
Accepted Manuscript

Overall plasticity of micropolar composites with interface effect

Huan Chen, Xiaoning Liu, Gengkai Hu

PII: S0167-6636(08)00041-0

DOI: 10.1016/j.mechmat.2008.03.005

Reference: MECMAT 1593

To appear in: Mechanics of Materials

Received Date: 1 August 2007

Revised Date: 9 March 2008

Accepted Date: 13 March 2008

Please cite this article as: Chen, H., Liu, X., Hu, G., Overall plasticity of micropolar composites with interface effect,

Mechanics of Materials (2008), doi: 10.1016/j.mechmat.2008.03.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.mechmat.2008.03.005
http://dx.doi.org/10.1016/j.mechmat.2008.03.005


 

 

 

ACCEPTED MANUSCRIPT 

 

 

Overall plasticity of micropolar composites with interface effect 

Huan Chen, Xiaoning Liu*, Gengkai Hu 

Department of Applied Mechanics, School of Science, Beijing Institute of Technology,  

100081, Beijing China 

 

Abstract:   

Overall property of composite materials depends on particle size while its volume 

fraction is kept constant. A micromechanical method is proposed to predict the 

size-dependent plastic property for composite materials, the proposed method takes into 

account the nonlocal effect by idealizing the matrix as a micropolar material, and the 

interface effect between different phases is also considered. A perturbation method for a 

micropolar composite with the interface effect is established by a rigorous energy 

equivalent method, it is then used to estimate the average second order stress/couple 

stress moment in the local phase. A secant modulus scheme is proposed to predict the 

overall nonlinear behavior for a micropolar composite with the interface effect. It is 

found that the nonlocal and the interface effects on the size-dependent yielding and 

strain hardening behavior may be synchronized or desynchronized depending on the 

nature of the interface. For a hydrostatic loading, it is found that the interface effect has 

an important influence on the overall yielding of the composite. The instability of the 

composite induced by interface effect is also discussed. 
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1. Introduction 

Size-dependent overall property for composite materials has been well observed by 

experiment when the size of reinforced phase varies and the other microstructure 

parameters are kept unchanged (Kouzeli and Mortensen, 2002). Another size-dependent 

phenomenon recently analyzed comes from interface effect, when the dimension of a 

structure is reduced, the surface to volume ratio becomes important (Miller and Shenoy, 

2000). 

Different techniques to establish the relation between the effective property and the 

microstructure for a heterogeneous material have been developed, which are 

summarized in references (Nemat-Nasser and Hori, 1993, Milton, 2002, Hashin, 1983, 

Buryachenko, 2001, Hu and Weng, 2000). However, due to the absence of any explicit 

length scale in the basic equations, the classical homogenization approach fails to 

predict the size-dependent effective property. To circumvent this difficulty, many 

models have been developed. Two different analytical approaches based on continuum 

formulation are proposed: for the first approach, the constituent materials are idealized 

as high order continuum, due to the fact that the separation of length scales is 

impossible and the nonlocal effect becomes important; the other approach argues that 

the interface effect comes into play, when the surface-to-volume ratio is not negligible. 

For the first approach, the strain gradient (Smyshlyaev and Fleck, 1994) or micropolar 

(Liu and Hu, 2005, Hu et al., 2005) models have been incorporated into proper 

micromechanical models, the size-dependent overall elastic and plastic properties for 

composite materials can be predicted. An intrinsic length is introduced which is of 

micrometer scale, this length scale is believed to be related to the microstructure of the 

constituent materials (Hu et al., 2005). In the second approach, the constituent materials 

are assumed to be local in nature, however the stress discontinuity is allowed across the 

interface between the matrix and the reinforced phase, and this discontinuity is 

governed by Young-Laplace equations (Sharma and Ganti, 2004, Duan et al., 2005). It 

is emphasized that here the interface model refers more precisely to the interface stress 
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model or interface elasticity (Ibach, 1997, Gurtin and Murdoch, 1975), which is well 

accepted as one of the origins for size-dependent behavior. Other interface models with 

displacement or strain jumps, which are widely employed to model damage, debonding 

or strain localization, are not considered in this paper. The effective modulus predicted 

by the interface model depends also on particle size, an intrinsic length scale is also 

introduced. It seems that this size effect is only pronounced when the particles are 

within nanometer scale (Sharma et al., 2003). Clearly, the nonlocal and interface effects 

have sound and different physical backgrounds. When the size of reinforced phase 

becomes small, both the interface and the nonlocal effects may become important. So it 

is interesting to propose a micromechanical model which can simultaneously consider 

these two effects. Recently Chen et al.(2007) propose an elastic micromechanical model 

in framework of micropolar theory with the interface effect. However, the nonlinear 

behavior of a micropolar composite with the interface effect has not been addressed.  

