoidal fibers, influences of aspect
ratio and size of fibers were examined.

The objective of this paper is to examine overall elasto-
plastic properties of micropolar composites with 3-dimen-
sional (3D) or in-plane (2D) randomly oriented
ellipsoidal fibers, which is not addressed previously. The
influence of fiber’s shape, size and orientation will be exam-
ined. The paper will be arranged as follows: In Section 2 a
brief preliminary of micropolar theory will be recalled, Sec-
tion 3 will be devoted to theoretical formulation of linear
and non-linear overall properties of micropolar composites
with 3D and 2D randomly oriented ellipsoidal fibers,
numerical examples will be presented in Section 4 and the
paper is ended by some conclusions.

2. Micropolar elasticity and plasticity

We are interested in the composite material where the
coarse microstructure of matrix material must be taken
into account due to the small size of inclusions. In such
case the matrix is therefore idealized as a micropolar mate-
rial model [3]. Before proceeding, we recall, briefly, the
essential elements of micropolar theory.

In absence of body forces and couples, the governing
equations of a centro-symmetric and isotropic micropolar
material are [12,33]

eij ¼ uj;i � ekij/k; kij ¼ /j;i ð1aÞ
rij;i ¼ 0; mij;i þ ejikrik ¼ 0 ð1bÞ
rji ¼ djikekk þ ðlþ jÞeji þ ðl� jÞeij

mji ¼ djiakkk þ ðbþ cÞkji þ ðb� cÞkij ð1cÞ

where rij and mij denote the non-symmetric stress and cou-
ple stress tensors, eij and kij non-symmetric strain and tor-
sion tensors, ui and /i displacement and microrotation
vectors, respectively, eijk permutation tensor and dij Kro-
necker delta. l, k are classical Lame’s constants and j, c,
b, a are the new elastic constants introduced in micropolar
theory. The following conditions must be defined on the
boundary in order to establish a well-posed problem:

rjini ¼ tj mjini ¼ pj on Cr ð2aÞ
ui ¼ �ui /i ¼ �/i on Cu ð2bÞ

Due to the dimensional difference between the two sets
of moduli, three intrinsic characteristic lengths can be
defined [24]:

l1 ¼ ðc=lÞ1=2
; l2 ¼ ðb=lÞ1=2

; l3 ¼ ða=lÞ1=2 ð3Þ
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The constitutive equation (1c) can be rewritten in a com-
pact form if we denote r0ðijÞ, rhiji, r(� rii) and e0ðijÞ, ehiji, e
(� eii) as, respectively, the deviatoric symmetric, anti-
symmetric and hydrostatic parts of the stress and strain
tensors (similar notations for couple-stress and torsion
tensors):

r0ðijÞ ¼ 2le0ðijÞ; rhiji ¼ 2jehiji; r ¼ 3Ke; ð4aÞ
m0ðijÞ ¼ 2bk0ðijÞ; mhiji ¼ 2ckhiji; m ¼ 3Nk; ð4bÞ

with

K ¼ kþ 2

3
l; N ¼ aþ 2

3
b; ð5Þ

where subscripts (Æ) and hÆi denote the symmetric and anti-
symmetric parts of a tensor, respectively.

Through an elaborate definition of plastic stress poten-
tial and J2-type effective stress, a deformation version of
plasticity can be established for micropolar material
[24]:

w ¼ w0ðreffÞ þ
1

4j
rhijirhiji þ

1

18K
r2 þ 1

18N
m2 ð6Þ

r2
eff ¼

3

2
r0ðijÞr

0
ðijÞ þ

3

2
l2ðm0ðijÞm0ðijÞ þ mhijimhijiÞ ð7Þ

where for simplicity, the characteristic lengths are assumed
to be equal (l1 = l2 = l3 = l), throughout this paper, the
following power-law type hardening potential is adopted
for the plastic matrix material:

w0ðreffÞ ¼
r2

eff

6l
þ n

nþ 1

1

H 1=n
ðreff � ryÞ

nþ1
n ð8Þ

where ry, n and H are elastic limit, hardening exponent and
modulus, respectively.

