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Summary. For a two-phase isotropic composite consisting of an isotropic matrix and randomly oriented
isotropic ellipsoidal inclusions, Mori-Tanaka's (MT) [6] method and the more recent Ponte Castaneda-
Willis (PCW) [1] method are perhaps the only two methods that deliver explicit results for its effective
moduli. An attractive feature of the MT method is that it always stays within the Hashin-Shirikman [3]
bounds, while the novel part of the PCW approach is that it has a well defined microstructure. In this
paper, we made a comparative study on these two models, for both elasticity and their applications to
plasticity. Over the entire range of inclusion shapes, the PCW estimates are found to be consistently stiffer
than the MT estimates. An investigation of the possibility ol a PCW microstructure for the MT model
indicates that the MT meduli could be found from the PCW formulation, but this would require a spatial
distribution that is identical to the oriented inclusion shape. Such a requirement implies that the underly-
ing two-point joint probability density function is not symmetric, and thus it is not permissible. One is led
to conclude that, unlike the aligned case, the MT model cannot be realized [rom the PCW microstructure
with randomly oriented inclusions.

1 Introduction

In a recent paper Ponte Castanieda and Willis (PCW) [1] proposed a method to estimate the
effective elastic moduli of a two-phase composite whose microgeometry can be described by
some statistical distribution functions. A novel feature of this method is that the spatial distri-
bution of inclusions can be separated from the inclusion shape. and the results are explicit.
The development was based on the Hashin-Shtrikman (HS) [2], [3] variational structure put
forward by Willis [4], [5]. While there exist several other promising micromechanical models
— such as the composite sphere and cylinder assemblages, and the generalized self-consistent
scheme — they are somewhat limited in terms of the inclusion shape. The self-consistent and
the differential schemes are both capable of accounting for the effect of inclusion shape, but
the results are implicit.

The only other micromechanical model which is also explicit. and can account for various
inclusion shapes and orientations, is perhaps Mori and Tanaka’s (MT) [6] method. This
method was originally developed with the simple assumption that the perturbed strain in the
inclusions — even at a non-dilute concentration — is connected to the eigenstrain through
Eshelby’s [7] S-tensor of a single inclusion problem. As such, the model was not developed
from consideration of microgeometry. and is in principle reliable only when the inclusion con-
centration is not high. But it turns out that, with spherical inclusions, the MT moduli always
coincide with the HS lower (or upper) bounds when the matrix is the softer (or harder) phase
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[8]. and that with randomly oriented spheroidal inclusions the effective moduli also always
stay within the HS bounds as the shape of the inclusions changes from sphere to fTat disk [9].
With two isotropic phases, the MT moduli never violate the bounds even at high concentra-
tion. Several of its basic properties are also consistent with Walpoles [10], [11] theory for an-
isotropic phases [12]. Moreover, with aligned ellipsoidal inclusions, it is now known to possess
the Willis [4] microgeometry in which the inclusion distribution and the inclusion shape are
jointly accounted for by the same ellipsoidal function [1], [13].

While the microgeometrical affiliation of the MT model in the aligned case is now under-
stood, its position in the randomly oriented case remains unclear, apart from the fact that it
never violates the HS bounds. The availability of the PCW microstructure with randomly
oriented inclusions now permits one to examine the MT estimates one step further, at least to
the extent whether the M T estimates are higher or lower than the PCW estimates. The explicit
nature of both models also renders themselves particularly suitable for applications to the
clastoplastic behavior of a composite through a scheme recently developed by Ponte Casta-
fieda [14], Suquet [15). Tandon and Weng [16], and Qiu and Weng [17] in conjunction with Hu
[18]. This will be the second focus of this study. At the end some observations will be made on
whether the MT model has a realizable microstructure from PCW’s formulation.

2 General formulae of the PCW and MT methods

To put the present study in proper perspective it is useful to recall the PCW theory first. More
complete account should of course go to the original work. The MT method has been recited
by Weng [8]. [12]. and Benveniste [19], among others, and thus it will not be repeated here.

