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Abstract. Negative-mass phenomena occurring below a cut-off frequency are
examined using both theoretical and experimental methods. The paper begins
with an investigation of a mass–spring structure, the effective mass of which
is shown to be negative below a specific frequency. Due to the decaying
nature of lattice waves in the negative-mass system, the transmission drop
induced by negative effective mass is demonstrated experimentally. Further
investigation is conducted for a rectangular solid waveguide with clamped
boundary conditions. It is shown that the lowest bandgap mode of the clamped
waveguide can be attributed to negative effective mass below a cut-off frequency.
Based on this observation, elastic metamaterials made of a steel grid filled
with styrene butadiene rubber are designed and fabricated. Both the simulation
and experimental analyses demonstrate that the designed metamaterials have
negative effective mass below a cut-off frequency.
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1. Introduction

Metamaterials with anomalous physical properties have received much attention from the
scientific community in recent years and have also stimulated many important concepts for
potential engineering applications, such as super-resolution imaging [1, 2] and cloaking [3, 4].
With tailored sub-wavelength microstructures, metamaterials possess negative effective para-
meters around resonant frequencies of their building blocks. In electromagnetics, a typical meta-
material is electric plasma, whose effective permittivity becomes negative below the plasma
frequency. Periodically arranged metallic wires [5] and hollow metallic waveguides [6] are
found to behave in this fashion at microwave frequencies. Another typical electromagnetic
(EM) metamaterial is periodically distributed split-ring resonators (SRR) [7], having negative
effective permeability in the finite bandwidth close to the resonant frequency of the SRR.
For engineering applications, metamaterials with broadband negative material parameters are
desired.

Analogous to EM metamaterials, acoustic/elastic metamaterials with negative effective
mass can be realized. A well-known example is the composite made by filling an epoxy
matrix with periodically arranged rubber-coated lead spheres [8]. The unusual low-frequency
bandgaps observed in such a composite are attributed to negative effective mass, which is
defined due to the out-of-phase motion between the resonant unit and the matrix material.
This mechanism can be well understood by using either equivalent discrete mass–spring
systems [9]–[11] or continuum analytic models [12, 13]. Recently, Yang et al [14, 15] proposed
lightweight membrane-type metamaterials with negative effective mass in the low frequency
regime. The structure consisted of a circular elastic membrane with a small weight attached
at the center and the outer boundary being fixed. Although operating in the low frequency
regimes, the aforementioned metamaterials show the negative-mass effect that is only available
in a finite bandwidth around resonant frequencies. For engineering applications, there is a great
demand for designing acoustic metamaterials with broadband negative parameters, especially at
extremely low frequencies.

Due to the similarity between EM and acoustic wave phenomena, one can expect to
design an acoustic metamaterial with negative effective mass below a cut-off frequency,
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Figure 1. (a) The analyzed composite structure and (b) an infinite lattice system
composed of structures that are connected by springs K.

analogous to the behavior of the electric plasma. Recently, Lee et al [16] reported an interesting
experimental result; they demonstrated that a stretched rubber membrane with a fixed outer
boundary can be homogenized as an acoustic metamaterial with negative effective mass below
a critical frequency. In this paper, we further explore this phenomenon and demonstrate by both
theoretical and experimental methods that such a property is not just limited to membrane-type
materials.

The paper is organized as follows. In section 2, we propose a mass–spring system with
negative effective mass below a specific frequency. The peculiar stopband effect due to negative
mass is demonstrated by experiments. In section 3, rectangular waveguides with clamped
boundary conditions are analyzed. The correlation between the bandgap modes of the clamped
waveguide and negative effective mass is studied. In section 4, elastic metamaterials operative
in the audible regime are designed based on the waveguide theory. Detailed simulation and
experimental analyses are presented to demonstrate negative effective mass below the lowest
eigenfrequency of the structure. The paper is summarized in section 5.

2. Negative effective mass below a cut-off frequency for a mass–spring system

2.1. Negative effective mass of a mass–spring structure

Consider a mass–spring structure, as shown in figure 1(a), where an outer mass m is confined
by two elastic springs G. It is the case that the inner mass is fixed in the model examined by
Yao et al [10]. Now connect such a structure by using springs K with spacing a apart to build a
one-dimensional (1D) infinite lattice system, as shown in figure 1(b). The equilibrium equation
for the nth mass, whose displacement is denoted by un, is

m
d2un

dt2
= K (un−1−un) −K (un−un+1) −2Gun. (1)

Assuming the harmonic time dependence e−iωt and use Bloch’s condition un+1 = uneiqa with q
being the Bloch wave vector, the dispersion relation of the system is derived from equation (1)
to be (

m−
2G

ω2

)
ω2

= 4K sin2 qa

2
. (2)

Comparing equation (2) with dispersion relation of a simple mass–spring lattice model,
one can define an effective mass

meff = m

(
1−

ω2
0

ω2

)
, ω0 =

√
2G

m
. (3)
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Figure 2. (a) The finite mass–spring lattice system and (b) the experimental
realization for such a lattice system.

