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Abstract

An analytical model is proposed to examine the stress transfer for a Shape Memory Alloy (SMA) fiber pulled out from an elastic matrix,
the transformation characteristic of the SMA fiber and the influence of temperature are considered. The embedded SMA fiber is divided into a
full transformation region, a partial transformation region and an intact region. The shear-lag model is utilized to analyze the stress
distribution during the pulled-out of the SMA fiber. Compared to an elastic fiber pulled out from an elastic matrix, the transformation induced
in the SMA fiber significantly lowers the axial stress, and the lateral contraction due to the transformation increases significantly the radial
stress. Temperature has also an important influence on the stress distribution by alternating the transformation characteristic of the SMA
material. The obtained results are then applied to analyze the bridging effect due to the SMA fiber, the computed results show that an increase
of temperature decreases the stress intensity factor, which is in agreement with experimental observation in the literature. These results are

useful for the design of intelligent composite materials.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Shape Memory Alloys (SMAs) can undergo a reversible
phase transformation under a proper thermo-mechanical
loading, they are widely used as actuators or sensors in active
composite materials. For example in form of fibers, they can
be embedded into a matrix material to form SMA composite.
This composite, with a careful design, can have the desired
properties, such as very low thermal expansion under thermal
loading [1]. SMAs are also widely used in vibration control
systems [2,3], for more applications, one can refer to the
review paper given by Birman [4]. The mechanical response
of a composite with SMA fibers has been recently studied by
Song et al. [5]. The shape memory alloy (SMA), which is an
effective actuator in smart structures, is often embedded in a
host material. If a crack is initiated in the matrix, SMA fibers
can be used to prevent crack propagation and even to close
the generated crack [4], this concept is demonstrated
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experimentally by Eisaku [6]. One of the key issues is
the requirement of good stress transfer between SMA fiber
and host material, Jonnalagadda et al. [7] examined
experimentally the local stress transfer for a SMA fiber
embedded in a matrix material. For a SMA ribbon pulled-out
from a host material, Jonnalagadda et al. [8] performed an in
situ displacement measurements, they also proposed the
corresponding numerical analysis for this pulled-out process,
the theoretical results compared favorably with the exper-
imental results. To examine the bridging effect due to SMA
fibers, the bridging law, determined by analysis of a SMA
fiber pulled out from a host material, is needed, however, an
analytical method for this process is not available.

Stress transfer between fiber and matrix is one of
fundamental issues for a composite system. Over the past
few decades, there were a large amount of publications
devoted to better understanding this mechanism. The shear-
lag model is widely accepted and utilized to analyze this
stress transfer [9,10], the accuracy of this method has been
discussed by Nairn [11]. Many refined shear-lag models have
been developed since then, to cite a few for example,
Hutchinson et al. [12] proposed a systematic analysis for
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a transversely isotropic fiber pulled out from an elastic
matrix, Hsueh [13] gave also a method, in which the radial
dependences of axial stresses in both fiber and matrix were
included. Fuetal. [14] advanced a more refined model, which
satisfies necessary conditions such as equilibrium equations,
boundary condition and continuity condition, fiber’s inter-
action is also taken into account. Most of these works are
concerned with stress transfer mechanism for an elastic fiber
and an elastic matrix, only few tackle the nonlinear fiber or
matrix [15-17]. The objective of this paper is to propose a
simple analytical model for a SMA fiber pulled out from an
elastic matrix, and to get some basic insights on influence of
different parameters, and then the results are utilized to
calculate the corresponding bridging law necessary for a
subsequent analysis.

The manuscript will be organized as follows: the
theoretical analysis of a SMA fiber pulled out from an
elastic matrix will be presented in Section 2, in which the
transformation characteristic of the SMA material, model
assumptions are explained in details; some numerical
applications for analyzing the influence of different
parameters, such as volume fraction of SMA fibers and
temperature, are also provided. In Section 3, the influence of
SMA fiber bridging on stress intensity factor will be
examined, and followed by a summary in Section 4.