In this paper, an analytical approach is proposed to estimate elastoplastic properties 

for a micropolar composite with the interface effect. The manuscript is arranged as 

follows: the estimation of the overall elastic moduli for a micropolar composite with the 

interface effect will be briefly outlined in section II; the perturbation relation for a 

heterogeneous micropolar material with interface stress jump will be developed and the 

second order stress(couple) moment of the matrix phase will be derived in section III; In 

section IV, a secant modulus scheme will be proposed to determine the overall nonlinear 

response for the composite material, numerical examples will also be presented; the 

paper is closed by some conclusions. 

2. Overall elastic modulus for micropolar composite with interface effect 

Recently, Chen et al. (2007) proposed an analytical method to estimate the overall 

elastic moduli of micropolar composites including interface effect, the basic concept 

will be summarized in the following.  

The geometrical, balance and constitutive equations for a centro-symmetric and 
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isotropic micropolar continuum in the absence of body force and moment are given by 

Eringen(1999) and Nowacki(1986): 

,     = ∇ ⊗ − ⋅ = ∇ ⊗� u e � k � ,  (1a) 

0,     : 0∇ ⋅ = ∇ ⋅ + =� m e � , (1b) 

Tr( ) ( ) ( ) ,   Tr( ) ( ) ( )T Tλ µ κ µ κ α β γ β γ= + + + − = + + + −� � I � �  m k I k k  (1c) 

where �  and m  are respectively non-symmetric stress and couple stress tensors, �  

and k  are strain and torsion tensors, u  and �  are displacement and micro-rotation 

vectors, e is the permutation tensor, µ , λ ,κ ,γ , β ,α  are the six independent elastic 

constants for an isotropic micropolar material I represents the 2nd rank unit tensor in a 

three-dimensional space the superscript T  means the transposition of a tensor. A 

well-posed problem is closed by the following boundary conditions: 

,⋅ ⋅N � = t N m = p  on Vσ∂ ,   ,u = u � = �  on uV∂ .                 (2) 

where t and p  are the prescribed force and couple on the boundary Vσ∂ , u  and 

� are separately the prescribed displacement and micro-rotation on the boundary uV∂ , 

N  is outward unit normal on the boundary.  

 For a micropolar composite with the interface effect, jumps for the stress and 

couple, denoted by ][� and ][m , respectively, are allowed across the interface between 

the matrix and the particle. The interface constitutive equation and Yang-Laplace 

equation for a micropolar media can be written as (Chen et al., 2007): 

(2)Tr( ) ( ) ( ) ,T
s s s s s s s s sλ µ κ µ κ= + + + −� � I � �                (3a) 

(2)Tr( ) ( ) ( ) T
s s s s s s s s sα β γ β γ= + + + −m k I k k ,         (3b) 
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           [ ] [ ],     :s s s⋅ ⋅ = −∇ ⋅ ⋅ ⋅ = −n � P � n � n � b                  (4a) 

           [ ] [ ],    ( : : )s s s s s⋅ ⋅ = −∇ ⋅ ⋅ ⋅ = − +n m P m n m n m b � e      (4b) 

where s = ⋅ ⋅� P � P ,  s = ⋅ ⋅k P k P  denote the projections of the strain and torsion 

tensors onto the tangent plane of the interface, namely, the interface strain and interface 

torsion. The projection tensor is defined by = ⊗P I - n n . Similarly s�  and s m  are the 

interface stress and couple stress, n  is unit normal of the interface, (2)I  represents the 

2nd rank unit tensor in two-dimensional space, s∇ and se  are the gradient operator and 

permutation tensor on the interface, b is the curvature tensor of the interface,  

( sλ sβ sγ sα sµ sκ ) are the six micropolar interface material constants. 