Let the moduli tensors of the matrix and inclusions be denoted by Ly and
L, (r=1,...N), respectively, and the inclusions are taken to be ellipsoidal in shape. A uni-
form macroscopic strain tensor & is prescribed on the representative volume element of the
composite. The distribution of the inclusion is also taken to possess an ellipsoidal symmetry:
that is. the conditional probability density function p*(2”) can be written as
P = (247 - £'), which represents the probability density for finding an inclusion r
centered at z given that there is an inclusion s centered at 2/, with 2" = = — 2. The matrix Z;”
defines an ellipsoid €, = {x : |Z, : x|" < 1} for each inclusion, serving to characterize the
distribution of inclusions. Inside the ellipsoid €, p"* = 0. The estimates or bounds for the
effective moduli tensor of the composite then can be written as

Lpew = Lo+ L., (1)
N

where L is determined by 7= 3 ¢,77 = L: & and ¢, is the volume concentration of inclu-
r=1

sions of type ». The piccewise uniform polarization stress 77 in the phase or orientation r satis-

fies

N
[(Ls = Lo} " + B =) e P 7 =&, (2)
=
where P = [T9(x—a')da’ with @ € @7, and P/~ = [ & —a')dz" with = € Q. In
i1 g

addition T"(x — ') is the modified Green’s function for the infinite medium with a stilfness
tensor Ly, and Q7 is the region occupied by the inclusion of type r. From the definition of con-
ditional probability one has P, = ;™.
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When the distribution of the inclusions is taken to be the same for all inclusion pairs
(i.e.. Q" = Q4 or Py = Py forall r,s = 1,... N), the effective moduli tensor can be written
simply as

N | N
Lpew = Ly + [1 - Z -"1-7'.-]’(1] [Z f'rTr] . (3)
=il =]

where 7}, = [(L, — L)+ P ! and I is the fourth-order identity tensor.
For comparison, Mori-Tanaka’s moduli can also be cast into [8]. [12], [20]

N N 1

Larr = Ly [f -+ Z .0 ([ N Z (',S,Q,,) ] . (4)
ri=) =

where

Qi = [(Ly — Lo) 8; + Lo] " (Ly — L) , (5)

and S, is Eshelby’s tensor lor the inclusion of type r.

3 A two-phase isotropic composite containing randomly oriented isotropic ellipsoidal
inclusions

We now focus on the declared problem: a two-phase composite consisting of an isotropic
matrix and randomly oriented isotropic ellipsoidal inclusions. The foregoing summation pro-
cess then can be replaced by the orientational average <. >, and the PCW moduli can be

rewritten as
Lpew = Ly + ('(l] - <T> P,f] I <T >, (6)

where ¢ is the volume concentration of phase 1 (inclusions) and the subscript » in 7" has been
dropped for brevity. The values of P> and P; are related to Eshelby’s S through as
P, = SLo " and P; = S;L"" in the local oriented axes. with S and S, further related to the
aspect ratios w and wy of the ellipsoids §2 and €, respectively (the subscript d will continue to
be carried to designate the spatial distribution).

With the additional relation 7' = Ly@Q, the PCW moduli can be recast into

Lpew = Lo{T + i< Q@ >7' =¢84 7'} (7)
On the other hand, the MT moduli can also be evaluated with the orientational average as

Lyr=Lo[l +ei{<@>"—e1 < 8@ >< Q@ >"H7]. (8)

Then with the help of the identities

Q8= T'= QUL = Li) By, 8Q'=T=(Li = Ed) " LoQ (9)

it leads to

Lyp= Lo{l 4+ e[(1 = 1) < @ > +e(Ly — Lo) ' Lo '} (10)

At this stage it is instructive to cast the PCW and MT moduli — (7) and (10). respectively —
in terms of the bulk and shear components. When the distribution of the ellipsoids is taken to



34 G. K. Huand G. J. Weng

be spherically symmetric as considered in [1], one has

i 1. 0 24-5
S.ri = (Oillu ﬂ(_]) [ with ey == —ﬂ { ffn == ! 5
31— nl =y

(11)

where 1 1s Poisson’s ratio ol the matrix. Furthermore, in terms of the bulk and shear moduli
of the phases, one has Ly = (3%, 2j), Ly = (3321, 2u1), and (Ly™ 'Ly — 1) = B /(31 — ),
s/ (pt1 — po)|. The orientational average of < @ >"! can also be cast in an isotropic form.