2. Stress transfer for a SMA fiber pulled out
from an elastic matrix

2.1. Constitutive relation for a SMA fiber

In this paper, the three-dimensional constitutive equation
proposed by Lagoudas et al. [18] will be utilized. During the
forward transformation (Austenite—Martensite), the trans-
formation strain can be written as

t—
&ij = Aijs (D
where the transformation tensor is given by
30

and 6= (30,’»1-0,{]-/2)”2, the deviatoric stress oj; is defined by
a,’-j: 0 — 0k0;/3, Q/E" is the maximum transformation
strain, £ is the volume fraction of the martensite during the
forward transformation, and it is related to stress and

temperature by [18]
£=1—expldM® —T)+ M|, M'<T<M* 3)

where o™ = In(0.01)/(M° — M°), bM=a™/c™ and CM is
the influence coefficient of the martensite. M®*, M° are the
martensite transformation start and finish temperatures in a
stress-free state, respectively; M®, M' are those under the
stress @. A sketch of the transformation diagram for a SMA
material is illustrated schematically in Fig. 1.
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Fig. 1. Transformation diagram of a SMA material.

For an initial austenite state, once transformation from
austenite to martensite takes place, the resulted SMA
material is in fact a mixture of the martensite and the
austenite phases. Its overall properties such as the modulus,
Poisson’s ratio and thermal expansion coefficient have to be
determined by a proper micromechanical approach [19-21],
or simply by a mixture law [18]. In this paper, the Young’s
modulus, Poisson’s ratio and thermal expansion coefficients
of the martensite and the austenite are taken to be the same.
(Note: in NiTi polycrystal, the Young’s modulus of
austenite is the same order as that of the martensite). The
purpose of the above assumption is to simplify the
subsequent analysis and to make an analytical solution
possible. Furthermore, a linear expansion of Eq. (3) is made
for further simplification

£ =1— (expl@M* — T)] + expla"M> — 7)1V 5),
M'<T <M )

where @™, ™ are the constants to better fit Eq. (3).

2.2. Description and assumptions of the model

As shown in Fig. 2, a two concentric cylinder model is
employed to elucidate the stress transfer mechanism between
a SMA fiber and its host material. A stress g, is applied on the
SMA fiber, the other end is assumed to be stress free (no end
stress). The bottom side of the cylinder is fixed and the outer

/_T_Ea

Fig. 2. Sketch of the model.
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lateral surface of the cylinder is taken to be stress free. A
pressure can be included without any difficulty to simulate
residual stress or finite concentration of the SMA fibers.
The whole problem is axisymmetric, the radii of the fiber and
the outer cylinder are denoted by a and b, respectively.

Due to the applied stress o, and the constraint of the
matrix, transformation will take place in the SMA fiber.
Here for simplification, no debonding is allowed in the
analysis. The embedded SMA fiber can be characterized as:
a full transformation region of a length L;, a partial
transformation region (L,) and no transformation region
with a length L, as shown schematically in Fig. 2. They will
be determined in the following analysis.

2.3. Governing equations

Since the problem is axisymmetric, the SMA fiber and
the matrix are both isotropic, and their elastic constants and
thermal expansion coefficients are assumed to be indepen-
dent of temperature The total strain in the SMA fiber is the
summation of the elastic strain, the transformation strain
and the thermal strain induced by temperature variation, so
the relations between stress, strain and displacements are
given by [22]

pooul 1 i i i
€r:ar:E[Ur—v(aﬁ—i-az)]-FﬁS;“‘“BT (52)
Looul 1 i i i it i

e =% = [0l —V(oh + oDl + Vel + BT (S0)
0z EC )

where i =f, m, the superscript m denotes the quantity related
to the matrix and f to the SMA fiber, respectively. =1,
9"=0,dT=T—Ty, Ty is a reference temperature. E, v and «
denote Young’s modulus, Poisson’s ratio and thermal
expansion coefficient, respectively. e,(n=r,0,z) are the
transformation strains presented in the SMA fiber, and zero
in the matrix.