For a two-phase micropolar composite, if we consider only the classical effective 

property (the symmetric part of the effective modulus), then the micromechanical 

procedure can be greatly simplified (Liu and Hu, 2005). To this end, the following 

tractions will be applied on the boundary of a representative volume element (RVE): 

    sym⋅ = ⋅N � N � ,  0⋅ =N m .                                  (5) 

Then the classical effective stiffness and compliance tensor sym
CC , sym

CM can be defined 

as: 

  ><>=< symsym
C

sym
�C� : ,  ><>=< symsym

C
sym

�M� : .   (6) 

where >•< means the volume average on the RVE, the subscript sym means the 

symmetric part of the corresponding quantity. Such scheme represents a 

homogenization from high-order continua to a Cauchy one, and it remains valid under 

the following size relations: the particle size is comparable to the intrinsic length of the 

matrix, and there is clear size separation between the RVE and the macroscopic 

structure. For such a special case, the Hill’s condition holds, i.e. both the static and 
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kinematics boundary conditions exist and they give an equivalent definition for the 

overall Cauchy material modulus. Since the displacement is continuous across the 

interface and the stress has a jump, then the volume average of the local stress and the 

strain over the RVE reads: 

0 1

1
(1 ) {( [ ]) ( [ ])}

2
sym sym sym sym symf f d

V Γ
< >= − < > + < > + ⋅ ⊗ + ⊗ ⋅ Γ�� � � n � x x n �  

1
           { ( ) ( ) }

2
sym sym sym

S S
dS dS

V
= ⋅ ⊗ + ⊗ ⋅ =� �N � x x N � �          (7a) 

0 1(1 )sym sym symf f< >= − < > + < >� � �    (7b) 

Where V is the volume of the RVE, Γ  denotes the interface between the inclusion and 

the matrix, S represents the external surface of the RVE, f is volume fraction of the 

inclusion. i>•<  means the volume average over the ith ( 0,1i = ) phase. For the 

previous traction boundary condition sym� , i
sym >< σ is determined by a concentration 

factor 
sym

iP as 

                   :
symsym sym

i i< > =� P �  (8) 

Further more, if we define sym
sP such that: 

            
1

1
{( [ ]) ( [ ])} :

2
symsym sym sym

sd
V Γ

⋅ ⊗ + ⊗ ⋅ Γ =� n � x x n � P � ,   (9) 

Once 
sym

iP and 
sym

sP  are obtained, the classical overall compliance tensor of the 

micropolar composite can be evaluated by equations(6-9), leading to: 

              0 1 0 1 0( ) : :sym sym sym sym sym sym sym
C sf f= + − −M M M M P M P , (10) 

where 0
symM and 1

symM are the symmetric part of the compliance tensors for the matrix 

and the inclusion respectively. In this paper, Mori-Tanaka’s method is used to estimate 
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the concentration factors 
sym

iP and
sym

sP , in turn, the effective compliance tensor. Its 

analytical expressions for a cylindrical fiber reinforced composite are given in Appendix, 

see also Chen et al. (2007) for more detail. 

3. Local effective stress by perturbation method   

 In the following, the fiber is assumed to be elastic. To determine the onset and 

evolution of plasticity for a micropolar composite, the average effective stress of the 

matrix material must be determined and related to the applied macroscopic load sym
� . 

This can be fulfilled by a perturbation method (Kreher and Pompe, 1989, Qiu and Weng, 

1992, Hu, 1996 for classical composites; Liu and Hu, 2005 for a micropolar composite). 

Consider a two-phase micropolar composite material with the interface effect, the 

traction boundary conditions defined by equation (5) are applied on the boundary of the 

RVE. Due to the contribution of the interface, the energy density averaged over the RVE 

can be written as: 

1
( : : )s s s sw d

V Γ
=< + > + + Γ�� : � m : k � � m k .               (11) 

With help of equilibrium equations (1) and generalized Yang-Laplace equations (4), 

equation (11) can be further written as: 

 
0 1

1 1
[ ( ) ( )] [ ( ) ( )]