<Q>"'=(Qa, Qn). (12)
so that
e _ — .

l:'ﬂ[i -1 +Q" ii[.m“ . u:;lu — 14 T _I,.[;,»“ . (13)
and
MMT - § 4 . . DM - . (14)
#) (1 —e1) Qa + erxno /(1 — #) Hiy (1 —e1) Qs+ evpo/ (i — i)

Evaluation of < @ > leads to

s 1
Qe=a+3=, Qg=-, (15)
oy e
where
- A0 b. b= _Ho !
®1 — Ay M — My

dy = 3b+ 2(S11) — Suss — Sz — Siziz + Suam) -
dy = b +b(2S1111 — 251212 + Saasa) — 2081335511 — Sirni S + Si2129553) »

_ 1 [ A{b+ Sz + Simz) | 3la+b) + 4511 + 251133 — 451212 + 25331 + Suaw
5 | (b+2512) (b + 251313) ady + 3d;

. (16)

with direction-3 representing the symmetric axis of the spheroid.

When the inclusions are spherical, both Lpey and Ly coincide, as expected, and they
are the HS lower bounds if the matrix is the solter phase. When the inclusions are the ran-
domly oriented flat disks with the aspect ratio w = 0 (Sygzs = 1, Sz = Syase = /(1 — my),
Ssig1 = Syage = 1/2). the MT moduli coincide with the HS upper bounds (if the matrix is the
softer phase), and the PCW moduli yield

p o M+’ C1
Cpow = #o -+ € 3 = ;
(Z| —}'.’”) (KU +Z;') 0 4 o

(17)
H i’ [&]
tpew = iy + © - — 1
prrew '/[(m — o) (o + p1*)  po + un‘]
where
4 o (9% < Bpi)
‘__':—— = = b 1 ,,ﬁ:—-. 18
= e = e + 2,) (18)

This pair of moduli actually lies above the HS upper bounds, but as the allowable range of ¢
at w = (0 is equal to zero, they cannot be used at all.
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Indeed lor consistency with the hypothesis of impenetrability of the inclusions, it is impor-

tant to observe the safe range of the volume concentration ¢; at a given w, as stated by Ponte
Castaneda and Willis [1]:
e <w if w<l; and o < (l/w)"e if w>1. (19)
Within this range, the spheroids €, will completely enclose the inclusion, and the calculated
moduli will always stay inside the bounds. Outside this range. such a consequence is nol guar-
anteed. Thus for the limiting case of discs. one can only work with the disc (or crack) density
parameters (with w — 0 instead of w = ().

To shed some light on where the MT moduli stand in light of the PCW moduli, we have
plotted in Figs. | and 2 the effective bulk and shear moduli ol the composite with the aspect

5=
w=0.1 w=10

W'T:" 0

Fig. 1. Effect of inclusion
shape on the bulk mo-
dulus of the isotropic
composite with randomly
oriented spheroidal inclu-
stons: PCW and MT esti-
mates, and HS bounds