3. Theoretical formulation

3.1. Eshelby relations for an ellipsoidal inclusion

Suppose an infinite centro-symmetric and isotropic
micropolar material characterized by moduli C0 and D0,
a fictitious domain X is isolated and endowed with a uni-
form stress-free eigenstrain e* and eigentorsion k*. Follow-
ing Mura [34], such a domain is called an inclusion. Due to
the constraint of surrounding material the induced strain
and torsion by the prescribed eigenstrain and eigentorsion
can be written as

eðxÞ ¼ SðxÞ : e� þ LðxÞ : k� ð9aÞ
kðxÞ ¼ ŜðxÞ : e� þ L̂ðxÞ : k� ð9bÞ

where the tensors S, Ŝ, L and L̂ are called micropolar
Eshelby tensors [21]. For these micropolar Eshelby tensors,
Cheng and He [21,22] gave explicit solutions for a spherical
and an infinite long cylinder inclusions. For a more general
ellipsoidal inclusion, it is difficult to obtain a full analytical
expression. Recently, Ma and Hu [31] derived semi-analyt-
ical expressions of these tensors for a general ellipsoidal
inclusion in a micropolar matrix, and the results are listed
in Appendix A. Unlike classical material, the micropolar
Eshelby tensors are not uniform even inside of an ellipsoi-
dal inclusion, however the numerical computation shows
that their fluctuation within an ellipsoidal inclusion is not
significant [31].

Now we consider an ellipsoidal inhomogeneity featured
by (C1,D1) embedded in an infinite micropolar matrix
(C0,D0), where remote strain and torsion field E0 and K0

are applied. The average effective inclusion method
(AEIM) is utilized to compute the average strain and tor-
sion in the inhomogeneity [24], which can be expressed as
follows:

C1ðE0 þ heiIÞ ¼ C0ðE0 þ heiI � e�Þ ð10aÞ
D1ðK0 þ hkiIÞ ¼ D0ðK0 þ hkiI � k�Þ ð10bÞ

To further proceed, we have to consider the average of the
micropolar Eshelby relations (Eq. (9)) over the domain
occupied by the inhomogeneity. It is shown that, for a gen-
eral ellipsoidal inclusions, the averaged cross items in (9)
vanished [31]:

hLiI ¼ 0; hŜiI ¼ 0 ð11Þ

where hÆiI means the volume average of the said quantity
over the inclusion domain. The average micropolar Eshel-
by relations are uncoupled for a general ellipsoidal inclu-
sion, so we have the following form:

heiI ¼ hSiI : e�; hkiI ¼ hL̂iI : k� ð12Þ

Non-zero average micropolar Eshelby tensors hSiI and hL̂iI
can be obtained with the expressions given in Appendix A.

With help of Eqs. (10) and (12), the averages of the
strain and torsion inside of the inhomogeneity can then
be evaluated. It must be mentioned that the average effec-
tive inclusion method is approximate due to the non-uni-
form field inside of inhomogeneity, however it is shown
that this approximation can provide an accurate average
fields compared to the exact result [25].

3.2. Estimation of effective moduli for a micropolar

composite

In the following, two-phase composite will be consid-
ered, where ellipsoidal fibers (C1,D1) are oriented ran-
domly in the space or randomly on a plane in the matrix
(C0,D0), and the volume fraction of fibers is f. As discussed
previously, we are interested in the classical effective prop-
erty of the composite, which are related to the average sym-
metric stress and strain by hesymi ¼M sym

c : hrsymi. To this
end, we follow the method proposed by Liu and Hu [24],
and we apply a symmetric macroscopic stress Rsym on the
boundary of RVE. It is shown that Rsym = hrsymi, so in
the following, the key point is to compute hesymi as func-
tion of the applied macroscopic stress Rsym.



Fig. 1. Methodology of Mori–Tanaka’s method: (a) local and global frames; (b) single fiber in global system; (c) single fiber in local frame.
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Consider a RVE of the composite, as shown in Fig. 1a, a
local coordinate system is attached with each fiber with its
three principle axes, as shown in Fig. 1b. Following the con-
cept of Mori–Tanaka’s method [35], we place each fiber in
an infinite micropolar matrix under remote yet-known
applied strain and torsion E00 and K 00, the primed quantity
means the quantity in the local coordinate system
(Fig. 1c). E0 and K0 are interpreted as the average strain
and torsion of the matrix in the macroscopic coordinate
system.