V V
w dV dV

V V
= ∇ ⋅ ⋅ + ∇ ⋅ ⋅ + ∇ ⋅ ⋅ + ∇ ⋅ ⋅� �� u m � � u m �  

1 1
[ [ ] [ ] ] [ ( ) ( )]s s s sd d

V VΓ Γ
+ ⋅ ⋅ + ⋅ ⋅ Γ + ∇ ⋅ ⋅ + ∇ ⋅ ⋅ Γ� �n � u n m � � u m � , 

where 0V and 1V are the volumes of the two phase, respectively. By using the divergence 

theorem on the first two terms of the right hand side of the above equation and the 

surface divergence theorem on the last item, we have: 

 
1 1

{ ( ) ( )} { '( )}
S

w dS d
V V

+ +

Γ
= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ Γ� �N � u N m � n � u m �

 1 1
{ ( )} { [ ] [ ] }d d

V V
− −

Γ Γ
+ ⋅ ⋅ + ⋅ Γ + ⋅ ⋅ + ⋅ ⋅ Γ� �n � u m � n � u n m �  
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1

{ ( ) ( )}s s dl
V ∂Γ

+ ⋅ ⋅ + ⋅ ⋅� n � u n m �� �  

where ′n and n  are respectively the outward and inward unit normal of the interface; 

+
� and −

� are the stresses on each side of the interface; the last item of the right hand 

side of the above equation is the integration along the interface; n�  lies in the tangent 

plane of the interface and orthogonal to the interface. It is obvious that all except the 

first item vanish in the above expression. Finally the micro-macro transition of elastic 

energy for the micropolar RVE with the interface effect can be written as: 

1
( : : ) :sym

s s s s d
V Γ

< + > + + Γ = < ∇ ⊗ >�� : � m : k � � m k � u ,         (12) 

Equation(12) holds for any balanced stress field corresponding to (5) and compatible 

strain field. With help of the phase constitutive equations, equation (12) can be further 

written as: 

1
: : : : ( : : : : )sym sym sym

C s s s s s s d
V Γ

=< + > + + Γ�� M � � : M � m : L m � M � m L m ,   (13) 

where M , L , sM and sL denote the local micropolar compliances and the interface 

compliances, respectively. In the following, let the macroscopic applied stress fixed and 

the local compliance tensors have independent variations( Mδ , Lδ ) this will lead to the 

variations of the local stress ( �� mδ s�� smδ ), as well as the variation of the effective 

compliance sym
CMδ . From equation (13), we have 

>+<+>+=< mL:m�M:�mL:m�M:��M� δδδδδ ::2:::: symsym
C

sym  

1

2
( : : : : )s s s s s s

f
d

V
δ δ

Γ
+ + Γ� � M � m L m  

With help of equation (12), and the ( �� mδ s�� smδ ) are statically equilibrium fields 

with zero applied load condition, it can be shown that: 
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1

: : ( : : : : )s s s s s s d
V

δ δ δ δ
Γ

< + >= − + Γ�� : M � m : L m � M � m L m  

Finally, the perturbation relation of a micropolar composite with the interface effect can 

be obtained as: 

>+=< mL:m�M:��M� :::: δδδ symsym
C

sym .     (14) 

It is found that the perturbation relation is formally identical to that without the interface 

effect (Liu and Hu, 2005), however, the effective moduli are different. If the micropolar 

effect is neglected, the classical result with the interface effect can be obtained as a 

special case, as discussed by Zhang and Wang (2007). 

 In the following, the inclusion is purely elastic, only the matrix can undergo plastic 

deformation. Therefore it is assumed that the composite yields when the average 

effective stress of the matrix reaches its elastic limit yσ , that is: 0eff yσ σ< > = . For a 

two-dimensional micropolar material, the generalized Mises effective stress can be 

defined as (Xun et al. 2004): 

2 ' '
( ) ( ) 3 32

3 1
)

2eff
m

m m
lαβ αβ α ασ σ σ

� �
= +� �

� �
            (15) 

where )2,1,( =βα , and '
( )αβσ means the symmetric part of the deviatoric stress, ml is 

the intrinsic characteristic length introduced by the micropolar effect, another length 

scale sl associated with the interface effect also appears in the overall elastic moduli 

