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Abstract

An analytical model is proposed to examine the stress transfer for a Shape Memory Alloy (SMA) fiber pulled out from an elastic matrix,

the transformation characteristic of the SMA fiber and the influence of temperature are considered. The embedded SMA fiber is divided into a

full transformation region, a partial transformation region and an intact region. The shear-lag model is utilized to analyze the stress

distribution during the pulled-out of the SMA fiber. Compared to an elastic fiber pulled out from an elastic matrix, the transformation induced

in the SMA fiber significantly lowers the axial stress, and the lateral contraction due to the transformation increases significantly the radial

stress. Temperature has also an important influence on the stress distribution by alternating the transformation characteristic of the SMA

material. The obtained results are then applied to analyze the bridging effect due to the SMA fiber, the computed results show that an increase

of temperature decreases the stress intensity factor, which is in agreement with experimental observation in the literature. These results are

useful for the design of intelligent composite materials.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Shape Memory Alloys (SMAs) can undergo a reversible

phase transformation under a proper thermo-mechanical

loading, they are widely used as actuators or sensors in active

composite materials. For example in form of fibers, they can

be embedded into a matrix material to form SMA composite.

This composite, with a careful design, can have the desired

properties, such as very low thermal expansion under thermal

loading [1]. SMAs are also widely used in vibration control

systems [2,3], for more applications, one can refer to the

review paper given by Birman [4]. The mechanical response

of a composite with SMA fibers has been recently studied by

Song et al. [5]. The shape memory alloy (SMA), which is an

effective actuator in smart structures, is often embedded in a

host material. If a crack is initiated in the matrix, SMA fibers

can be used to prevent crack propagation and even to close

the generated crack [4], this concept is demonstrated
1359-835X/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compositesa.2005.01.001

* Corresponding author. Tel.: C86 106 891 2731; fax: C86 106 891

4780.

E-mail address: hugeng@public.bta.net.cn (G. Hu).
experimentally by Eisaku [6]. One of the key issues is

the requirement of good stress transfer between SMA fiber

and host material, Jonnalagadda et al. [7] examined

experimentally the local stress transfer for a SMA fiber

embedded in a matrix material. For a SMA ribbon pulled-out

from a host material, Jonnalagadda et al. [8] performed an in

situ displacement measurements, they also proposed the

corresponding numerical analysis for this pulled-out process,

the theoretical results compared favorably with the exper-

imental results. To examine the bridging effect due to SMA

fibers, the bridging law, determined by analysis of a SMA

fiber pulled out from a host material, is needed, however, an

analytical method for this process is not available.

Stress transfer between fiber and matrix is one of

fundamental issues for a composite system. Over the past

few decades, there were a large amount of publications

devoted to better understanding this mechanism. The shear-

lag model is widely accepted and utilized to analyze this

stress transfer [9,10], the accuracy of this method has been

discussed by Nairn [11]. Many refined shear-lag models have

been developed since then, to cite a few for example,

Hutchinson et al. [12] proposed a systematic analysis for
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Fig. 1. Transformation diagram of a SMA material.
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a transversely isotropic fiber pulled out from an elastic

matrix, Hsueh [13] gave also a method, in which the radial

dependences of axial stresses in both fiber and matrix were

included. Fu et al. [14] advanced a more refined model, which

satisfies necessary conditions such as equilibrium equations,

boundary condition and continuity condition, fiber’s inter-

action is also taken into account. Most of these works are

concerned with stress transfer mechanism for an elastic fiber

and an elastic matrix, only few tackle the nonlinear fiber or

matrix [15–17]. The objective of this paper is to propose a

simple analytical model for a SMA fiber pulled out from an

elastic matrix, and to get some basic insights on influence of

different parameters, and then the results are utilized to

calculate the corresponding bridging law necessary for a

subsequent analysis.

