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Elastic ray theory is a high frequency asymptotic approximation of solution of elastodynamic equa-

tion, and is widely used in seismology. In this paper, the form invariance under a general spatial

mapping and high frequency wave control have been examined by transformation method. It is

showed that with the constraint of major and minor symmetry of the transformed elastic tensor, the

eikonal equation keeps its form under a general mapping, however, the transport equation loses its

form except for conformal mapping. Therefore, the elastic ray path can be controlled in an exact

manner by a transformation method, whereas energy distribution along the ray is only approximately

controlled. An elastic rotator based on ray tracing method is also provided to illustrate the method

and to access the approximation.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4744973]
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I. INTRODUCTION

Transformation methods proposed by Greenleaf et al.,1

Pendry et al.,2 and Leonhardt,3 pave the way for finding ma-

terial spatial distribution when the function of an electro-

magnetic device is defined by spatial mapping. The same

idea is also applied to an acoustic wave as the Helmholtz

equation is form invariant.4–9 However, for elastic waves in

solid materials, Milton et al. show that elastodynamic equa-

tion (Navier’s equation) is transformed to Willis’ equation

under a general spatial mapping,10 therefore, the techniques

developed for electromagnetic or acoustic waves cannot be

applied exactly to control elastic waves. Several works have

been conducted to control elastic waves by distributing spa-

tially materials.11–14

More recently, Hu et al.15 proposed an approximate

method to establish the transformation relations for elastic

waves, their method is based on local invariance of elastody-

namic equation (Navier’s equation) and energy conservation

condition by idealizing a general spatial mapping with a se-

ries of local affine ones. It is found that the predicted results

are better for high frequency elastic waves. High frequency

elastic waves in heterogeneous solids can be analyzed within

elastic ray theory,16 which is governed by eikonal and trans-

port equations, this motivates us to examine the transforma-

tion method in the context of elastic ray theory. It is also

hoped that this work can clarify the nature of the approxima-

tion made in Ref. 15. This letter starts by introducing briefly

the elastic ray theory, then the form invariance of the gov-

erning equation is examined, and the ray tracing method in

the case of anisotropic mass is also explained. Finally, the

method is illustrated by a numerical example.

II. BACKGROUND ON ELASTIC RAY THOERY

We start from the general elastodynamic equation

(Navier’s equation) with a mass of tensor form17

ðCijkluk;lÞ;j ¼ �qij€uj; (1)

where u is the displacement vector and C is the rank-four elas-

tic tensor. The mass density q is a second-order tensor in order

to include possible metamaterials. In a smoothly inhomogene-

ous media, a high-frequency elastic wave can be approxi-

mately separated into quasi-compression (qP) wave and quasi-

shear (qS1 and qS2) waves. In this case, to solve Eq. (1), a

time-harmonic solution is represented in form of ray series,16

uiðxj; tÞ ¼
X1
n¼0

U
ðnÞ
i ðxjÞ
ð�ixÞn

" #
expð�ixðt� TðxjÞÞÞ; (2)

where UðnÞ is the amplitude vector of the nth order and T is a

scalar function, called travel time (eikonal). In the following

discussion, we will follow the zeroth-order approximation of

ray series.16

A harmonic plane wave solution of the displacement

vector is assumed to be of the following form:

uiðxj; tÞ ¼ UiðxjÞexpð�ixðt� TðxjÞÞÞ: (3)

Inserting Eq. (3) into Eq. (1) yields

ðCijklUk;lÞ;j þ ix½CijklUk;lT;j þ ðCijklUkT;lÞ;j�
� x2½ðCijklUkT;lT;jÞ � qijUj� ¼ 0: (4)
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Equation (4) should be satisfied for any frequency, so the

coefficients with xn (n ¼ 0; 1; 2) must vanish, we get

ðCijklUkT;lT;jÞ � qijUj ¼ 0; (5a)

CijklUk;lT;j þ ðCijklUkT;lÞ;j ¼ 0; (5b)

ðCijklUk;lÞ;j ¼ 0: (5c)

For high frequency elastic waves (x� x0 ¼ 1), the first

term in Eq. (4) (with x0) can be neglected compared to the

second (with x1) and third (with x2) terms, therefore, it can

be safely dropped. So, the governing equations of elastic ray

theory consist of Eqs. (5a) and (5b); Eq. (5a) is the governing

equation for the path of elastic ray, called eikonal equation;

whereas Eq. (5b) monitors the energy transfer along the ray,

called transport equation. Although the transformation

method based on Eq. (1) has been discussed in different

works,10,11,15,18 the transformation method based on Eqs.

(5a) and (5b) has not been examined so far.