(see Appendix). Without loss of nonlocal feature, the micropolar plasticity in this paper 

is simplified to highlight the interaction of the two size-dependent mechanisms, the 

skew-symmetric part of stress is assumed to not trigger plasticity, and the elastic and 

plastic micropolar intrinsic lengths are set to be equal. A more general plastic method 

for a micropolar composite is discussed in Liu and Hu (2005). From the general 

equation (14), we can let the matrix’s moduli 0µ and 0 0( )β γ+ have independent 
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variations, which lead to: 

2 2
20 0

( ) ( ) 0 ( ) ( )2 2
0 0

1
= 2

1
C C

m
C C

k
f kαβ αβ αβ αβ

µ µ µσ σ
µ µ µ
� 	∂ ∂′ ′ ′ ′< > Σ Σ + Σ
 �− ∂ ∂� 

2
0 0

3 3 0 ( ) ( )2
0 0

( )
=

2(1 ) ( )
C

C

m m
fα α αβ αβ

β γ µ
µ β γ

+ ∂ ′ ′< > Σ Σ
− ∂ +

(16) 

Where Cµ Ck are the effective in-plane shear and bulk moduli for a fiber micropolar 

composite with the interface effect, their expressions are given in Appendix. 

Finally the average Mises stress of the micropolar matrix defined by equation (15) 

can be evaluated by 

22 2
2 2 20 0 0 0

0 2 2
0 m 0 0 0

1 1 3
(1 ) 2 ( ) (1 )

C C C
eff e m

C C C

k
f l f k

µ µ β γ µ µσ
µ µ µ β γ µ

� 	� �∂ + ∂ ∂< > = + Σ + Σ
 �� �− ∂ ∂ + − ∂
 �� ��  ,
  (17) 

where 
( ) ( )

2 ' '3 / 2e αβ αβ
Σ = Σ Σ , 2/ααΣ=Σm  are respectively the overall Mises and 

hydrostatic stress. Equations (14) or (17) are rigorous and universal to any 

microstructure, providing that a reasonable estimation of the elastic effective 

compliance CM  is available ( Mori-Tanaka estimation is adopted in this paper).  

4. Nonlinear stress-strain relation for micropolar composite with interface effect 

4.1 Secant modulus method with second stress(couple)moment 

Plastic deformation will be developed in the matrix when the applied macroscopic 

stress exceeds the initial yield stress. In order to consider the weakened constraint power 

of the plastic matrix on the fiber, the secant moduli method based on second order stress 

and couple stress moment will be utilized (Liu and Hu, 2005). Of cause other linearized 

approaches can also be utilized (see Dormieux et al. 2002), however in this paper we 

will focus on the interface effect and nonlocal effect.    

For the micropolar matrix, a power-law deformation version of plasticity can be 
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written as, with help of the generalized effective stress defined by equation (15): 

n
epyeff hεσσ += ,          (18) 

where epε means the effective plastic strain, h and n are the plastic material constants. 

For a certain plastic state characterized by effσ , the secant moduli of the matrix material 

can then be defined as (in plane strain case): 

eff
n

yeff

s

h σσσµ
µ

/]/)[(3)/1(
1

/1
0

0 −+
= ,  κκ =s

0 ,  

0 0 0 / 3s sk K µ= + ,  2
0 0 0( ) 2s s s

mlβ γ µ+ = ,         (19) 

where the superscript s represents the secant quantities and 0K denotes the bulk modulus.  

The procedure for evaluating the overall nonlinear stress-strain relation by the 

secant modulus scheme is summarized as follows: for a given macroscopic stress sym
� , 

at which the matrix has entered into plastic state, for a tested average effective stress of 

the matrix 0effσ< > (> yσ ), the secant moduli of the matrix can be evaluated by 

equation (19). We consider a linear comparison composite, it has the same 

microstructure and fiber’s property as the actual nonlinear composite, however, its 

matrix has the secant moduli of the actual matrix in the nonlinear composite. The 

compliance tensor sym
CM of this linear comparison composite can be determined from 

equation (10). The average Mises stress of the micropolar matrix for the linear 

comparison composite can then be evaluated with help of equation (17) for a given 

applied load sym
� . The moduli of the linear comparison composite are interpreted as the 

secant moduli of the actual composite. By repeating sym
� , the nonlinear stress and strain 

relation of the composite material can then be established.    