From equations (2) and (3), it is found that the proposed structure would give rise to a broadband
negative effective mass below the frequency ω0.

Alternatively, in figure 1(a), suppose that the mass m has a displacement u under a harmonic
force F of angular frequency ω. Newton’s law of motion gives the relation F = −m0ω

2u + 2Gu
for the mass m. If the composite unit is considered to be a solid object with an effective mass
meff, we have F = −meffω

2u, with meff given by equation (3).

2.2. Experimental validation

Experimental validation is done by measuring the transmittance of a finite lattice system; low
transmittance can give an indication of negative-effective mass [10]. For a finite lattice system
involving N periods, as shown in figure 2(a), the transmittance T is defined to be uN/u0 and is
given by

T
def
=

N∏
n=1

Tn, (4)

where Tn = un/un−1 is calculated by using the following recurrent relation,

Tn =
K

K (2−Tn+1)−meffω2
, n = 1, 2, . . . , N , (5)

with TN+1 = 1.
Measurements of the transmission for a seven-period system are made based on an air

track-lifting system; see [10] for experimental details. The experimental realization of such a
lattice system is shown in figure 2(b). Two aluminum blocks, together with a connecting sheet,
realize the mass m. Springs G connect the mass to a fixed aluminum block that is placed inside
the preceding composite unit, generating restrained forces on the mass m. In the experiment, the
material parameters are m = 101.10 g, G = 37 N m−1, and K = 117 N m−1. Figures 3(a) and (b)
show, respectively, the dispersion curve and effective mass as a function of frequency according
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Figure 3. (a) The dispersion curve from equation (2), (b) normalized effective
mass from equation (3) and (c) experimental and theoretical transmittances for a
seven-period system.
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Figure 4. (a) The infinite lattice system completely equivalent to that shown in
figure 1(b); (b) the proposed continuum material model: the solid waveguide with
clamped boundaries where the mass density ρ0, Young’s modulus E0 and shear
modulus µ0 of the material realize m, K and G of the lattice system, respectively.

to equations (2) and (3). It is seen that negative-effective mass occurs below 4.3 Hz and opens a
large gap region in the dispersion curve. The measured transmittances for the seven-unit system
are plotted in figure 3(c), together with the theoretical prediction given by equation (4). In
figure 3(c), excellent agreement between the theoretical and experimental results can be seen.
The results clearly show the transmission drop below 4.3 Hz, demonstrating the existence of
negative effective mass below a cut-off frequency.

3. The negative-mass effect for a rectangular solid waveguide with clamped boundaries

3.1. The dispersion effect of clamped waveguides

In order to proceed, a lattice system that is completely equivalent to that shown in figure 1(b) is
presented in figure 4(a). It suggests that a rectangular solid waveguide with clamped boundary
conditions may have a dispersion characteristic similar to that of the lattice system proposed in
section 2, since the mass density ρ0, Young’s modulus E0 and shear modulus µ0 of the solid
material in the waveguide can realize the m, K and G of the lattice system, respectively. For the

New Journal of Physics 12 (2010) 103025 (http://www.njp.org/)

http://www.njp.org/


6

clamped solid waveguide, it is known that there is a cut-off frequency below which no type of
elastic wave is permitted. In the following, we will attribute this bandgap to negative-effective
mass.