In the local system, we apply the average effective inclu-
sion method to determine the average strain and torsion in
the fiber, this can be written as

C 01ðE00 þ he0iIÞ ¼ C 00ðE00 þ he0iI � e0�Þ ð13aÞ
D01ðK 00 þ hk

0iIÞ ¼ D00ðK 00 þ hk
0iI � k0�Þ ð13bÞ

he0iI ¼ hSiI : e0� ð13cÞ
hk0iI ¼ hL̂iI : k0� ð13dÞ

Since we are interested in the average of the symmetric
strain and stress over RVE, so Eqs. (13a) and (13c) are split
into a symmetric part and an anti-symmetric part, only the
symmetric parts are kept in the following analysis. So the
effective inclusion method can be written in this case as
the following form:

C 0sym
1 : ðE0sym

0 þ he0symiIÞ ¼ C 0sym
0 : ðE0sym

0 þ he0symiI � e0�symÞ
ð14Þ

he0symiI ¼ hS
symiI : e0�sym ð15Þ

where Ssym
ijmn ¼ ðSijmn þ Sijnm þ Sjimn þ SjinmÞ=4 for a fourth-

order symmetric tensor and esym
ij ¼ ðeij þ ejiÞ=2 for a sec-

ond-order tensor. Eqs. (14) and (15) allow one to determine
the average symmetric strain of each fiber in the local sys-
tem. In order to perform the orientational average, the
strain obtained in the local system must be transformed
into the global system, this can be performed by following
exactly the same method as classical micromechanical
method (see for example [37]). Here, the fiber is assumed
to be an isotropic Cauchy material, C 0sym

1 ¼ C1; the matrix
material is centro-symmetric isotropic material
C 0sym

0 ¼ C sym
0 , finally the classical effective compliance ten-

sor for the micropolar composite reads
M sym
c ¼M sym

0 þ f ½ðM1 : ðM sym
0 Þ

�1 � IÞ�1

þ ð1� f ÞhI � hSsymiIioriave�
�1 : M sym

0 ð16Þ

where M sym
c ;M sym

0 and M1 are the symmetric compliance
tensor of the composite, matrix and fiber, respectively. I
is unit tensor. hÆioriave stands for the orientational average
of the said quantity, the methods for evaluating the orien-
tational average are given in Appendix B for 3D and 2D
random orientations.

Eq. (16) has the same form as for the classical compos-
ite, size-dependence of the fiber is implicitly included in the
average micropolar Eshelby tensor hSsymiI. It has been
shown that when the fiber’s size is sufficiently large, hSsymiI
is reduced to the classical Eshelby tensor [31], so the classi-
cal results can be recovered.

3.3. Yield surface of micropolar composites

It is assumed that the whole composite yields when the
average effective stress of matrix material reaches its elastic
limit ry, that is

hreffi0 ¼ ry ð17Þ

where hÆi0 means the volume average of the said quantity
over the matrix, and reff is defined by Eq. (7).

In order to compute hreffi0 in an analytical way, it is fur-
ther assumed that hreffi0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2

effi0
p

, this assumption is
widely accepted in micromechanics [27,29]. Following the
perturbation method proposed by Liu and Hu [24], we
can derive the analytical expression of hr2

effi0 as function
of the applied macroscopic stress Rsym. The yielding sur-
face of the micropolar composite can be determined with
help of Eq. (17). The final expression is summarized
here:

3

1� f
Rsym : Q : Rsym þ r2

y ¼ 0 ð18Þ

Q ¼ l2
0

oM sym
c

ol0

þ 1

l2
b2

0

oM sym
c

ob0

þ c2
0

oM sym
c

oc0

� �
ð19Þ

where l0, b0, c0 are moduli of the micropolar matrix, M sym
c

is determined by Eq. (16).
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Fig. 2. Effective shear moduli as function of fiber’s aspect ratio: (a) shear
moduli of 3D composite; (b) in-plane shear moduli of 2D composite; (c)
out-of-plane shear moduli of 2D composite.
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3.4. Non-linear stress and strain relation of micropolar

composites

When the macroscopic stress exceeds the initial yielding
stress of the composite, plastic deformation will take place
in the matrix material. In order to model the weakened
constraint power of the plastic matrix on fiber, the secant
moduli method based on second-order stress and couple
stress moment will be utilized in this paper [24].

