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a b s t r a c t

The objective of the present work is to develop an analytical homogenization method to derive higher-
order material parameters of micropolar theory. With help of Airy’s stress function, the constitutive
equations for a homogenized micropolar medium are analytically established by considering a cylindri-
cal representative volume element (RVE) subjected to quadratic and cubic boundary displacement
conditions. Both porous and composite materials are considered, an analytical relation between the
intrinsic length and the microstructural parameters is given.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Micropolar theory introduces three additional degrees of free-
dom for microstructure rotation while still keeping in a continuum
formulation, and it can characterize the size effect of materials ob-
served in experiments [1–4]. However, evaluation of the higher-or-
der modulus introduced in the theory is difficult either by
experiments or by known homogenization techniques. This dra-
matically limits applications of micropolar theory although it was
initially proposed by Cosserat brothers a century ago [5]. Basically,
the micropolar theory is proposed for better characterizing defor-
mations of microstructural materials, so the higher-order modulus
can in principle be determined from the local information of the
material. For foams and lattice materials, efforts have recently been
made to homogenize these materials using the micropolar model,
the material constants are derived directly for the microstructure
[3,4,6]. For composite materials, Bigoni and Drugan [7] derived
the homogenized micropolar constants by applying the quadratic
form of the loading. Zybell et al. [8] derived the homogenized
strain gradient model for a porous material. In this paper we will
follow the idea proposed by Forest [9–11] and choose a cylindrical
representative volume element (RVE) under plane strain condition,
ll rights reserved.
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by applying quadratic and cubic forms of loading on the boundary
of the RVE. We will show that the two higher-order moduli can be
related analytically to the microstructure and the elastic properties
of the composite. The present paper is arranged as follows: The
boundary conditions for homogenization within the frame of
micropolar theory are discussed in Section 2. Section 3 investigates
a cylindrical RVE under quadratic and cubic forms of boundary
conditions. Analytical solutions obtained from the RVE are used
to determine the higher-order moduli of the composite. The final
section includes short conclusions.

2. Boundary conditions for the higher-order homogenization
scheme

Within the framework of classical homogenization theory, a
RVE is assumed to be large enough to contain typical microstruc-
ture of the material, but it must be sufficiently small so that the
homogenous stress and strain can be applied on its boundary.
However, when these conditions fail to be applied, e.g. the size of
RVE is comparable to the microstructure or strong deformation
gradients are present, nonlocal homogenization must be adopted.

The linear boundary condition in classical homogenization is as-
sumed as ui ¼ EðijÞxj or rijnj ¼

P
ðijÞnj, where ui and rij are local dis-

placements and stress components in the RVE respectively, EðijÞ andP
ðijÞ are symmetric macroscopic strain and stress applied on the

boundary of the RVE. The aim of the classical homogenization is
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to replace the heterogeneous materials by a homogeneous Cauchy
medium with the Hill–Mandel condition:

hrijeiji ¼ RðijÞEðijÞ: ð1Þ

where h�imeans the volume average of � over the RVE. For the non-
local homogenization, a question arises: what kind of boundary
conditions should be assumed for the RVE?

In this paper a micropolar homogenization scheme proposed by
Forest [10,11] is employed, which is based on a systematical con-
struction of relations between the macroscopic higher-order kine-
matic quantities and local displacements. The governing equations
for centro-symmetric micropolar continuum read [1,12]:Equilib-
rium equations:

Rij;i ¼ 0; ð2aÞ
Mij:i þ eijkRjk ¼ 0: ð2bÞ

Geometric equations:

EðijÞ ¼
1
2
ðUj;i þ Ui;jÞ; ð3aÞ

Ehiji ¼
1
2
ðUj;i � Ui;jÞ � eijkUk; ð3bÞ

Kij ¼ Uj;i: ð3cÞ

Constitutive equations:

Rij ¼ DijklEkl; ð4aÞ
Mij ¼ LijklKkl; ð4bÞ

where subscripts () and h i denote the symmetric and antisymmet-
ric part of tensors respectively, Ui and Ui are the displacements and
micro-rotations, Rij and Mij are the non-symmetric stress and cou-
ple stress, Eij and Kij the strain and curvature, Dijkl and Lijkl the stiff-
ness tensors.