Consider a solid waveguide with a rectangular cross-section having x and y dimensions of
a and b, and infinitely extended in the z-direction. When such waveguide has clamped boundary
conditions, the dispersion relations of guided waves are given by [17]

ω2

c2
d

= p2 +
(mπ

a

)2
+

(nπ

b

)2
, m = 1, 2, . . . , n = 1, 2, . . . , (6a)

for P modes, and

ω2

c2
s

= p2 +
(mπ

a

)2
+

(nπ

b

)2
, m = 1, 2, . . . , n = 1, 2, . . . , (6b)

for S modes, where cd and cs are, respectively, the wave velocities of P and S waves, and
p is the propagation constant along the z-direction. For conventional elastic materials, the
shear wave velocity cs is always less than the longitudinal wave velocity cd. Therefore, the
dispersion relation (6) will lead to a lowest cut-off frequency ωc = cs

√
(π/a)2 + (π/b)2, below

which there are neither propagating P nor S waves since the propagation constant p will take
purely imaginary values. We consider this clamped waveguide as a homogenized material with
mass density ρeff, Young’s modulus E0 and shear modulus µ0; its dispersion relation can be
written as p = ω

√
ρeff/µ0. According to equation (6b) and taking m = 1 and n = 1, a theoretical

prediction of the effective mass density ρeff can be given by

ρeff = ρ0

(
1−

ω2
c

ω2

)
. (7)

Equation (7) should be valid in the frequency range where the second branch for either S or P
mode is not involved. This phenomenon is the elastic wave counterpart of the bandgap effect
occurring in the hollow metallic waveguides for EM waves, which can be explained by negative-
effective permittivity [6].

3.2. Numerical validation for negative mass in a clamped waveguide

In order to verify the effective mass defined by equation (7) for the solid waveguide with fixed
boundary conditions, we perform numerical simulations for a finite-thickness slab with clamped
boundaries. To compute the sound transmission, the slab is sandwiched by two semi-infinite
fluid materials loaded in the waveguide, as shown in figure 5. The lateral boundaries of the
waveguide are clamped for the elastic slab and rigid for the fluids. Modeling is performed
using COMSOL Multiphysics. The plane harmonic wave is incident from the left side of the
waveguide. The fluid–structure coupling boundary conditions are set at the interfaces between
the elastic slab and fluid; the radiation boundary conditions are applied on the entrance and exit
faces of the waveguide to simulate the infinite extent environment.

As an example, we assume the mass density ρ0 = 950 kg m−3, Young’s modulus E0 =

8.88 MPa and Poisson’s ratio ν0 = 0.48 for the rubber slab, as well as the mass density ρ1 =

1.23 kg m−3, and the wave velocity c1 = 343 m s−1 for the fluid material (air). The geometric
parameters used in the simulation are chosen as d = 100 mm, w = 400 mm, and a = 50 mm.
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Figure 6. The dispersion curve (pa/π versus frequency) from equation (6) for
a square waveguide of dimensions 50 × 50 mm2 totally filled with rubber and
having clamped boundary conditions, as well as the effective mass density of the
clamped rubber slab predicted by the waveguide theory from equation (7) and
numerical simulation from equation (8).

Effective mass density ρ ′

eff for the clamped slab can be defined by homogenizing the equation
of motion. Consider the direction n̂ of interest, the effective mass density ρ ′

eff can be defined as

ρ ′

eff = [ p̄]/ūt t , (8)

where [ p̄] equals p̄1− p̄2, with p̄i being the pressure integration over the left and right surfaces
of the slab, and ūt t denoting the volume integration of accelerations.

Figure 6 gives the dispersion curve of the square waveguide totally filled with rubber, which
is calculated by equation (6). Within the frequency 1200 Hz of interest, one branch is shown up,
corresponding to the lowest S mode (m,n = 1). It can be seen from the dispersion curve that a
wideband gap is opened below 795 Hz. The effective mass predicted by the waveguide theory
(7) is shown in figure 6 by the dotted line, together with numerical prediction (8) given by
the circle; good agreement between theoretical and numerical results can be observed, which
confirms the negative-mass behavior of the clamped waveguide. According to equation (7), the
cut-off frequency ωc = (

√
2π/a)

√
µ0/ρ0 that separates the positive and the negative effective
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Figure 7. Sound transmission amplitude and phase through the clamped rubber
slab and its effective layer with negative-mass density.

mass is associated with the shear modulus of the filling material. This means that stiff materials
with high shear modulus can enhance this frequency. If, in contrast, we take the limit µ0 → 0,
the filling material behaves like a fluid. In this case, the bandgap disappears, recovering the fact
that a fluid in a pipe cannot stop sound waves of any frequency.