The equilibrium equation of an axisymmetric problem is
written as [22]:

do, 01, 0, —0y
o + e + . =0 (6a)
do, n T, LTz (6b)

9z ar  r

2.4. Solution of the problem

The solution of Egs. (5a)-(6b) leads to the following
expressions for the stresses in the fiber and in the matrix,

respectively:

B. B.
a‘,‘}=r—;+cj, a‘,;}=—r—5+cj (7)
Uﬁj = Ugj = A 3)

The index j=1-3, corresponding to the full transform-
ation region, partial transformation and no transformation
regions, respectively. A;, B; and C; are the coefficients to be
determined, and they are function of the axial position z.

For perfect bonding, the following boundary and
continuity conditions are available

oy(r=5b)=0, [0,),=a=0, [u]=,=0 )

where [a] = a™ — a~, denoting the jump of the quantity a. In
the following, we will determine the stress distributions in
these three regions.

(a) Fully transformed region

Since the interface between the fiber and the matrix
remains intact, and the transformation is complete, this
means from Egs. (1) and (2) that & =—Q/E",
ey = & =—¢L1/2. With these transformation strains, and
the boundary and interfacial continuity conditions, it has:

b2 +C1= N
B, 1 f
?'FC]=A]E[A1_V(A]+O',])]+89]
1 B B
=Em{— 21+C1—Vm<a21+C|+a?})}
+ (@™ — ah)dT (10

(b) Partially transformed region

In this region, the transformation is incomplete, the
transformation strain depends on volume fraction of
martensite in the SMA fiber, in turn on the stress state and
temperature in the fiber. With help of the transformation
characteristic of the SMA fiber (Egs. (1), (2) and (4)), and
the stress state in the SMA fiber (Eq. (8)), the transformed
strain can be expressed by: &}, = Djy1g+ Dyg(Ar — ogz),
and Djyy = (Q2E") — (Q2ENexp[aM(M® — T)], Dpyp=
—(QREHD™ expla (M — T)].

The boundary condition and the continuity conditions
provide the following equations to determine the unknown
coefficients:

B,
ﬁ"‘Cz: ,
Bye —AL[A — v (Ay + 0l)] + &
2 2 2gr 142 v \Az Uzz) 7]
1 B2 m B2 m
:ﬁli_a—z‘i‘Cz_V <?+C2+UZ2):|
+ (@™ — )3T (1)
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(c) No transformation region

Since there is no transformation in this region, the
boundary and continuity conditions provide:

Bs
»

B 1
s = Ay A5 = (4 4 03)]

1 [ B B
= {—a—§+c3—um(a—§+c3+a§;>]

+C3:O,

T EM
+ (@™ — 3T (12)

. m f .
In above equations, 03, 0 are, respectively, the average

stresses in the matrix and in the fiber in a plan perpendicular
to z-axis, they depend on the axial position z. The global
equilibrium relation gives

o) = v(o, — 05(2) (13)

where vy characterizes the volume ratio between SMA fiber
and matrix, defined by v = aZ/(b2 - az). From Egs. (11)-
(13), A}, B; and C; can be expressed as functions of the axial
stress in the fiber by:

— 2
A;=D; +Gid ), B =ybaA,

C;=—vad; (14)
The coefficients D; and G; are, respectively
D, = [eh + (o' —a™dT + ayr™5,)/

(=1 =2y — o+ 1" —av™)

D, = [Dpyp + (&' —a™)dT + ayr™a,]/

(1 —2ya—a+v" —ar™ + DyyypE")

D; = [(of —a™dT + ayr™ 5, /(=1 — 2ya — a4+ v' — av™)

G, =G;=(—v' —ayy™I(—1 —2ya — o+ 1" — ™)

G, = (—v' — ayp™ + Doy ENI(1 — 2y — o + v — ay™
+ Doy E')

where 62,» = a%/Ef, G,=0d,/E" and a=E'/E™.