For a certain plastic state of the matrix material, its secant
moduli can be obtained through Eqs. (6)–(8), this leads to

ls
0 ¼

1

ð1=l0Þ þ 3½ðreff � ryÞ=H �1=n
=reff

; js
0 ¼ j;

Ks
0 ¼ K0; bs

0 ¼ l2ls
0; cs

0 ¼ l2ls
0; N s

0 ¼ N 0

ð20Þ

where the superscript ‘‘s’’ means secant quantity.
The procedure of evaluating overall non-linear stress–

strain relation by secant moduli scheme is summarized as
follows: for any given macroscopic stress Rsym, at which
the matrix has entered into plastic state, for a tested aver-
age effective stress of the matrix hreffi0 (>ry), the secant
moduli of the matrix can be evaluated by Eq. (20). We con-
sider a linear comparison composite, it has the same micro-
structure and fiber’s property as the actual non-linear
composite, however its matrix has the secant modulus of
the actual matrix in the non-linear composite. The compli-
ance tensors M sym

c of this linear comparison composite can
be determined from Eq. (16). The average effective stress of
the micropolar matrix for the linear comparison composite
can then be evaluated with the expression of M sym

c , this
provides an equation to determine for a given applied load
Rsym the corresponding hreffi0. The moduli of the linear
comparison composite are interpreted as the secant moduli
of the actual composite. By repeating Rsym, the non-linear
stress and strain curves of the micropolar composite mate-
rial can then be established.

4. Numerical applications

In this section some numerical calculations are per-
formed in order to illustrate the theoretical formulations
presented in Section 3. A metal–matrix composite SiC/Al
is chosen as the sample material, the material constants
are l0 = 26 GPa, k0 = 50 GPa for the matrix and
l1 = 209 GPa, k1 = 108 GPa for a common fiber material
(compared with rigid inclusions or voids); j0 = 13 GPa,
l = 10 lm are assumed for the micropolar constants of
the matrix. Other parameters will be specified when used.
The geometry of a fiber is well defined by its equator radius
a together with its aspect ratio (alpha). Here, a character-
izes the size of fiber and alpha its shape.

4.1. Effective elastic moduli

The composite is isotropic for a 3D composite and
transversely isotropic for 2D composite (symmetry axis is
along x1). The predicted effective shear modulus lc for a
3D composite, in-plane shear modulus lc23 and out-of-
plane shear modulus lc12 for a 2D composite as function
of fiber’s aspect ratio are shown in Fig. 2. The fiber’s size
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is chosen to be a = l, its volume fraction is f = 0.15. For
comparison, prediction by classical Mori–Tanaka’s
method is also included. It is found that the predicted effec-
tive shear moduli of the micropolar composites are slightly
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Fig. 4. Yield surfaces in R33 � R11 space for rigid fiber of three different
aspect ratios 0.2, 1 and 10: (a) 3D composite; (b) 2D composite.
higher than those for the classical composite, the depen-
dence on the fiber’s aspect ratio is the same for these two
models.

The aspect ratio of the fiber is now kept fixed, it is taken
to be 10, Fig. 3 shows the predicted effective shear modulus
of 3D composite as function of fiber’s size, two volume
fractions f = 0.15 and f = 0.3 are examined, respectively.
The classical predictions are also included for comparison.
It is found that when the size of fiber is comparable or less
than the intrinsic length of the matrix material, the
enhancement of overall moduli is more pronounced; when
the fiber’s size is much larger than the intrinsic length of the
matrix material, the prediction by the two theories coin-
cides, as expected.

4.2. Initial yield surface

Fig. 4 shows the yield surfaces in R33 � R11 stress-space
for 3D and 2D composites for three different fiber’s aspect
ratios 0.2, 1 and 10, respectively. The initial yield stress of
matrix is set to be ry = 250 MPa, the fiber is considered to
be rigid, while the size and volume fraction are a = l and
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Fig. 5. Yield surfaces in R33 � R11 space for rigid fiber of three different
sizes: a = l, a = 5l, a = 50l: (a) 3D composite; (b) 2D composite.
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f = 0.15, respectively. It can be seen from Fig. 4a that for
the 3D composites the yielding surfaces are enlarged uni-
formly when the aspect ratio of fiber is different from unity,
due to its overall isotropy. On the other hand for the 2D
composite, the rotation of the yield surface is observed,
as shown in Fig. 4b.