The transmission amplitude and phase of sound waves across the clamped rubber slab
have been calculated and are shown in figure 7 by solid lines. For comparison, the transmission
spectra of an effectively homogeneous layer with negative-mass density are given by dotted
lines, which is computed from

T =
1

cos (ωd/ceff) + (i/2) sin (ωd/ceff) (z1/zeff + zeff/z1)
, (9)

where z1 = ρ1c1 is the characteristic impedance of air and ceff and zeff are, respectively, the
wave velocity and impedance of the longitudinal wave of the homogeneous layer. The effective
material is assumed to have the mass density ρeff given by equation (7), and the Young’s modulus
and Poisson’s ratio are the same as those of the rubber slab Eeff = 8.88 MPa and νeff = 0.48. For
the transmission amplitude and phase good agreement can be observed between the clamped
slab and the effective layer.

4. Elastic metamaterials with broadband negative-mass density

In section 3, we demonstrate that an elastic slab with fixed outer boundaries has negative
effective mass below a cut-off frequency, and this specific frequency is inversely proportional
to the cross-sectional size of the slab. Based on these observations, we propose elastic
metamaterials with broadband negative mass, which may be useful for low-frequency noise
isolation.

The designed metamaterial is a steel grid filled with styrene butadiene rubber 1502 (SBR),
as shown in figure 8. Since a steel grid is much more rigid than rubber, it provides naturally a
fixed boundary for the SBR. The proposed metamaterial can be considered to be the parallel
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stacking of small square waveguides. According to the results given in section 3, we can design
the cut-off frequency of negative effective mass by choosing the size of the grid and filling
material. Two different gird sizes d = 15 and 10 mm are designed. The samples have a circular
boundary of diameter 100 mm to facilitate the measurement using a Brüel and Kjær type-4206T
impedance tube. The thickness of the sample is 10 mm.

The transmission spectrum of the sample is measured in a Brüel and Kjær type-4206T
impedance tube with four microphones. Two microphones in the front tube measure the incident
and reflected signals. The other two microphones are placed in the transmission tube and
measure transmission signals and the reflected waves from the termination. The standard testing
procedure for transmission loss supported by the impedance tube 4206T is followed. Each
testing material is tested twice in two different termination conditions, respectively. In our
measurement, the transmission tube is terminated by the open end in a quiet background and the
sound-absorbing material with good performance. The data acquired from four sensors and two
testing results are used to uniquely determine the transfer function [18] of the tested material.
From the transfer function, the normal incident transmission spectrum with amplitude and phase
can be derived for the ideal case of anechoic termination. In the measurements, the edge of
the sample is sealed and fixed on the inner wall of the impedance tube. Two specimens for
each sample are fabricated and each specimen is measured twice for sound waves incident on
different surfaces. It is found that there are very few discrepancies among measured results.

Figure 9(a) shows the measured transmission amplitudes and phases of the samples with
d = 15 and 10 mm. From the amplitude curve of the sample of d = 15 mm it can be seen that
there is a peak transmission around 1108 Hz, below which a significant transmission drop is
observed. It will be shown in the following that the drop is due to negative effective mass.
Across the transmission peak, the phase is gradually reversed. These features are very similar
to those exhibited in figure 7 for a clamped elastic slab, giving an indication of the negative-
mass behavior below this specific frequency. Note that from the amplitude curve, one can find a
relatively constant transmission from 500 to 700 Hz. The corresponding transmission phase is a
little twisted. This behavior is the typical resonant effect in the impedance tube itself due to the
imperfection of anechoic termination in practice, and this effect may become more noticeable
when the tube is loaded with the fixed sample. One would not observe this resonant effect in
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Figure 9. Transmission amplitude and phase: (a) experimental results for
samples with grid size d = 15 and 10 mm and (b) the corresponding simulation
results. The dashed line labeled ‘PR’ in (a) represents the measured transmission
amplitude of the clamped pure rubber slab of diameter 100 mm and thickness
10 mm.

the following simulation results when the non-reflection radiation boundary condition is used,
as shown in figure 9(b). However, this effect will not affect the entire profile of the transmission
spectrum. For the sample with d = 10 mm, the transmission peak occurs at about 1360 Hz and
is accompanied by the phase reverse. A resonant effect due to the impedance tube itself now
takes place at about 880 Hz, which is weaker than that exhibited by the sample of d = 15 mm.
The measured results show that the peak transmission frequency is enhanced with decreasing
the grid’s size, as coincides with the prediction of the waveguide theory. For reference, the
transmission amplitude of a clamped pure rubber slab of diameter 100 mm and thickness 10 mm
is also given by the dashed line labeled ‘PR’ in figure 9(a). Due to the large lateral dimension,
the lowest eigenfrequency is measured to be as low as 132 Hz, and there are multiple resonant
peaks in the frequency range of interest, giving rise to a transmission loss lower than 40 dB.
That is why we introduce the rigid grid to produce the wideband cutoff mode and to achieve
higher transmission loss.