To determine the axial stress in the SMA fiber, here we
will recall the shear-lag model. Take a slice of the SMA
fiber, 7,(2) is the interfacial shear stress, the equilibrium of
this slice leads to:

dagj(z) 2

The shear stress in the matrix 77(r,z) has a Lame’s form
[14], with help of the boundary conditions 7;"(a, z) = —7;(2)

and T}“(b, z) =0, it can be determined as [14]:

(bz _ 2)/
—mw) (16)

With the constitutive relation of the matrix, and we assume
that the displacement components in the radial and circumfer-
ential directions can be neglected compared to the axial
displacement component [ 14], then a simplified expression for
the shear stress in the matrix can be written as:

m(r,2) = G™ dul(r, 2)/dr (17)

'(r,2) =

G" is the shear modulus of the matrix, and integrating
Eq. (17), we get:
b’ In(rla) — (1/2)(* —a*)
G"(b* — da®)la

w'(r,2) — uj'(a,z) = 7,(2)
(18)
Averaging the both sides of Eq. (17) over the matrix domain,
and differentiating the obtained equation with respect to the
coordinate z, together with u}“(a,z) = ujf(z) and constitutive
relations for the matrix and the SMA fiber, we have:

1
E—m[(f?; —v™(og + 0y)] + a"OT

i dr j (2)
G™ dz

1 . .
=& [0} — v (ol + ol)] + e + a3 —
(19)

where ¢!, = —Q/E", e\, = Dpp\. + Dppy.(Ay — 05,), e'5 = 0and

o 9
Dy, = T + Fexp[a (M™ —=T)],

Q -
Do = b expla(M™ = 1)

1 2 1+ B E
e= e+ m(50) - (540)]

With help of Egs. (13)-(15) and (19), the governing
differential equation for determining the axial stress 62- can be
written in a compact form for the three regions as

N

—gz 4n1%@ T gp =0 (20)
where Z= z/a, and the coefficients in Eq. (20) are listed in
Appendix.

The boundary and continuity conditions will provide the
necessary equations to determine the integrated constants

F0) =36, a()=0 &) =an),
ub (1) = ubb(l)) ol + 1) = da(l, + 1), @21)
ub(ly + L) = uls(l; + 1)

where [;=L;/a, [=Ll/a.
Since, the phase transformation in the SMA fiber is also
continuous, Eq. (4) further provides the following
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conditions to determine the transformed and partially
transformed region size:

£ = 1= (expla™ (M = )] +expla(M™ = T)15"7) = 1
(22a)

£l +1) =1 —(expl@' (M —T)]

+expla(M* —T)16V5) =0 (22b)

So far, the stress distribution in the three regions can be
completely determined. The solution of Eq. (20), under the
conditions (21) and (22) can be written as for the three regions

Ty =Aj +e VETA, +eVBA, (23)

where A;; are given in Appendix.

2.5. Numerical application for a pulled out process

We take TiNi SMA fibers and a polymeric matrix (epoxy
material) as an example, the material constants are: E™ =
2.0 GPa, v,,=0.4, a™=75X10"5/°C; E'=30 GPa, v'=0.3,
af=6.6X10°/°C, Ty=20°C, M°**=23°C, M°'=5"°C,
CM=11.3MPa/°C, Q= —0.91X 10> MPa. When T=
30 °C, aM = —0.0758/°C, b"' = —5206/MPa and T=40°C,
aM =—0.0584/°C, b =—3278/MPa. The other material
constants will be specified when used.

2.5.1. Stress distribution without thermal effect

Let 3T=0, Fig. 3 shows the distribution of the normalized
axial stress as function z/L for different volume fractions of
SMA fibers, the applied stress is (Ta/Ef= 0.02, the embedded
length L= 100 pm. The results with an elastic fiber (it has the
same material constants without transformation) are also
included for comparison. It is seen that the transformation
relaxes significantly the axial stress in the SMA fiber
compared to the elastic case, the volume fraction of fibers
also influences the stress distribution, the larger the volume
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Fig. 3. Influence of fiber volume fraction and transformation on fiber axial
stress distribution.
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Fig. 4. Influence of embedded length and volume fraction on axial stress
distribution in a SMA fiber.

fraction, the larger the axial stress for both SMA fibers and
elastic fibers. The influence of the embedded length on the
stress distribution is also illustrated in Fig. 4, which shows
that embedded length has also important influence on the
axial stress distribution.