4.2 Numerical examples 

In this section, some numerical calculations are performed in order to illustrate the 

previous theoretical formulations. An aluminum matrix containing cylindrical voids 

)3.0,0( 11 === fκµ  is chosen as the sample composite material, so the interface is a 
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free surface of the matrix material. The matrix elastic constants 

are 0 0 23GPaµ κ= = , 0 57.5k GPa= , 2
0 0 0( ) 2 mlβ γ µ+ =  The plastic material constants 

MPay 250=σ 81073.1 ×=h , 455.0=n  are assumed. For convenience, we 

let sm ll δ= . The surface properties are taken from Sharma and Ganti (2003). Two sets 

of the surface moduli are examined, namely,  

I:  6.842 ,  0.3755s sN m N mλ µ= = −  for the surface [1 1 1];  

II: 3.489 ,  6.2178s sN m N mλ µ= = −  for the surface [1 0 0].  

We note that for the type II surface the compliance tensor sM can be negatively definite, 

which may lead to some instabilities, this will be discussed in section 4.3. 

Generally speaking, the interface and high-order material constants (equivalently 

ml and sl ) are difficult to be determined by a direct method either through the 

experimental or theoretical way. However it is usually accepted that the interface length 

is of nanometer scale, and the nonlocal length of micropolar plasticity is of micrometer 

scale. To predict nonlinear overall behavior of a composite material, these constants 

should be at hand in advance, or be fitted from the overall experimental curves. 

 Under uniaxial loading, the normalized composite yielding stress as function of the 

void radius are shown in Figures 1 and 2 for the two types of the surface, respectively. 

As shown by Xun et al. (2004), for the micropolar effect, the predicted yielding stress 

always increases with decreasing void size. For the surface of the type I, nonlocal effect 

and surface effect are synchronized, and the yielding stress increases with the decrease 

of the void size. With the increase of the parameterδ , the size influential zone becomes 

large, and the size-effect is dominated by the nonlocal effect. For the surface of the type 

II, the size-dependence due to the nonlocal and surface effect are desynchronized, and a 

decrease of the yielding stress is predicted when the void size is smaller than a critical 
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value, however for the case of large void size, again the nonlocal effect dominates. 

 Figure 3 shows the predicted yielding surfaces with the different effects, the 

inclusion size is set to be 3 sR l=  and 1=δ is used. It is found that the surface of the 

type I or II strengthens or weakens the composite, respectively, however nonlocal effect 

always predicts a strengthening effect. It is interesting to note that the interface effect 

leads to a significant size-dependence for a hydrostatic loading, this is beyond the 

capacity of micropolar theory.  

    The predicted macroscopic uniaxial stress-strain relations are given in Figure 4 for 

the surface of the type I, in the computation, 3 sR l= and 1=δ . It can be seen that for 

the surface of this type the interface effect leads to a significant strain hardening 

behavior, especially for small void size. Tensile stress-strain relations with variousδ  

are illustrated in Figure 5, both nonlocal and interface effects are present, it is found that

hen δ  exceeds 10, the micropolar effect dominates the size-dependence of the overall 

behavior. 

4.3 Discussion on instability of the type II interface 

 In the computation, we found that for the surface of the type II, some instabilities 

can happen at certain condition. The reason is that the calculated effective moduli and 

second order stress moment can turn to negative values. In fact, as mentioned previously, 

the interface compliance tensor sM can be negatively definite for the type II interface, 

consequently the interface elastic energy : :s s s� M � can also be negative. This usually 

doesn’t break the thermodynamic stability since an interface cannot exist independent of 

the bulk material and the total energy (bulk+interface) is positive (Shenoy, 2005). 

However it is possible through equation (13), that the total energy of the RVE can be 

negative for the type II interface when the void radius is below some critical values, 

especially when the volume fraction of void is high, or the bulk material experiences 

weakening. The similar problem was also discussed by Tian and Rajapakse (2007), 
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where they find when the void size is below some critical values, the stress on the 

negative surface tends to be infinite, which is impossible in physical reality. 