The manuscript will be organized as follows: the

theoretical analysis of a SMA fiber pulled out from an

elastic matrix will be presented in Section 2, in which the

transformation characteristic of the SMA material, model

assumptions are explained in details; some numerical

applications for analyzing the influence of different

parameters, such as volume fraction of SMA fibers and

temperature, are also provided. In Section 3, the influence of

SMA fiber bridging on stress intensity factor will be

examined, and followed by a summary in Section 4.
2. Stress transfer for a SMA fiber pulled out
from an elastic matrix
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Fig. 2. Sketch of the model.
2.1. Constitutive relation for a SMA fiber

In this paper, the three-dimensional constitutive equation

proposed by Lagoudas et al. [18] will be utilized. During the

forward transformation (Austenite–Martensite), the trans-

formation strain can be written as

3t
ij Z Lijx (1)

where the transformation tensor is given by

Lij ZK
3

2

U

Ef
�sK1s0

ij (2)

and �sZ ð3s0
ijs

0
ij=2Þ

1=2, the deviatoric stress s0
ij is defined by

s0
ij Zsij Kskkdij=3, U/Ef is the maximum transformation

strain, x is the volume fraction of the martensite during the

forward transformation, and it is related to stress and

temperature by [18]

x Z 1 Kexp½aMðMos KTÞCbM �s�; Mf %T %Ms (3)

where aM Z lnð0:01Þ=ðMosKMofÞ, bMZaM/CM and CM is

the influence coefficient of the martensite. Mos, Mof are the

martensite transformation start and finish temperatures in a

stress-free state, respectively; Ms, Mf are those under the

stress �s. A sketch of the transformation diagram for a SMA

material is illustrated schematically in Fig. 1.
For an initial austenite state, once transformation from

austenite to martensite takes place, the resulted SMA

material is in fact a mixture of the martensite and the

austenite phases. Its overall properties such as the modulus,

Poisson’s ratio and thermal expansion coefficient have to be

determined by a proper micromechanical approach [19–21],

or simply by a mixture law [18]. In this paper, the Young’s

modulus, Poisson’s ratio and thermal expansion coefficients

of the martensite and the austenite are taken to be the same.

(Note: in NiTi polycrystal, the Young’s modulus of

austenite is the same order as that of the martensite). The

purpose of the above assumption is to simplify the

subsequent analysis and to make an analytical solution

possible. Furthermore, a linear expansion of Eq. (3) is made

for further simplification

x Z 1 K ðexp½ �aMðMos KTÞ�Cexp½ �aMðMos KTÞ� �bM �sÞ;

Mf %T %Ms ð4Þ

where �aM; �bM
are the constants to better fit Eq. (3).
2.2. Description and assumptions of the model

As shown in Fig. 2, a two concentric cylinder model is

employed to elucidate the stress transfer mechanism between

a SMA fiber and its host material. A stress sa is applied on the

SMA fiber, the other end is assumed to be stress free (no end

stress). The bottom side of the cylinder is fixed and the outer
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lateral surface of the cylinder is taken to be stress free. A

pressure can be included without any difficulty to simulate

residual stress or finite concentration of the SMA fibers.

The whole problem is axisymmetric, the radii of the fiber and

the outer cylinder are denoted by a and b, respectively.

Due to the applied stress sa and the constraint of the

matrix, transformation will take place in the SMA fiber.

Here for simplification, no debonding is allowed in the

analysis. The embedded SMA fiber can be characterized as:

a full transformation region of a length L1, a partial

transformation region (L2) and no transformation region

with a length L3, as shown schematically in Fig. 2. They will

be determined in the following analysis.
2.3. Governing equations

Since the problem is axisymmetric, the SMA fiber and

the matrix are both isotropic, and their elastic constants and

thermal expansion coefficients are assumed to be indepen-

dent of temperature The total strain in the SMA fiber is the

summation of the elastic strain, the transformation strain

and the thermal strain induced by temperature variation, so

the relations between stress, strain and displacements are

given by [22]

3i
r Z

vui
r

vr
Z

1

Ei
½si

r Kniðsi
q Csi

zÞ�Cwi3t
r CaidT (5a)