Fig. 2. Effect ol inclusion
shape on the shear modulus
ol the isotropic composite
with  randomly  oriented
spheroidal inclusions: PCW
and MT estimates, and HS
c, bounds
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ratios w = 0,0.1, and 10, along with the HS bounds. The material constants used here are
Ey = 70 GPa, vy = 0.3, and E| = 468 GPa, vy = 0.18. The predictions by the PCW method
are found to be consistently higher than the MT method. regardless of the inclusion shape.
The MT moduli, as already demonstrated in Tandon and Weng [9]. all stay inside the bounds.
The PCW moduli always stay inside the bounds within the allowable range of ¢;. The moduli
do not go outside the bounds immediately when ¢; goes beyond this range: for instance with
w = 0.1 the bulk modulus does not go outside the bound at ¢; = 0.1 but stays inside it until
¢ = .46, and with w = 10 it does not go out at ¢; = 0.01 until ¢; = 0.59. These results sug-
gest that the range provided in (19) may well be too “safe”, or too conservative. In reality. the
inclusions — especially needles - could still exist separately from contacting or penetrating into
each other far beyond this range.

The fact that the MT moduli always stay inside the bounds is not to be interpreted that it
is a superior theory. In fact it is impossible to conceive a microstructure with randomly
oriented flat discs (w = () that they will not penetrate into each other, even at a dilute concen-
tration.

4 Plasticity of the two-phase composite

The explicit bulk and shear moduli of the composite given by both theories are particularly
suitable for the evaluation of the effective stress of the ductile matrix through the method pro-
posed by Suquet [15] and Hu [18]. In essence, the methods of Castaneda [14], Suquet [15],
Tandon and Weng [16], and Qiu and Weng [17] in conjunction with Hu [18] all make use of a
linear comparison composite and deliver the same results for the overall stress-strain relations
of the system. Here we follow the approach outlined in [17]. [18] to calculate the elastoplastic
behavior of the two-phase isotropic composite when the linear effective moduli are given by
the PCW and MT methods, respectively,

In the composite system the effective stress of the heterogeneously deformed matrix can be
defined directly as the volume average ol the local effective stress, as [17]

a 9

g, = <o, (@) > == < 8(x)s(z) >, (20)

o oo

where x is the position vector, and s is the deviatoric stress tensor. This effective stress can be
evaluated from the variation of the effective secant compliances tensor M, of the composite
with respect to the variation of its secant shear modulus y* by [18]

. 3 52 i L B
o =0 ——i'““ (,A')a', (21)
1— 1 r_}]t[]'\'

where & is the externally applied stress tensor of the composite.
Under a pure tensile loading 4., it follows that
3 3pn® AdE, 2
(1—c) B O

T,

in terms of 17, the effective secant Young's modulus of the system.
This stress is to be used in the constitutive equation

o, = ay+h- (&) (23)
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to determine the magnitude of the effective plastic strain e,”. Here, o, h, and n are the tensile
vield stress, strength coeflicient and work-hardening exponent, in turn. The secant shear mod-
ulus is related to the secant Young’s modulus £, and secant Poisson’s ratio 1°, through

.E(]h 1 :‘.,.i‘ = . 1 1 En'k
.."‘:7. E": ‘+—\” . )t == — — = 2*‘
1o 201+ 20°) ) B oy heleh) :I 0] 5 (2 lu) B, (24)

These secant moduli are to be identified with the elastic moduli of the matrix in the preceding
sections for the evaluation of M, (or M there).

At a given applied stress &, the homogenized effective stress of the matrix. its secant mod-
uli, and the effective secant compliance need to be evaluated iteratively so that the values of
7o £ g™ and M, are consistent with one another. For a more detailed exposition of this
method, one may refer to [17]. [1R].

Once M, is known, the overall strain tensor of the composite follows as

E=Mga. (25)

By increasing the applied stress. the entire stress-strain curve of the system can be obtained.

The difference in the PCW and MT predictions lies in the effective secant compliances ten-
sor of the composite M,, or in the tensile case the secant Young's modulus E.. To illusirate
the difference of their predictions at various inclusion shapes, we have applied both to calcu-
late the tensile stress-strain behaviors of a composite at ¢; = (.2, In these calculations we have
kept the previous elastic constants and used the plastic properties of an aluminum matrix [21],
2210 g, =250 MPua, h =173 MPa, and n = 0.455. The calculated nonlinear stress-strain
curves are shown in Fig. 3. As in the elastic case. the predicted elastoplastic behaviors by the
PCW method are again higher than the MT method.