In order to replace a heterogeneous material by an equivalent
micropolar medium, the relation between the local displacement
field in the RVE uiðxjÞ and the macroscopic displacements UiðXjÞ
and micro-rotations UiðXjÞ can be constructed using the least
square approximation. The displacement of the homogenized
micropolar element is

u�i ðxjÞ ¼ UiðXjÞ þ eimnUmðXjÞðxn � XnÞ; ð5Þ

where Xjðj ¼ 1;2;3Þ are the coordinates of the mass center. The best
fit of u�i to the RVE’s real displacement field ui can be achieved by
minimization of the error over the volume V:

D ¼
Z

V
juiðxjÞ � u�i ðxjÞj2dV : ð6Þ

The minimization is taken over a cubic RVE with length L; which
gives

Ui ¼ huii; ð7aÞ

Ui ¼
6
L2 heimnðxm � XmÞuni; ð7bÞ

then the macroscopic strain and torsion are derived according to
the geometric Eq. (3).

The local displacement in the RVE can be expressed in polyno-
mial form as following

ui ¼ Ai þ Bi1x1 þ Bi2x2 þ Bi3x3 þ Ci1x2
1 þ Ci2x2

2

þCi3x2
3 þ 2Ci4x1x2 þ 2Ci5x2x3 þ 2Ci6x1x3 þ � � �

ð8Þ

The coefficients of the polynomial can be identified in the
micropolar framework through Eqs. (3), (7) and (8) providing scale
invariance condition EijðXkÞ ¼ eijðXkÞ [11]. The following three
kinds of the boundary conditions are of special interests:
- If the displacement on the boundary of RVE is linear, this corre-
sponds to classical homogenous boundary condition
ui ¼ EðijÞxj: ð9Þ
- If the displacement is a second-order polynomial, one can show
that
u1 ¼ �
1
2

K23x2
2 þ

1
2

K32x2
3 � K13x1x2 þ K12x1x3 þ

2
3
ðK22 � K33Þx2x3;

ð10aÞ

u2 ¼
1
2

K13x2
1 �

1
2

K31x2
1 þ K23x1x2 � K21x1x3 þ

2
3
ðK33 � K11Þx1x3;

ð10bÞ

u3 ¼ �
1
2

K12x2
1 þ

1
2

K21x2
2 þ K31x2x3 � K32x1x3 þ

2
3
ðK11 � K22Þx1x2:

ð10cÞ

- If the displacement is a third-order polynomial, it can be

expressed as
u1 ¼ 10ðh3ðx3
2 � 3x2

1x2Þ þ h2ð3x2
1x3 � x3

3ÞÞ; ð11aÞ
u2 ¼ 10ðh3ð�x3

1 þ 3x2
2x1Þ þ h1ð�3x2

2x3 þ x3
3ÞÞ; ð11bÞ

u3 ¼ 10ðh2ðx3
1 � 3x2

3x1Þ þ h1ð3x2
3x2 � x3

2ÞÞ: ð11cÞ

with hi ¼ 1
2L2 eijkEhiki:

The results above show that the quadratic terms in the bound-
ary displacement are related to the effect of torsion and the cubic
terms are necessary in considering the effect of antisymmetric
strain. In order to obtain an equivalent micropolar continuum,
terms of up to third-order polynomial need be adopted.

Finally the overall micropolar material properties can be de-
fined by an extended form of Hill–Mandel condition

hrijeiji ¼
1
V

Z
V
rijuj;idV ¼ RðijÞEðijÞ þMijKij þ RhijiEhiji: ð12Þ

By submitting the previous three sets of local displacements ui

(9–11) into (12) it is straight forward to obtain the macroscopic
stress and couple stress in terms of local stress field. For example,
one component of macroscopic couple stress and antisymmetric
stress are given below

M13 ¼
1
V

Z
V
ð�yr11ÞdV : ð13Þ

Rh12i ¼
30
L2

1
V

Z
V
ðxyðr22 � r11Þ þ ðy2 � x2Þr12ÞdV : ð14Þ

Once the local stress field can be obtained from given boundary
displacements, the overall micropolar stiffness can then be deter-
mined in conjunction with the constitutive Eq. (4).

3. Analysis based on a cylindrical RVE

In this section, a plane strain problem corresponding to an infi-
nitely long cylindrical RVE will be considered. The 2D configuration
considered here consists of a circular linear elastic inclusion with
radius a surrounded by a matrix material. Given the inclusion’s
volume fraction f ; the radius of RVE R ¼ a=

ffiffiffi
f

p
; we expect that

the solution derived is valid for composites with small fraction of
inclusion [13].