III. THEORETICAL FORMULATION

A. Transformation method for elastic ray theory

Consider a general mapping x0i0 ¼ x0i0 ðxjÞ, Eq. (5a) is

transformed into x0 coordinates with a change of variable as

ðbj0

j b
l0

l CijklUkT;l0T;j0 Þ � qijUj ¼ 0; (6)

where bi0

i ¼ @x0i0=@xi is the component of Jacobian matrix of

the coordinate transformation, T is a scalar independent on the

coordinates. Similarly, expressing Eq. (5b) in x0 coordinates,

and introducing the Jacobian J of the coordinate transforma-

tion, and with help of the relation ðJ�1bi
i0 Þ;i ¼ 0,6,19 we get

J�1bj0

j b
l0

l CijklUk;l0T;j0 þ ðJ�1bj0

j b
l0

l CijklUkT;l0 Þ;j0 ¼ 0: (7)

Compared to Eqs. (5a) and (5b), form invariance of Eqs. (6)

and (7) leads to the following transformation relations:

C0i0j0k0l0 ¼ J�1bj 0

j bl 0

l Cijkl; (8a)

q0i0j0 ¼ J�1qij; (8b)

U0i0 ¼ Ui: (8c)

It is interesting to note that these transformation relations are

identical with some former works,11,18 derived from the elas-

todynamic equation, however, the elastic tensor loses its

minor symmetry.

So in the following, we seek the transformation relations

with symmetric elastic tensor. Based on Eq. (8a), the sym-

metric elastic tensor in the transformed space should have

the following form:

C0i0j0k0l0 ¼ J�1bi0

i b
j0

j b
k0

k bl0

l Cijkl: (9a)

With Eq. (9a) and the form invariance of Eq. (5a) under a

general mapping, the transformation relations of the mass

density and displacement now become accordingly as

q0i0j0 ¼ J�1bi0

i b
j0

j qij; (9b)

U0i0 ¼ bi
i0Ui: (9c)

Transformation relation (9) makes Eq. (5a) form invariant,

unfortunately not for Eq. (5b). Therefore the transformed ma-

terial parameters given by Eq. (9) can be used to control

exactly the elastic ray path defined by the mapping, and only

approximately to control the energy distribution along the ray.

Inserting Eq. (9) into Eq. (5b), after some algebra, we obtain

CijklðUkÞ;lT;j þ ðCijklUkT;lÞ;j þ bm
i0 ðbi0

i Þ;jCijklUkT;l ¼ 0: (10)

Compared to Eq. (5b), an additional term related to the

mapping and its derivative appears. Obviously, this extra

term vanishes when the mapping approaches to bilinear

(ðbi0

i Þ;j ¼ 0). So if we use Eq. (9) to approximately control

energy distribution along ray by the mapping technique, the

error will be smaller for smoother mapping and higher

frequency. We note that Eq. (9) is the same as those obtained

in Ref. 15 by a complete different method, therefore this

implies that the approximation made in Ref. 15 lies in high

frequency assumption through local affine transformation.

As the approximate high-frequency solution of the elasto-

dynamic equation, the elastic ray theory requires that

the appropriate material parameters of the medium vary

smoothly over a distance of the order of wavelength k.16

Here we also note that in a 2-D case, when the spatial

mapping is conformal, the extra term in Eq. (10) can be elimi-

nated (bm
i0 ðbi0

i Þ;j ¼ 0) due to Cauchy–Riemann conditions of a

conformal mapping. In this case, both ray path and energy dis-

tribution along the ray can be controlled exactly with Eq. (9).

B. Ray tracing method for a transformation medium

To illustrate the theory, the elastic ray path and energy

distribution have to be evaluated for a device defined by spa-

tial mapping. Due to the anisotropic mass density, classical

elastic ray tracing method must be reexamined. Equation

(5a) can be expressed as

CskUk ¼ 0; (11)

where Csk ¼ q�1
is Cijklplpj � dsk is called Christoffel matrix,

whereas q�1
is and pi ¼ T;i are the inverse of the mass density

matrix and the component of slowness vector, respectively.

Compared with the classical ray tracing method, the only

difference consists in Csk, so we can follow the same proce-

dures to calculate the ray path. Based on Eq. (11), the path

of an incident ray in a smoothly inhomogeneous anisotropic

media can be calculated from the eigenvalues Gi and eigen-

vectors ~gi of the Christoffel matrix. After determining the

initial position and slowness vector of an incident ray, the

ray path can be obtained by the following relations:

dxi=dT ¼ ð1=2Þð@Gm=@piÞ; (12a)

dpi=dT ¼ �ð1=2Þð@Gm=@xiÞ; (12b)

where m ¼ 1; 2; 3 refer qS1 qS2, and qP waves, respectively.

The travel time T is chosen to be the parameter along the ray.
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To evaluate the energy transfer along the ray, Eq. (5b) is

multiplied by gi and rearranged into

2ViA;i þ AðViÞ;i ¼ 0; (13)

where A is the scalar, complex-valued amplitude function,

which relates displacement to eigenvector by Ui ¼ Agi, and

Vi ¼ Cijklplgkgj: (14)

Equation (13) is called transport equation for an inhomoge-

neous medium. In a classical ray tracing method,16 Eq. (13)

is evaluated by introducing an elementary ray tube with a

specified ray and a family of rays nearby, as shown in Fig. 1.