To cast the predictions of both methods in some experimental perspective, we have also
calculated the tensile behavior of a silicon-carbide/aluminum system tested by Yang et al.

T T ¥ 1

T
0.00 0.01 0.02 0.03

£
Fig. 3. Effect of inclusion shape on the nonlinear stress-strain relations of an isotropic composite with
randomly oriented spheroidal inclusions: PCW and MT estimates
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Fig. 4. Experimental comparison of the PCW and MT estimates with a silicon carbide/aluminum compo-
site-containing randomly oriented discs with an average aspect ratio w = (1.1

[23]. This system contained approximately 17% of silicon discs with an average aspect ratio of
w=0.1. The properties of the constituents in this case are: Fy =490 GPa, » = 0.17;
Ey = 68.3 GPa, vy = 0.33, 0, = 70 MPa, h = 475 MPa, and n = 0.455. The calculated curves
by the two theoretical models are shown in Fig. 4, along with their experimental data for both
the composite and the matrix. In view of the fact that the microstructure of the real system is
rather complicated (e.g., the precise ellipsoidal shapes and the separation of inclusions), the
predictions by both approaches can be said to lic within a reasonable range of accuracy.

5 Possibility for the MT model to be identified with a PCW microstructure

With aligned inclusions, Weng [13] and Ponte Castafieda and Willis [1] have proved that the
MT model is identifiable with the microstructure of Willis [4], in which the distribution func-
tion of the inclusions is identical to the inclusion shape itself. In this final section, we ask: Is
the MT model identifiable with the PCW microstructure when the inclusions are randomly
oriented?

The discussion in [1] and the foregoing comparison have clearly demonstrated that, when
the distribution Tunction of inclusions is defined by an isotropic [unction or a sphere as repre-
sented by the white circles in Fig. 5a, the PCW model is distinetly different from the MT
model. The other possible distribution function that can also give rise to an overall isotropy is
one that takes the shape of the oriented inclusion itself, as sketched in Fig. 5b. Such an orien-
tation-dependent distribution will bear a similar structure as in the 1-D aligned case when MT
coincides with Willis [4]. With it. it appears quite possible that the corresponding PCW mod-
uli could coincide with the MT moduli.
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a b

Fig. Sa. Spherical distribution and b ellipsoidal distribution of randemly oriented inclusions

We [irst explore whether the PCW formulation with such a distribution function would
indeed give rise to the MT moduli. In this case €, = Q" (the superscript r refers to the r-th
oriented inclusion), and this leads to P;* = P,". In the local oriented coordinates, it has
P;" = P (all the inclusions have the same form). As such, the PCW moduli tensor. denoted by
L'pcyy» becomes

Loow =Lo+ell —aa<TP>]" <T>. (26)

Furthermore, with the additional relations between 7" and @, and P and S. and the isotropy
ol Ly. it can be recast into

Lpow = Lo{l +a[< Q> —a < Q> < Q85 >] '} (27)

The orientational average on Q5 — in light of the identity (9) — operates only on Q. After
some algebra it turns into

Lpew = Lo{l +ai[(1 —e1) <@ > ' ber(Ly = Ly) 'lLu] I} = L. (28)

That is, if the distribution function of an oriented ellipsoid is tuken to be identical to its
own shape and orientation, the MT moduli can be derived from the PCW formulation. This
outcome is consistent with that in the aligned case.

However, by taking the distribution [unction of an oriented inclusion to be identical Lo its
own shape, it implies that €, = ©". This would also imply that Q2,7 = Q*. As 0" # % in the
global coordinates, one [inds that £, # P, The joint probability density function is thus
not symmetric, and this is, unfortunately, in violation to its basic definition.

One is led to conclude that, with randomly oriented ellipsoidal inclusions. the MT model
cannot be realized from the PCW microstructure.

It remains an open question whether the microstructure depicted in Fig. 5b can be
described by another formulation.
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