The radial stress distribution along the SMA fiber and the
corresponding elastic fiber at different volume concen-
trations are presented in Fig. 5, it is clearly shown that the
large contraction due to the transformation increases
significantly the radial stress in the transformed region.
This enhanced radial stress in the SMA fiber converges to
the result for the elastic fiber in the no transformation
region, as expected. This large radial stress is detrimental
and tends to open the interface between the SMA fiber and
the matrix, a propagation of a ring crack can then take place.

Fig. 6 gives the volume fraction of the martensite in the
SMA fiber as function of axial position along the SMA fiber,
it can be seen that with an increase of volume fraction of
SMA fibers, the complete transformation zone increases,
there are large partial transformation zones for these two
considered volume concentrations.
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Fig. 5. Influence of fiber volume fraction and transformation on fiber radial
stress distribution.
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Fig. 6. Variation of martensite volume fraction along SMA fiber.

2.5.2. Stress distribution with thermal effect

Two temperature variations are considered 7=30 and
40 °C, corresponding to the temperature variations 87=10
and 20 °C, respectively. The applied stress is still kept as
O'a/Ef=0.02, and y=10%. Fig. 7 illustrates the axial stress
distributions in the SMA fiber for the two considered
temperature variations, the comparison with the correspond-
ing elastic fibers with thermal effect is also included. These
small variations of temperature have little influence on the
axial stress distribution for the elastic fiber, however, they
may have significantimpact for the SMA fiber. An increase of
temperature delays the martensite transformation, as shown
inFig. 9, compared to the case of no thermal effect. The radial
stress distribution in the SMA fiber is given in Fig. 8, as
indicated in Section 2.4, the transformation of the martensite
phase leads to a large lateral contraction, and this increases
significantly the radial stress in the transformed region.

Fig. 9 shows the volume fraction of martensite along the
SMA fiber for the two considered temperature variations. Itis
seenthatanincrease of temperature delays the transformation.
For a constant applied stress, an increase of temperature
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0.0151 N ------ elastic fiber T=40°C
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o
o
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o
8
T

0.000
0.0

zIL

Fig. 7. Effect of temperature on fiber axial stress distribution.
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Fig. 8. Influence of temperature on fiber radial stress distribution.

enhances the in situ martensite start and finish temperature,
and makes the SMA material difficult to transform.

3. Bridging analysis

3.1. Stress intensity formulation for SMA fiber reinforced
composites

We consider a two-dimensional plate having a central
crack of a length 2d bridged by SMA fibers (with a bridging
stress ¢,), the plate is loaded by remote stress o}, which is
shown in Fig. 10. From Ref. [23], the stress intensity at the tip
of the crack K, can be evaluated by integrating the stress
o(x), acting along the crack (here assuming that the crack is
all bridged), multiplied with a weight function m(x,d):

d
Kyip = J m(x,d) X g(x)dx (24)
0
where d is the half crack length, x represents the position on
the crack surface, o(x) consists of the remote applied stress

10

0.8 4

0.6

0.4 1

0.2 1

Volume fraction of martensite

0.0
0.0

Fig. 9. Distribution of martensite volume fraction in the SMA fiber for
different temperatures.
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Op

l

Op

Fig. 10. Schematic figure of a straight crack in a composite plate.

ap(x) and the bridging stress g,(x) produced by the SMA
fibers. Eq. (24) now becomes:

d
Kyip = JO m(x, d) X (oy,(x) — 0,(x))dx (25)

For a straight central crack in an infinite plate, and the
expression of m(x,d) is relatively simple, and it is given by
[24]:

m(x,d) = (26)

From Eq. (25), we see that the estimation of the bridging
stress 0,(x) during loading is the key point to determine the
stress intensity factor.