3i
q Z

ui
r

r
Z

1

Ei
½si

q Kniðsi
r Csi

zÞ�Cwi3t
q CaidT (5b)

3i
z Z

vui
z

vz
Z

1

Ei
½si

z Kniðsi
q Csi

rÞ�Cwi3t
z CaidT (5c)

where iZf, m, the superscript m denotes the quantity related

to the matrix and f to the SMA fiber, respectively. wfZ1,

wmZ0, dTZTKT0, T0 is a reference temperature. E, n and a

denote Young’s modulus, Poisson’s ratio and thermal

expansion coefficient, respectively. 3t
nðnZr; q; zÞ are the

transformation strains presented in the SMA fiber, and zero

in the matrix.

The equilibrium equation of an axisymmetric problem is

written as [22]:

vsr

vr
C

vtzr

vz
C

sr Ksq

r
Z 0 (6a)

vsz

vz
C

vtrz

vr
C

trz

r
Z 0 (6b)
2.4. Solution of the problem

The solution of Eqs. (5a)–(6b) leads to the following

expressions for the stresses in the fiber and in the matrix,
respectively:

sm
rj Z

Bj

r2
CCj; sm

qj ZK
Bj

r2
CCj (7)

sf
rj Z sf

qj Z Aj (8)

The index jZ1–3, corresponding to the full transform-

ation region, partial transformation and no transformation

regions, respectively. Aj, Bj and Cj are the coefficients to be

determined, and they are function of the axial position z.

For perfect bonding, the following boundary and

continuity conditions are available

sm
r ðr Z bÞ Z 0; ½sr�rZa Z 0; ½ur�rZa Z 0 (9)

where ½a�ZaCKaK, denoting the jump of the quantity a. In

the following, we will determine the stress distributions in

these three regions.
(a)
 Fully transformed region
Since the interface between the fiber and the matrix

remains intact, and the transformation is complete, this

means from Eqs. (1) and (2) that 3t
z1 ZKU=Ef ,

3t
q1Z3t

r1ZK3t
z1=2. With these transformation strains, and

the boundary and interfacial continuity conditions, it has:

B1

b2
CC1 Z 0;

B1

a2
CC1 Z A1

1

Ef
A1 Knf A1 Csf

z1

� �� �
C3t

q1

Z
1

Em
K

B1

a2
CC1 Knm B1

a2
CC1 Csm

z1

� �� �
C ðam KafÞdT ð10Þ
(b)
 Partially transformed region
In this region, the transformation is incomplete, the

transformation strain depends on volume fraction of

martensite in the SMA fiber, in turn on the stress state and

temperature in the fiber. With help of the transformation

characteristic of the SMA fiber (Eqs. (1), (2) and (4)), and

the stress state in the SMA fiber (Eq. (8)), the transformed

strain can be expressed by: 3t
q2ZDt21qCDt22qðA2 Ksf

z2Þ,

and Dt21q Z ðU=2EfÞK ðU=2EfÞexp½aMðMosKTÞ�, Dt22qZ
KðU=2EfÞ �bM

exp½ �aMðMosKTÞ�.

The boundary condition and the continuity conditions

provide the following equations to determine the unknown

coefficients:

B2

b2
CC2 Z 0;

B2

a2
CC2 Z A2

1

Ef
A2 Knf A2 Csf

z2

� �� �
C3t

q2

Z
1

Em
K

B2

a2
CC2 Knm B2

a2
CC2 Csm

z2

� �� �
C ðam KafÞdT ð11Þ
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(c)
 No transformation region
Since there is no transformation in this region, the

boundary and continuity conditions provide:

B3

b2
CC3 Z 0;

B3

a2
CC3 Z A3

1

Ef
A3 Knf A3 Csf

z3

� �� �
Z

1

Em
K

B3

a2
CC3 Knm B3

a2
CC3 Csm

z3

� �� �
C ðam Ka

fÞdT ð12Þ

In above equations, sm
zj ; sf

zj are, respectively, the average

stresses in the matrix and in the fiber in a plan perpendicular

to z-axis, they depend on the axial position z. The global

equilibrium relation gives

sm
zj ðzÞ Z gðsa Ksf

zjðzÞÞ (13)

where g characterizes the volume ratio between SMA fiber

and matrix, defined by gZa2=ðb2Ka2Þ. From Eqs. (11)–

(13), Aj, Bj and Cj can be expressed as functions of the axial

stress in the fiber by:

Aj Z Dj CGj �s
f
zjðzÞ; Bj Z gb2aAj; Cj ZKgaAj (14)

The coefficients Dj and Gj are, respectively

D1 Z ½3t
q1 Cðaf KamÞdT Cagnm �sa�=

ðK1K2gaKaCnf KanmÞ

D2 Z ½Dt21q Cðaf KamÞdT Cagnm �sa�=

ð1K2gaKaCnf Kanm CDt22qEfÞ

D3 Z ½ðaf KamÞdT Cagnm �sa�=ðK1K2gaKaCnf KanmÞ

G1 ZG3 Z ðKnf KagnmÞ=ðK1K2gaKaCnf KanmÞ

G2 Z ðKnf Kagnm CDt22qEfÞ=ð1K2gaKaCnf Kanm

CDt22qEfÞ

where �sf
zjZsf

zj=E
f , �saZsa=E

f and aZEf =Em.

To determine the axial stress in the SMA fiber, here we

will recall the shear-lag model. Take a slice of the SMA

fiber, tj(z) is the interfacial shear stress, the equilibrium of

this slice leads to:

dsf
zjðzÞ

dz
ZK

2

a
tjðzÞ (15)

The shear stress in the matrix tm(r,z) has a Lame’s form

[14], with help of the boundary conditions tm
j ða; zÞZKtjðzÞ
and tm
j ðb; zÞZ0, it can be determined as [14]:

tm
j ðr; zÞ ZK

ðb2 Kr2Þ=r

ðb2 Ka2Þ=a
tjðzÞ (16)

With the constitutive relation of the matrix, and we assume

that the displacement components in the radial and circumfer-

ential directions can be neglected compared to the axial

displacement component [14], then a simplified expression for

the shear stress in the matrix can be written as:

tm
j ðr; zÞ Z Gm dum

j ðr; zÞ=dr (17)

Gm is the shear modulus of the matrix, and integrating

Eq. (17), we get:

um
j ðr; zÞKum

j ða; zÞ ZK
b2 lnðr=aÞK ð1=2Þðr2 Ka2Þ

Gmðb2 Ka2Þ=a
tjðzÞ

(18)

AveragingthebothsidesofEq. (17)over thematrixdomain,

and differentiating the obtained equation with respect to the

coordinate z, together with um
j ða; zÞZuf

j ðzÞ and constitutive

relations for the matrix and the SMA fiber, we have:

1

Em
½sm

zj Knmðsm
qj Csm

rj Þ�CamdT

Z
1

Ef
½sf

zj Knfðsf
qj Csf

rjÞ�C3t
zj CafdT K

g

Gm

dtjðzÞ

dz

(19)

where 3t
z1 ZKU=Ef , 3t

z2ZDt21zCDt22zðA2Ksf
z2Þ, 3t

z3Z0 and

Dt21z ZK
U

Ef
C

U

Ef
exp½ �aMðMos KTÞ�;

Dt22z Z
U

Ef
�bM

exp½ �aMðMos KTÞ�

g Z
1

2
a ð1 CgÞ2 ln

1 Cg

g

� �
K

3

2
Cg

� �� �

With help of Eqs. (13)–(15) and (19), the governing

differential equation for determining the axial stress �sf
zj can be

written in a compact form for the three regions as

d2 �sf
zjð�zÞ

d�z2
Kgj1 �s

f
zjð�zÞCgj2 Z 0 (20)

where �zZz=a, and the coefficients in Eq. (20) are listed in

Appendix.