Figure 9(b) shows the simulation results for sound transmission through the samples with
d = 15 and 10 mm. The Young’s modulus, Poisson’s ratio and mass density were measured
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by using uniaxial tension tests to be Es = 194 GPa, νs = 0.28 and ρs = 7700 kg m−3 for steel
and Er = 1.88 MPa, νr = 0.499 and ρr = 963 kg m−3 for SBR. In the simulation, the damping
property of rubber is not taken into account. As a result, some discrepancies exist in the
transmission amplitudes between the numerical and the experimental results. The overall trends
of the calculated amplitude and phase are in agreement with the experimental results.

In order to understand the transmittance drop when the frequency deviates from the
peak transmission frequency, we calculate the effective mass of the sample with d = 15 mm
according to equation (8) and the averaged displacements in the normal direction to the surface
of the sample; the results are shown in figures 10(a) and (b), respectively. It is seen that the cut-
off frequency that separates the negative- and positive-mass regions is the lowest eigenfrequency
at which the sample undergoes the resonance. Across the resonant frequency, the vibration
direction of the sample is reversed, resulting in a phase change in transmission. In the positive-
mass region, the transmittance drop is due to the increasing of both frequency and mass density,
as governed by the mass law, and also to the fact that the structure does not respond very
promptly to external excitations owing to the resonant effect. In the negative-mass band, the
propagation constant will be purely imaginary, giving rise to the evanescent wave mode in the
sample. The magnitude of negative effective mass increases with decreasing frequency. The
decay length of waves in the sample will then be shortened, resulting in the decrease of the
transmittance. The transmission drop in the negative-mass band cannot be explained by the
mass law. This property is very useful for achieving low-frequency insulations for sounds and
vibrations.

Finally, to exclude the possibility that the transmission drop below the cut-off frequency is
due to the energy absorption by the sample, figure 11 shows the energy dissipation coefficients α

for the samples. In the sound transmission experiment, they are obtained by α = 1 − |R|
2
− |T |

2,
where R and T are the reflection and transmission coefficients, respectively. Due to the resonant
behavior of the sample at the cut-off frequency, there are considerable energy dissipations.
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Figure 11. Energy dissipation coefficients for the samples with d = 15 and
10 mm measured in sound transmission experiments.

Below this frequency, the energy dissipation rapidly decreases and reaches constant values. The
results clearly reveal that the dip in transmission below the cut-off frequency is induced by the
reflection due to negative effective mass, not by the energy absorption. As a final remark,
since the samples operate in the long-wavelength regime for the case under investigation, it
would be better to consider the sample as a single unit of the mass–spring system.

5. Conclusion

Negative-mass behaviors below a cut-off frequency are studied both theoretically and
experimentally for different systems. A mass–spring structure is demonstrated to possess
negative effective mass below a specific frequency. The transmittances measured in a finite
lattice system confirm the negative-mass-induced bandgap. It is found that the additional spring-
like forces that act on the mass are the key factor for achieving this peculiar property. For
elastic wave propagation in a rectangular waveguide, the peculiar negative-mass effect can be
observed by applying the clamped boundary conditions. Analyses of the dispersion relation of
the clamped waveguide confirm that the bandgap effect existing below the cut-off frequency can
be correlated to negative effective mass. Based on these findings, elastic metamaterials made of
steel grids and rubber are designed and fabricated. Both numerical and experimental results
show that the proposed metamaterials have negative effective mass below the cut-off frequency.

Similar behaviors would be expected for a clamped waveguide with other shapes of the
cross section. From this perspective, one has much flexibility in designing new broadband elastic
metamaterials, which pave the way for broadband and low-frequency insulations for sounds and
vibrations. Further study can be performed by introducing monopole resonances [13, 19, 20]
to produce negative effective modulus, so as to realize left-handed metamaterials. These studies
offer potential applications in elastic wave control and seismic wave protection. Our findings
may have an interesting correlation with the EM wave phenomenon that a hollow metallic
waveguide can be considered as a Drude plasma [6]. The EM waveguide structures can be
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utilized to generate surface plasmons [21], as is done by Drude metals such as silver. If a
correlation exists between the two phenomena, we may expect new surface modes arising from
acoustic metamaterials with effective mass following the Drude relation, which can be used in
nondestructive testing.
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