As Vi has the same direction as the unit ray vector ti,
16 diver-

gence theorem can then be applied on ðViÞ;i for ease of cal-

culation. However, for a transformation medium, the

coincidence of the directions of V0i0 and t0i0 should be re-

examined due to the introduced anisotropic mass. To this

end, we analyzed the directions of these two vectors with the

help of the coordinate transformation. Under a coordinate

transformation, a vector aiðxiÞ is transformed into a0i0 ðx0i0 Þ
¼ bi0

i aiðx0i0 Þ. Similarly, a ray vector tiðxiÞ in a virtual space

will be transformed into t0i0 ðx0i0 Þ ¼ bi0

i tiðx0i0 Þ in a physical

space. On the other hand, we have

V0i0 ¼ J�1bi0

i b
j0

j b
k0

k bl0

l Cijklb
r
l0T;rb

s
k0gsb

t
j0gt

¼ J�1bi0

i Cijklplgkgj ¼ J�1bi0

i Vi : (15)

As in the virtual space, the vector Vi has the same direction

as ti,
16 therefore V0i0 in the physical space will follow the

same direction as t0i0 , as well after the transformation. In this

context, after expressing Eq. (11) in ray coordinates, we can

apply a divergence theorem on ðViÞ;i in the elementary ray

tube, therefore, the same process as classical elastic

ray method can then be followed. The amplitudes along the

ray can be obtained by using16

AðTnþ1Þ ¼
X?ðTnÞ

X?ðTnþ1Þ

� �1=2

AðTnÞ; (16)

where X? is the cross-sectional area of the elementary ray

tube in a 3-D case, as shown in Fig. 1, whereas in a 2-D

case, X? is degenerated into the length of one line element

connecting two points situated on two close rays.

IV. NUMERICAL EXAMPLES

In the following, a 2-D elastic rotator is examined by

the ray tracing method, the second one is realized by a gen-

eral spatial mapping. The elastic ray path and energy along

the ray will be evaluated with the functions defined by the

spatial mappings.

Elastic rotator can guide elastic wave to rotate for a cer-

tain angle. The design can be taken via transformation tech-

nique by using a general mapping. The detailed parameters of

the device are the same as those in Ref. 15 for a comparison

purpose. Using Eqs. (12) and (16), the ray paths and ampli-

tudes in the rotator are calculated by MATLAB software. 80 rays

of the S-wave with a wave length l ¼ 0:015 m emitted from

the source are traced, the results are shown in Fig. 2. A FEM

simulation based on the elastodynamic equation is also

FIG. 1. (Color online) A sketch of an elementary ray tube in inhomogeneous

anisotropic medium with an elastic ray f ðTÞ ¼ 0 and a family of rays

nearby. Tn and Tnþ1 are two points on the ray used in the recurrent computa-

tion. XT denotes a cut from the ray tube by the wave fronts and X? is the

cross section of the ray, which can be calculated through some geometry

relation by using XT .~t is the unit vector perpendicular to X?, representing

the direction of the ray.

FIG. 2. (Color online) Ray traces of the elastic rotator calculated by trans-

formation ray method, they are same as those evaluated by FEM simulation.

FIG. 3. (Color online) Total displacement along the rays evaluated by trans-

formation ray theory (symbols), FEM simulation (solid line) at incident

angles: (a) 0�, (b) �22.5�, (c), �45�, and (d) �67.5�.
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performed, the calculated ray path (not shown in Fig. 2) is

shown to be identical as that predicted by our transformation

ray theory, as expected. The total displacements j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2

p
j

(representing energy) on the four specific rays with incidence

angles 0�, �22.5�, �45�, and �67.5� calculated by using

transformation ray method (16) (labeled by ray method) and

FEM simulation (labeled by FEM) are given in Fig. 3. The

results show that although some errors occur in the rotator,

overall the amplitudes calculated by the ray tracing method

agree reasonably well with the FEM simulation. The same

results can also be found for P waves. These examples con-

firm our theoretical founding: Transformation relation (9) can

be used to control exactly the ray path, also approximately

well to control the energy distribution along the ray.

V. CONCLUSIONS

In summary, we have examined the transformation method

in the context of the elastic ray theory for high frequency elastic

waves. It is found that the eikonal equation is form invariant

under a general mapping with a symmetric transformed elastic

tensor, however, the transport equation is not form invariant,

except for a conformal mapping. Therefore, the ray path can be

controlled exactly with the transformation technique, but not

for the amplitude along the ray. An elastic rotator is examined

with the ray tracing method extended to the case of anisotropic

mass density, the numerical results confirm the theoretical

founding. The obtained transformation relations are identical to

those in Ref. 15 by a completely different method, this coinci-

dence clarifies the nature of local affine approximation made in

Ref. 15. Application of the proposed method can be anticipated

to seismic protection and health monitoring technique where

the high frequency approximation remains valid.
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