Fig. 5 presents the yield surfaces in R33 � R11 space
for both types of composites (3D and 2D composites)
with f = 0.15, aspect ratio of the rigid fiber is fixed as 0.2,
three different fiber’s sizes a = l, a = 5l, a = 50l are
examined. It is found that when the fiber’s size decreases,
the yield surface of the composite is slightly enlarged uni-
formly for both types of composites. Further calculations
with different fiber’s properties reveal that the influence
of fiber’s aspect ratio and size on the overall properties is
more pronounced when the stiffness of fiber becomes large.

4.3. Non-linear stress and strain relation

Non-linear overall stress–strain curve of the micropolar
composite will be estimated under uniaxial loading along
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Fig. 6. Overall stress–strain relations for common inclusion with different
aspect ratios: (a) 3D composite; (b) 2D composite.
x3. The plastic parameters of the matrix are ry = 250 MPa,
h = 173 MPa and n = 0.455, which corresponds to Al
matrix.

The influence of fiber’s aspect ratio on the overall stress–
strain curves is illustrated in Fig. 6 for the both types
of composites, the common fiber with aspect ratios
0.01, 0.1, 1, 10, 100 are examined. The fiber’s size is set
to be a = l and volume fraction f = 0.15. It is found that
fiber’s shape has a significant influence on the stress
and strain relation for the micropolar composite, the same
as for the corresponding Cauchy composite. Now the
aspect ratio of fiber is fixed to be 0.2, the other material
constants remain unchanged, the stress–strain curves of
the both composites with three different fiber’s sizes:
a = l, a = 5l and a = 50l are examined, which are shown
in Fig. 7. The predictions for the composite with the
classical matrix and the stress and strain relation of the
un-reinforced matrix are also included for comparison.
The results show that the influence of fiber’s size is also
important, especially when the fiber’s size approaches to
the characteristic length of the matrix material. However
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Fig. 7. Overall stress–strain relations for common inclusion with different
sizes: (a) 3D composite; (b) 2D composite.
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Fig. 8. Overall stress–strain relations for rigid inclusion with different
sizes: (a) 3D composite; (b) 2D composite.
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Fig. 9. Overall stress–strain relations for voids with different size: (a) 3D
composite; (b) 2D composite.
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when the fiber’s size is large, the predicted results by
the current method is reduced to the classical one as it
should be.

Analogous to Fig. 7, all other parameters are
unchanged, but the fiber’s properties are replaced with
two limit properties, say, rigid and void ellipsoids. Figs. 8
and 9 show the stress–strain curves with rigid and void
inclusions, respectively, both 3D and 2D composites are
calculated. We find that for small size of inclusions the
composites are more strengthened by rigid inclusions,
and relatively less weakened by voids. Furthermore, the
size-dependence on overall property is much less significant
for void inclusions, compared to the rigid inclusions.
Again, when the inclusion’s size tends to infinity, classical
results are found.

5. Conclusions

In this paper, the matrix material is idealized as a micro-
polar continue model. Based on Eshelby solutions for a
general ellipsoidal inclusion in micropolar media, together
with Mori–Tanaka concept and secant moduli method, the
overall linear and non-linear properties of metal–matrix
composites containing three dimensionally or in-plane ran-
domly oriented inclusions are examined. The classical effec-
tive moduli, initial yield surface and the effective plastic
stress and strain relation are evaluated and analyzed in
detail. The results show that the effective moduli and
non-linear stress and strain curves are always higher, and
the influence of inclusion’s aspect ratio are always more
significant, than those based on classical material model,
especially for small size of inclusions. When the inclusion’s
size is sufficiently large, the classical results can be found.
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Appendix A. Eshelby tensor for an ellipsoidal inclusion [31]

The expressions of micropolar Eshelby tensors are listed
here [21,31]:

SmnjiðxÞ ¼ IS
nji;mðxÞ þ Inji;mðxÞ � elmnÎ ljiðxÞ ðA:1aÞ

LmnjiðxÞ ¼ J nji;mðxÞ � elmnĴ ljiðxÞ ðA:1bÞ
ŜmnjiðxÞ ¼ Î nji;mðxÞ ðA:1cÞ
L̂mnjiðxÞ ¼ Ĵ nji;mðxÞ ðA:1dÞ

where

IS
nji ¼

kþ l
kþ 2l

w;ijnðxÞ �
k

kþ 2l
dij/;nðxÞ � din/;jðxÞ � djn/;iðxÞ

Inji ¼ 2Ph2l/;ijnðxÞ þ
2j
l
½djn/;iðxÞ � din/;jðxÞ�

� Ph2½kdijM ;kknðx; hÞ þ 2lM ;ijnðx; hÞ� þ PkdijM ;nðx; hÞ

þ P ðlþ jÞ þ j
l

� �
dinM ;jðx; hÞ

þ P ðl� jÞ � j
l

� �
djnM ;iðx; hÞ

J njiðxÞ ¼ �
1

2l
½ðbþ cÞenik/;jkðxÞ þ ðb� cÞenjk/;ikðxÞ�

þ 1

2l
½ðbþ cÞenikM ;jkðx; hÞ þ ðb� cÞenjkM ;ikðx; hÞ�

Î njiðxÞ ¼
1

2l
½jeijk/;knðxÞ � ðlþ jÞenik/;kjðxÞ

� ðl� jÞenjk/;kiðxÞ� �
1

2l
½ðlþ jÞeijkM ;knðx; hÞ

� ðlþ jÞenikM ;kjðx; hÞ � ðl� jÞenjkM ;kiðx; hÞ�

þ 1

2
eijkM ;knðx; gÞ þ

lþ j

2lh2
eijnMðx; hÞ

Ĵ njiðxÞ ¼ �
b

2l
/;ijnðxÞ þ

lþ j
4lj

½adijM ;kknðx; hÞ þ 2bM ;ijnðx; hÞ�

� 1

4j
½adijM ;kknðx; gÞ þ 2bM ;ijnðx; gÞ�

� lþ j

4ljh2
½adijM ;nðx; hÞ þ ðbþ cÞdinM ;jðx; hÞ

þ ðb� cÞdjnM ;iðx; hÞ�

P ¼ j=½lðlþ jÞ�; h2 ¼ ðlþ jÞðcþ bÞ
4lj

; g2 ¼ ðaþ 2bÞ
4j

Evaluation of the micropolar Eshelby tensors depends
on the following three integrals and their spatial deriva-
tives, which are defined by

wðxÞ ¼ 1

4p

Z
X

xdx0; /ðxÞ ¼ 1

4p

Z
X

1

x
dx0;

Mðx; kÞ ¼ 1

4p

Z
X

e�x=k

x
dx0 ðA:2Þ

where x = jxj.
For a general ellipsoidal inclusion, w(x) and /(x) have
been integrated analytically [34], while analytical expres-
sion of M(x,k) is almost hopeless. However, it can be
reduced to the following 1D integral:

Mðx; kÞ ¼ 1

4p

Z
X

e�x=k

x
dx0 ¼ k2 � k2 a3

2

Z 1

0

ðD� AÞdu

ðA:3Þ

where

D ¼ 1

ðuþ a2
3Þ

3=2
1þ a

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2

3

uþ a2

s0
@

1
A exp � a

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2

3

uþ a2

s0
@

1
A;

A ¼ I0ðBqÞ coshðCzÞ; B ¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u

uþ a2

r
; C ¼ a

k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ a2
p

u ¼ a2
3 tan2 h; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q

IM is the Mth order modified Bessel function of the first
kind, a and a3 are the half-length of transverse and major
axis of the ellipsoidal inclusion. The major axis of the
ellipsoid lines with the axis z. The derivatives of Eq.
(A.3) read

M ;iðx; kÞ ¼ �
a3

2
k2

Z 1

0

ðD� A;iÞdu ðA:4aÞ

M ;ijðx; kÞ ¼ �
a3

2
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Z 1
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2
k2

Z 1
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2
k2

Z 1

0

ðD� A;ijmnÞdu ðA:4dÞ

where

A;a ¼ B coshðCzÞI1ðBqÞ xa

q
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A;abck ¼ B coshðCzÞ � B
q6