The boundary and continuity conditions will provide the

necessary equations to determine the integrated constants

�sf
zð0Þ Z �sa; �sf

zðlÞ Z 0 �sf
z1ðl1Þ Z �sf

z2ðl1Þ;

uf
z1ðl1Þ Z uf

z2ðl1Þ �sf
z2ðl1 C l2Þ Z �sf

z3ðl1 C l2Þ;

uf
z2ðl1 C l2Þ Z uf

z3ðl1 C l2Þ

(21)

where liZLi/a, lZL/a.

Since, the phase transformation in the SMA fiber is also

continuous, Eq. (4) further provides the following
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conditions to determine the transformed and partially

transformed region size:

xðl1ÞZ1Kðexp½ �aMðMos KTÞ�Cexp½ �aMðMos KTÞ� �bM �sÞZ1

(22a)

xðl1 Cl2ÞZ1Kðexp½ �aMðMos KTÞ�

Cexp½ �aMðMos KTÞ� �bM �sÞZ0 (22b)

So far, the stress distribution in the three regions can be

completely determined. The solution of Eq. (20), under the

conditions (21) and (22) can be written as for the three regions

�sf
zj ZAj1 CeK

ffiffiffiffi
gj1

p
�zAj2 Ce

ffiffiffiffi
gj2

p
�zAj3 (23)

where Aij are given in Appendix.
distribution in a SMA fiber.
2.5. Numerical application for a pulled out process

We take TiNi SMA fibers and a polymeric matrix (epoxy

material) as an example, the material constants are: EmZ
2.0 GPa, vmZ0.4, amZ75!10K6/8C; EfZ30 GPa, vfZ0.3,

afZ6.6!10-6/8C, T0Z20 8C, MosZ23 8C, MofZ5 8C,

CMZ11.3 MPa/8C, UZK0.91!103 MPa. When TZ
30 8C, �aM ZK0:0758=8C, �bM ZK5206=MPa and TZ408C,

�aM ZK0:0584=8C, �bM ZK3278=MPa. The other material

constants will be specified when used.
2.5.1. Stress distribution without thermal effect

Let dTZ0, Fig. 3 shows the distribution of the normalized

axial stress as function z/L for different volume fractions of

SMA fibers, the applied stress is sa/E
fZ0.02, the embedded

length LZ100 mm. The results with an elastic fiber (it has the

same material constants without transformation) are also

included for comparison. It is seen that the transformation

relaxes significantly the axial stress in the SMA fiber

compared to the elastic case, the volume fraction of fibers

also influences the stress distribution, the larger the volume
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Fig. 3. Influence of fiber volume fraction and transformation on fiber axial

stress distribution.
fraction, the larger the axial stress for both SMA fibers and

elastic fibers. The influence of the embedded length on the

stress distribution is also illustrated in Fig. 4, which shows

that embedded length has also important influence on the

axial stress distribution.

The radial stress distribution along the SMA fiber and the

corresponding elastic fiber at different volume concen-

trations are presented in Fig. 5, it is clearly shown that the

large contraction due to the transformation increases

significantly the radial stress in the transformed region.

This enhanced radial stress in the SMA fiber converges to

the result for the elastic fiber in the no transformation

region, as expected. This large radial stress is detrimental

and tends to open the interface between the SMA fiber and

the matrix, a propagation of a ring crack can then take place.

Fig. 6 gives the volume fraction of the martensite in the

SMA fiber as function of axial position along the SMA fiber,

it can be seen that with an increase of volume fraction of

SMA fibers, the complete transformation zone increases,

there are large partial transformation zones for these two

considered volume concentrations.
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2.5.2. Stress distribution with thermal effect

Two temperature variations are considered TZ30 and

40 8C, corresponding to the temperature variations dTZ10

and 20 8C, respectively. The applied stress is still kept as

sa/E
fZ0.02, and gZ10%. Fig. 7 illustrates the axial stress

distributions in the SMA fiber for the two considered

temperature variations, the comparison with the correspond-

ing elastic fibers with thermal effect is also included. These

small variations of temperature have little influence on the

axial stress distribution for the elastic fiber, however, they

may have significant impact for the SMA fiber. An increase of

temperature delays the martensite transformation, as shown

in Fig. 9, compared to the case of no thermal effect. The radial

stress distribution in the SMA fiber is given in Fig. 8, as

indicated in Section 2.4, the transformation of the martensite

phase leads to a large lateral contraction, and this increases

significantly the radial stress in the transformed region.