3.2. Evaluation of bridging stress

In Section 2, we have proposed a model to analyze the pull-
out process for a SMA fiber from an elastic matrix. Relations
between the applied load on the SMA fiber and fiber
displacement have been derived, which are shown in
Figs. 11 and 12, the force—displacement for the corresponding
elastic fibers is also included for comparison. It is found that
due to the transformation, the force—displacement curve
becomes nonlinear for the SMA fiber, the force—displacement
curves contained two clear transitions with significant change
in slope, the first transition corresponds to the initiation of
transformation in the SMA fiber, and the second transition is
believed to correspond to the formation of a totally
transformed region, these two transitions are also observed
in the experiment [7]. We also compared our prediction with
the experiment performed by Jonnalagadda et al. [7], the
following material parameters given by Ref. [7] are used in
the modeling. When 7=30 °C, we found aM =—0.0758/°C,

0.030 - i
—— SMA fibery=0.1
-------- SMA fiber y=0.2

3 0025 |- elastic fiber y= 0.1

o —— elasticfibery=0.2 e

5] T=30°C

£ 0020 -

3

& o015 4

o

el

& 0010

o]

Q

£ 0005 4

Owo T T T T T T T 1

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
the load on the fiber end, P/Ef

Fig. 11. Force—displacement for a SMA fiber pulled out from an elastic
martrix.

™M = —5206/MPa and a=75 pm, 5=950 pm. L= 1270 pm,
L=40000 pm. The pulled-out force and displacement relation
was showed in Fig. 13, a good agreement is observed. Itis also
found that the influence of temperature on the force—
displacement curve is also significant.

Imagine a central crack in a composite plate reinforced
by SMA fibers, the SMA fiber will impose a stress F on the
surface of the crack. In a continuum approximation, this
procedure is equivalent to apply a distributed pressure ,(x)
to the crack surfaces

7,(x) = Fy 27)

where 7 is the volume ratio between SMA fibers and matrix
as defined previously.

To simplify the subsequent analysis, in the following, we
approximate the force—displacement curves derived from
the pull-out analysis by a linear relation with a fitting
constant A, which depends on the temperature:

u=AF (28)
0.030 -
— SMA fiber T=30°C
SMA fiber T=40°C
_, 0025 4 elastic fiber T=30°C
= elastic fiber T=40°C
= T y=01 o
o 0.020 -
3
= 0015 4
%)
S
g 0.010 -
I3
E=
0.005 -
0.000 T T T )
0.000 0.005 0.010 0.015 0.020

the load on the fiberend, P/Ef

Fig. 12. Force—displacement for a SMA fiber pulled out from an elastic
matrix at different temperatures.
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From Eqgs. (27) and (28), we have
A
U =—a,(x) (29)
Y

From Egs. (25) and (26), it has

f@“fmm—mmﬂ
0 J1—X?

(30)
T

KItip = 2<
where X=x/d.
The weight function m(x,b) is a geometry-dependent
function and it can be determined by [21]
E. du(x,d)

) =— 277 31
m(x,d) Ky 0d (31)
where E. = E_/(1— v?) for the plane strain condition, and
E., v. are the elastic modulus and Poisson’s ratio of the
composite, respectively. From Eqgs. (30) and (31), the crack
opening at a given position is determined by the distribution
of the surface tractions [25]:

41 —w)d Jl S« JS [oy(1) — aa(n)]dr

u(X) =
X0 TE, X \/s2 — X2 0 Vs — 12

ds

(32)
With help of Eq. (29), the following equation can be
derived:
Amm=““”wjl s erm—%wm
Y TE, X2 Jo )

ds

X sz—

(33)

Therefore, Eq. (33) provides a condition to determine the
bridging stress distribution along the crack surface. There
are various approximate methods to solve Eq. (33) [25-28].
In this paper, we develop the bridging stress ¢,(X) into
Taylor series, the computed bridging stresses o,(X)
are illustrated in Figs. 13 and 14 for different conditions.
In the calculation, we assume the half length of the crack is
3 mm, the material constants are the same as in Section 2.
The composite Young’s modulus and Poisson ratio

Pull out force (N)

——calculation

T experiment
0 T T T T T T
0 1 2 3 4 5 6

Distance (mm)

Fig. 13. Pull out force and distance curve: modeling and experiment.