 To examine the basic features of the instability, the overall uniaxial stress-strain 

relation of a Cauchy matrix with the type II surface are plotted in Figures 6 and 7 for 

void volume fractions 10%f =  and 30%  respectively. The stress-strain curves are 

evaluated for different void sizes, and the instable point is determined when the tangent 

modulus equals zero. For a certain void radius (for example 8 sR l= in Figure 6), the 

composite material is stable at elastic state, with the development of plasticity, the 

matrix is weakened, the whole material turns to unstable at about 11 0.0075E = . It can 

be found that composites with larger voids can undergo more plastic deformation before 

reaching the critical points. When the void size is too small, the composite is originally 

unstable even in pure elastic state. Comparison of Figures 6 and 7 implies that for the 

same void radius, instability is reached earlier for higher volume fraction of voids. 

Figure 8 illustrates the comparison of the critical points for a Cauchy and a micropolar 

matrix. The trends are identical for the both material models, however it is more stable 

for the micropolar composite due to its strengthening effect.  

5. Conclusions 

 We propose an analytical method to examine the influence of the nonlocal and 

interface effects on the size-dependent plastic behavior for composite materials. The 

nonlocal effect is considered by idealizing the matrix as a micropolar continuum model. 

The perturbation method for a micropolar composite with the interface effect is 

rigorously established, it is used to estimate the average second order stress/couple 

stress moment of the matrix material. The overall nonlinear behavior of a micropolar 

composite with the interface effect is estimated through a secant modulus scheme. The 

application of the presented method to composites with cylindrical voids shows that 

both nonlocal and interface effects have a significant influence on the size-dependent 

yielding surface and the strain hardening behavior. The interface effect can predict a 
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strong size-dependence for a hydrostatic loading. When the void size tends to be large, 

the influence of the interface effect becomes small, then micropolar effect dominates. 

Finally classical prediction can be recovered for infinite void size, as expected. The 

interface of the type II can trigger instability of the composite, and the unstable strain 

depends on the void size, its volume fraction and also on the weakening of the bulk 

material during plastic deformation.  
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Appendix 

Based on the solution of a two-dimensional single inclusion embedded in a 

micropolar media with the interface effect, the closed-form expressions for the overall 

in-plane bulk and shear modulus for a cylindrical fiber reinforced composite can be 

obtained by MTM method: 

1 0 0 0 0 0

0 1 0 0

2 (1 / ) [2(1 ) ( / )(1 / )]
2(1 ) 2 [2 ( / )(1 )]

C s

s

k k f k f l R f k
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                (A1) 

where ik and iµ  ( 0,1)i = are the in-plane bulk and shear moduli for the matrix and 

fiber, respectively. R is the radius of the fiber, 2
0 0 0( ) /(2 )ml β γ µ= +  and 

0( 2 ) /s s sl λ µ µ= +  are the two intrinsic lengths due to the nonlocal and the interface 

effect, and 1/ 2
0 0 0[( ) /(2 )]mg l κ µ κ= + . Other quantities in (A1) read as follows 

0 0 2 1 1 1 2 2 1( / ),    ( / ),    ( / ),K R g K R g K R gζ ζ ζ= Η = Η = Η  

3 3 2 0 4 2 3 5 2( / ),    ( / ),    ( / )K R g K R g K R gζ ζ ζ′ ′= Η = Η = Η  

where ( )iK •  is the thi  order second type modified Bessel function and  
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Figure captions 

 

Fig.1 Normalized overall yielding stress as function of void radius for different δ  

values, surface of the type I, uniaxial tension, 30%f = . 

 

Fig.2 Normalized overall yielding stress as function of void radius for different δ  

values, surface of the type II, uniaxial tension, 30%f = . 

 

Fig.3 Comparison of macroscopic yielding surfaces predicted with or without 

micropolar and interfacial effect, 3 sR l= 1=δ , 30%f = . 

 

Fig.4 Overall uniaxial stress-strain curves predicted with or without micropolar and 

surface effect of the type I , 3 sR l= 10δ = , 30%f = . 

 

Fig.5 Overall uniaxial stress-strain curves for different δ values, both micropolar and 

surface effect of the type I are present, 3 sR l= , 30%f = . 

 

Fig.6 Critical unstable points versus void radius for Cauchy matrix and surface effect of 

the type II, 10%f = . 

 

Fig.7 Critical unstable points versus void radius for Cauchy matrix and surface effect of 

the type II, 30%f = . 

 

Fig.8 Comparison of critical unstable points for Cauchy and micropolar matrix with 

surface of the type II, 10δ = , 30%f = . 
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