Fig. 9 shows the volume fraction of martensite along the

SMA fiber for the two considered temperature variations. It is

seenthatan increaseof temperaturedelays the transformation.

For a constant applied stress, an increase of temperature
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Fig. 7. Effect of temperature on fiber axial stress distribution.
enhances the in situ martensite start and finish temperature,

and makes the SMA material difficult to transform.
3. Bridging analysis
3.1. Stress intensity formulation for SMA fiber reinforced

composites

We consider a two-dimensional plate having a central

crack of a length 2d bridged by SMA fibers (with a bridging

stress sa), the plate is loaded by remote stress sb, which is

shown in Fig. 10. From Ref. [23], the stress intensity at the tip

of the crack KItip can be evaluated by integrating the stress

s(x), acting along the crack (here assuming that the crack is

all bridged), multiplied with a weight function m(x,d):

KItip Z

ðd

0
mðx; dÞ!sðxÞdx (24)

where d is the half crack length, x represents the position on

the crack surface, s(x) consists of the remote applied stress
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different temperatures.
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sb(x) and the bridging stress sa(x) produced by the SMA

fibers. Eq. (24) now becomes:

KItip Z

ðd

0
mðx; dÞ!ðsbðxÞKsaðxÞÞdx (25)

For a straight central crack in an infinite plate, and the

expression of m(x,d) is relatively simple, and it is given by

[24]:

mðx; dÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

pðd2 Kx2Þ

s
(26)

From Eq. (25), we see that the estimation of the bridging

stress sa(x) during loading is the key point to determine the

stress intensity factor.
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3.2. Evaluation of bridging stress

In Section 2, we have proposed a model to analyze the pull-

out process for a SMA fiber from an elastic matrix. Relations

between the applied load on the SMA fiber and fiber

displacement have been derived, which are shown in

Figs. 11 and 12, the force–displacement for the corresponding

elastic fibers is also included for comparison. It is found that

due to the transformation, the force–displacement curve

becomes nonlinear for the SMA fiber, the force–displacement

curves contained two clear transitions with significant change

in slope, the first transition corresponds to the initiation of

transformation in the SMA fiber, and the second transition is

believed to correspond to the formation of a totally

transformed region, these two transitions are also observed

in the experiment [7]. We also compared our prediction with

the experiment performed by Jonnalagadda et al. [7], the

following material parameters given by Ref. [7] are used in

the modeling. When TZ30 8C, we found �aMZK0:0758=8C,
�bMZK5206=MPa and aZ75 mm, bZ950 mm. LeZ1270 mm,

LZ40000 mm. The pulled-out force and displacement relation

was showed in Fig. 13, a good agreement is observed. It is also

found that the influence of temperature on the force–

displacement curve is also significant.

Imagine a central crack in a composite plate reinforced

by SMA fibers, the SMA fiber will impose a stress F on the

surface of the crack. In a continuum approximation, this

procedure is equivalent to apply a distributed pressure sa(x)

to the crack surfaces

saðxÞ Z Fg (27)

where g is the volume ratio between SMA fibers and matrix

as defined previously.

To simplify the subsequent analysis, in the following, we

approximate the force–displacement curves derived from

the pull-out analysis by a linear relation with a fitting

constant A, which depends on the temperature:

u Z AF (28)
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From Eqs. (27) and (28), we have

u Z
A

g
saðxÞ (29)

From Eqs. (25) and (26), it has

KItip Z 2
d

p

� �1=2 ð1

0

sbðXÞKsaðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 KX2

p dX (30)

where XZx/d.