15

2
xaxbxcxk þ

3

8
B2q2xaxbxcxk

��

� 3

2
q2xkðdabxc þ dacxb þ dcbxaÞ

� 3

2
q2ðdakxbxc þ dbkxaxc þ dckxbxaÞ

þ q4

2
ðdabdck þ dacdbk þ dakdcbÞ

�
I0ðBqÞ

þ 1

q7
� 9

2
B2q2xaxbxcxk � 15xaxbxcxk

�

þ 3

4
B2q4xkðdabxc þ dacxb þ dcbxaÞ

þ3q2xkðdabxc þ dacxb þ dcbxaÞ
þ3q2ðdakxbxc þ dbkxaxc þ dckxbxaÞ

þ 3

4
B2q4ðdakxbxc þ dbkxaxc þ dckxbxaÞ

�q4ðdabdck þ dacdbk þ dakdcbÞ
�

�I1ðBqÞ þ B
q6

15

2
xaxbxcxk þ

B2q2

2
xaxbxcxk

�

� 3

2
q2xkðdabxc þ dacxb þ dcbxaÞ

� 3

2
q2ðdakxbxc þ dbkxaxc þ dckxbxaÞ

þ q4

2
ðdabdck þ dacdbk þ dakdcbÞ

�
I2ðBqÞ

þB2

q5
� 3

2
xaxbxcxk þ

q2

4
xkðdabxc þ dacxb þ dcbxaÞ

�

þ q2

4
ðdakxbxc þ dbkxaxc þ dckxbxaÞ

�
I3ðBqÞ

þB3

q4

1

8
xaxbxcxk

� �
I4ðBqÞ

�

The indices a, b, c, k range from 1 to 2, and

A;z ¼ C sinhðCzÞI0ðBqÞ
A;zz ¼ C2 coshðCzÞI0ðBqÞ; A;az ¼ ðA;aÞ;z;
A;zzz ¼ C3 sinhðCzÞI0ðBqÞ; A;azz ¼ ðA;aÞ;zz;

A;abz ¼ ðA;abÞ;z;
A;zzzz ¼ C4 coshðCzÞI0ðBqÞ; A;azzz ¼ ðA;aÞ;zzz;

A;abzz ¼ ðA;abÞ;zz; A;abcz ¼ ðA;abcÞ;z
With the previous expression, the micropolar Eshelby ten-
sors and their average over the ellipsoidal domain can be
calculated.

Appendix B. Method of orientational average

B.1. 3D randomly oriented inclusions

Adopting Wapole notation [36], a transversely isotropic
tensor A, whose local symmetric axis is x3, can be expressed
as
A ¼ ðc; g; h; d; e; f Þ ðB:1Þ

its corresponding matrix form is

A ¼

cþf
2

c�f
2

g 0 0 0

c�f
2

cþf
2

g 0 0 0

h h d 0 0 0

0 0 0 e 0 0

0 0 0 0 e 0

0 0 0 0 0 f

2
66666666664

3
77777777775

ðB:2Þ

The orientational average in 3D space is defined as

A ¼ hT�1AT i ¼ 1

2p

Z p

0

Z p

0

T�1AT sin hdhd/ ðB:3Þ

where T is the transform matrix of a second-order tensor
between two coordinate frames. Then the 3D orientational
average of A is isotropic:

A ¼ 2dþ 2

3
b; d� 2

3
b; d� 2

3
b; dþ 4

3
b; 2b; 2b

� �
ðB:4Þ

with

d ¼ 1

9
ð2cþ 2g þ 2hþ dÞ;

b ¼ 1

30
½c� 2ðg þ hÞ þ 2d þ 6ðeþ f Þ�

ðB:5Þ
B.2. In-plane randomly oriented inclusions

Assuming the inclusions are randomly oriented in global
x2–x3 plane, the in-plane average of A is transversely iso-
tropic, and its symmetric axis is x1:

Ax1
¼ hT�1AT i ¼ 1

p

Z p

0

T�1AT dh ¼ ð�c; �g; �h; �d;�e; �f Þ ðB:6Þ

Its matrix form is

Ax1
¼
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where

�c ¼ 1

8
2ðcþ f Þ þ 4ðhþ g þ dÞ½ �;

�g ¼ c� f
4
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