0.020
0.018 -
0.016 -
W 0014
=
& 0.012 -
k’f 0.010 -
7]
2 0008 -
5 —— SMA fiber T=30°C
= 00064 | SMA fiber T=40°C
elastic fiber T=30°C
0.004 + “ latic fiber T=40°C
0.002 ] — =01
0.000 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Normalized position, X

Fig. 14. Bridging stress distribution along crack surface for different fiber
volume fractions.

were calculated the mixture law: E.= Eiff + E_ (1 —f),
v, = vif + v (1 —f), where fis volume fraction of the SMA
fiber and it is related to v by f = y/(1 + 7). The applied load
is kept to be ,/E'=0.02.

3.3. Influence of temperature variation on stress
intensity factor

It can be expected that an increase of temperature delays
the martensite transformation, so the bridging effect is more
pronounced. Here we impose the macroscopic stress on/E =
0.02, and examine the difference of the stress intensity factor
from the actual temperature to a reference temperature. The
computed results are shown in Fig. 15 for two fiber
concentrations, indeed our calculated results show that an
increase of temperature reduces the stress intensity factor,
which is in agreement with the experimental observation
conducted by Eisaku [6] (Fig. 16).

0.020 -
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Fig. 15. Bridging stress distribution along the crack surface at different
temperatures.
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Fig. 16. Variation of stress intensity factor as function of temperature.

4. Conclusions

An analytical model is proposed to analyze the stress
transfer during a pull out of a SMA fiber from an elastic
matrix. Under an applied stress, the SMA fiber is divided into
a fully transformed, a partially transformed and untrans-
formed regions. The stress distributions in each region are
determined by a shear-lag method. Numerical calculations
show that compared to elastic fiber, the transformation in
SMA fiber lowers largely the axial stress, however, the radial
stress is increased significantly due to the lateral contraction
induced by the transformation. The obtained results are then
used to examine the bridging effect due to SMA fibers. The
bridging analysis shows that an increase of temperature
reduces the stress intensity factor, which is in agreement with
experimental observation in literature.

(b) The coefficients A;;
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Appendix
(a) Coefficients in Eq. (20)
g1 = (1 + ay —2G " — 2ayGy™)/c

812 :(_Dtlz + ZD]Vf + Z(X’YDIVm - 6T0(f
+d3Ta™ + aya,)lc

g1 =(1 + ay —2G 0" — 2ayG,p™
+(1 = G)D.ENle
g» = (—=Dpy, +2D0" + 20yDyp™ — 3Ta" + dTa™

+ ay&a + D2D1221Ef)/c
g1 = (1 + ay —2G3p" — 2Gsayv™)/c
g3 = 2Dyv' + 2ayDyp™ — 3Ta + d3Ta™ + ayd,)lc

and

_la(1+um) 0 (L+7) E
“TiTa+h [(1”)1“( Y ) (2“)]

Ay =52
8i1

A = evEnl (812 — eVsiig, +efilig 6, — g 006 = D)
e —1 + e?veuh

A — (glz —eBilig, — g6, —eV®ig ol(f = 1))
a —1 + e?v8uh

= ST (g3 — ity + Vil al(E = 1) — g0103(E = 0)
» —1 + e?VEub

A = e VoIl (g0 — eV¥ihgy — gy10UE = 1) + eV¥igy 01§ = 0))
» —1 + e?V8ub

A — e\/ﬁ(1|+lz+l)((e\/ﬁl — e\/é;ﬁ(lﬁ'lz))g32 _ e\/falgyaﬁ(g — 0))
2 —e2VEl § o2& ) ’

A = (e\/gl'l — Vel +Zz))g32 + eﬁ;‘”‘“”&mﬁ(f =0)
3=

—e2venl 4 e2v8a i th)
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where 6£(§= 1), 6§(E=O) are the normalized axial
stresses of the SMA fiber where the martensite volume
fraction equals to 1 and O, respectively, they are
determined by Eq. (22a) and (22b).
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