The weight function m(x,b) is a geometry-dependent

function and it can be determined by [21]

mðx; dÞ Z
E 0

c

KItip

vuðx; dÞ

vd
(31)

where E 0
cZEc=ð1Kn2

cÞ for the plane strain condition, and

Ec, nc are the elastic modulus and Poisson’s ratio of the

composite, respectively. From Eqs. (30) and (31), the crack

opening at a given position is determined by the distribution

of the surface tractions [25]:

uðXÞ Z
4ð1 KncÞd

pEc

ð1

X

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 KX2

p !

ðs

0

½sbðtÞKsaðtÞ�dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 K t2

p ds

(32)

With help of Eq. (29), the following equation can be

derived:

A

g
saðXÞ Z

4ð1 Kn2
cÞd

pEc

ð1

X

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 KX2

p !

ðs

0

½sbðtÞKsaðtÞ�dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 K t2

p ds

(33)

Therefore, Eq. (33) provides a condition to determine the

bridging stress distribution along the crack surface. There

are various approximate methods to solve Eq. (33) [25–28].

In this paper, we develop the bridging stress sa(X) into

Taylor series, the computed bridging stresses sa(X)

are illustrated in Figs. 13 and 14 for different conditions.

In the calculation, we assume the half length of the crack is

3 mm, the material constants are the same as in Section 2.

The composite Young’s modulus and Poisson ratio
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Fig. 13. Pull out force and distance curve: modeling and experiment.
were calculated the mixture law: EcZEf f CEmð1K f Þ;

nc Znf f Cnmð1K f Þ, where f is volume fraction of the SMA

fiber and it is related to g by f Zg=ð1CgÞ. The applied load

is kept to be sb/EfZ0.02.
3.3. Influence of temperature variation on stress

intensity factor

It can be expected that an increase of temperature delays

the martensite transformation, so the bridging effect is more

pronounced. Here we impose the macroscopic stress sb/EfZ
0.02, and examine the difference of the stress intensity factor

from the actual temperature to a reference temperature. The

computed results are shown in Fig. 15 for two fiber

concentrations, indeed our calculated results show that an

increase of temperature reduces the stress intensity factor,

which is in agreement with the experimental observation

conducted by Eisaku [6] (Fig. 16).
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4. Conclusions

An analytical model is proposed to analyze the stress

transfer during a pull out of a SMA fiber from an elastic

matrix. Under an applied stress, the SMA fiber is divided into

a fully transformed, a partially transformed and untrans-

formed regions. The stress distributions in each region are

determined by a shear-lag method. Numerical calculations

show that compared to elastic fiber, the transformation in

SMA fiber lowers largely the axial stress, however, the radial

stress is increased significantly due to the lateral contraction

induced by the transformation. The obtained results are then

used to examine the bridging effect due to SMA fibers. The

bridging analysis shows that an increase of temperature

reduces the stress intensity factor, which is in agreement with

experimental observation in literature.
(b) The coefficients Aij
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Appendix
(a)
Þ
�

g21s

1sf
zð

Z

Coefficients in Eq. (20)

g11 Z ð1 Cag K2G1nf K2agG1nmÞ=c

g12 ZðKDt1z C2D1nf C2agD1nm KdTaf

CdTam Cag �saÞ=c

g21 Zð1 Cag K2G2nf K2agG2nm

C ð1 KG2ÞDt22zE
fÞ=c

g22 Z ðKDt21z C2D2nf C2agD2nm KdTaf CdTam

Cag �sa CD2Dt22zE
fÞ=c

g31 Z ð1 Cag K2G3nf K2G3agnmÞ=c

g32 Z ð2D3nf C2agD3nm KdTaf CdTam Cag �saÞ=c

and

c Z
1

4

að1 CnmÞ

ð1 CnfÞ
ð1 CgÞ2ln

1 Cg

g

� �
K

3

2
Cg

� �� �
f
zðx Z 0Þ

�

x Z 0Þ
�

0Þ
�
;
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where �sf
zðxZ1Þ; �sf

zðxZ0Þ are the normalized axial

stresses of the SMA fiber where the martensite volume

fraction equals to 1 and 0, respectively, they are

determined by Eq. (22a) and (22b).
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