For this case, the procedure mentioned in Section 2 must be re-
formed to accommodate the 2D circular RVE region, i.e., Ua ¼ huai
and U3 ¼ 2

R2 he3abðxa � XaÞubi (a; b ranges from 1 to 2) should be
used instead of Eq. (7). A straight forward deduction gives the
boundary displacements used in the following (Eqs. (18) and (32)).
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3.1. A general solution in Fourier series

Considering a plane strain problem, the Airy’s stress function is
used to derive the general solution in the polar coordinates. The
stress function must satisfy the biharmonic equation:

r2r2Fi ¼ 0; ð15Þ

where r2 denotes Laplace operator. The stresses can be obtained
through the Airy’s stress function by

ri
rr ¼

1
r
@Fi

@r
þ 1

r2

@2Fi

@h2 ; ri
hh ¼

@2Fi

@r2 ; ð16aÞ

ri
rh ¼

@

@r
1
r
@Fi

@h

 !
; ð16bÞ

where the superscript i varies from 1 to 2, representing the inclu-
sion and matrix phases, respectively.

The general solution of Fi in polar coordinates is derived by
Mitchell [14], corresponding to all kinds of boundary conditions.
In present work, up to third-order terms in the boundary polyno-
mials are retained. Due to the linear nature of the problem, the
stress function can be split into three parts

Fi ¼ Fi
1 þ Fi

2 þ Fi
3: ð17Þ

where Fi
1 corresponds to the linear boundary displacement, Fi

2 and
Fi

3 correspond to quadratic and cubic boundary respectively. In clas-
sical micromechanics scheme, only Fi

1 is adopted to derive the clas-
sical effective properties [15,16]. The higher-order continuum
model needs the stress and strain fields related to Fi

2 and Fi
3.

3.2. Quadratic displacement boundary condition

Following the approach explained previously, the quadratic dis-
placement boundary conditions for the cylindrical RVE are applied

u1j@V ¼ �K13xy� 1
2

K23y2; ð18aÞ

u2j@V ¼
1
2

K13x2 þ K23xy; ð18bÞ

where K13 and K23 are the torsion components for the plane strain
problem. The stress function Fi

2 corresponding to the quadratic dis-
placement can be obtained as

Fi
2 ¼ ðA

i
1r3 þ Ai

2
1
r
þ Ai

3r log rÞ cosðhÞ

þ ðAi
4r3 þ Ai

5
1
r
þ Ai

6r log rÞ sinðhÞ

þ ðAi
7r3 þ Ai

8r5 þ Ai
9r�3 þ Ai

10r�1Þ cosð3hÞ
þ ðAi

11r3 þ Ai
12r5 þ Ai

13r�3 þ Ai
14r�1Þ sinð3hÞ: ð19Þ

The interface between the matrix and inclusion is assumed to
be perfectly bonded, so the continuity and equilibrium conditions
across the interface are:

u1
r ða; hÞ ¼ u2

r ða; hÞ; u1
hða; hÞ ¼ u2

hða; hÞ; ð20aÞ
r1

rrða; hÞ ¼ r2
rrða; hÞ; r1

rhða; hÞ ¼ r2
rhða; hÞ; ð20bÞ

The unknown coefficients Ai
jði ¼ 1;2; j ¼ 1; . . . ;14Þ are deter-

mined from the interface conditions (20) and the boundary condi-
tions (18) for the RVE. Only four independent non-zero coefficients
are retained [8]. Therefore, the stress and strain as well as the
boundary displacements and surface traction can be written as [8]

~rs
ij ¼

X4

k¼1

Ak ~rsk
ij ; ~es

ij ¼
X4

k¼1

Ak~esk
ij ; ð21aÞ

~us
i ¼

X4

k¼1

Ak~usk
i ;

~ts
i ¼

X4

k¼1

Ak
~tsk

i : ð21bÞ
where s ¼ 1;2 denotes the inclusion and matrix, respectively, the
unknown coefficients Akðk ¼ 1; . . . ;4Þ are the four independent
non-zero coefficients. ~rsk

ij , ~esk
ij , ~usk

i and ~tsk
i are functions of r and h. It

follows from the orthogonality properties of the trigonometric func-
tion that

1
V

Z
V

~rsk
ij

~esk
ij dV ¼

sk; k ¼ l;

0; k–l:

�
ð22Þ

According to the principle of conservation of energy [8], we
have

1
2V

Z
@V

~ui~tidS ¼ 1
2V

Z
V

~rs
ij
~es

ijdV ¼ 1
2

X4

k¼1

A2
ksk: ð23Þ

Submitting the boundary conditions (18) into Eq. (23), the non-
zero coefficients Ak are determined as following

Ak ¼
1
sk

Kijmk
ij; ðk ¼ 1; . . . ;4Þ: ð24Þ

where the non-zero mk
ij are

mk
13 ¼

1
V

Z
V
�y~rsk

11dV ; ð25aÞ

mk
23 ¼

1
V

Z
V

x~rsk
22dV : ð25bÞ

With help of the extended Hill–Mandel condition (12), only
considering quadratic boundary conditions, we have

1
2V

Z
V

~rs
ij
~es

ijdV ¼ 1
2

X4

k¼1

A2
ksk ¼

1
2

KijMij: ð26Þ

Therefore, the macroscopic couple stress can be defined by

Mij ¼
X4

r¼1

1
sr

mr
ijm

r
klKkl ¼ LijklKkl: ð27Þ

Finally, the higher-order modulus can be evaluated by

Lijkl ¼
X4

r¼1

1
sr

mr
ijm

r
kl: ð28Þ

For the plane strain condition, only non-zero components L1313

and L2323 are retained, and they are identical. Defining
b ¼ L1313 ¼ L2323 as bending moduli, we finally obtain

b ¼ R2Eð/1ðmÞ þ /2ðm;g1;g2Þf 2 þ Oðf 3ÞÞ; ð29Þ

where /1 ðmÞ, /2 ðm;g1;g2Þ are non-dimensional functions of mate-
rial contrasts g1 ¼ m1=m, g1 ¼ E1=E and m. Here m and E are Poisson’s
ratio and Young’s modulus of the matrix, respectively, m1 and E1 are
those for the inclusion.

In higher-order theory of continua, one or more characteristic
lengths have been introduced. A sophisticated question is how to
interpret their physical meaning and how to relate them to the
material microstructure lengths. The solutions we obtained pro-
vide an analytical relation between the length parameters of
micropolar elasticity and the microstructure of the composite.
The characteristic length in the micropolar elasticity is given by

l2
m ¼

b
E
¼ R2ð/1ðmÞ þ /2ðm;g1;g2Þf 2 þ Oðf 3ÞÞ: ð30Þ

In the expression above all variables in the right hand side are
known by means of microstructural information of composites.
The characteristic length is a quadratic function of the RVE size
and a nonlinear function of the volume fraction.

For porous materials (E1 ¼ 0), the above result can be simplified
as



Fig. 2. Variations of j=j0 as a function of f . The normalized modulus increases with
f and g2, but decreases with g1.
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bp ¼ R2Eð3þ 2vÞ
2ð3þ 2m� m2Þ �

3R2Eð69þ 72vþ 29v2 þ 2v3Þ
25ð�3� 3vþ v2Þ f 2 þ Oðf 3Þ:

ð31Þ

Fig. 1 shows that for a composite material, the normalized b=b0

becomes larger with increasing f or material contrast g1;g2, where
b0 ¼ R2Eð3þ 2vÞ=ð2ð3þ 2m� m2ÞÞ is the corresponding quantity for
the matrix material (f ¼ 0). For porous materials, the normalized
bp=b0 decreases with the increase of f . When f trends to zero, both
b=b0 and bp=b0 become unity as expected.

It must be mentioned here that when f goes to zero, the higher-
order moduli b0 corresponds to the bending stiffness of a patch of
homogeneous Cauchy material against the applied stress gradient
(equivalent couple). But the RVE size R is related to inclusion size
a by volume fraction f . When f approaches zero, in fact a finite
RVE size cannot be hold, hence we get a micropolar continuum
with infinitesimal higher-order constants, which is indeed a classi-
cal medium.

3.3. Cubic displacement boundary condition

The following cubic displacement boundary conditions for the
cylindrical RVE are applied:

u1j@V ¼
2
R2 ðy

3 � 3x2yÞðEh12i � Eh21iÞ; ð32aÞ

u2j@V ¼
2
R2 ð�x3 þ 3xy2ÞðEh12i � Eh21iÞ; ð32bÞ

where Eh12i and Eh21i are the antisymmetric components of strain.
The stress function Fi

3 corresponding to the cubic displacements is
adopted here

Fi
3 ¼ ðA

i
1r4 þ Ai

2r6 þ Ai
3r�4 þ Ai

4r�2Þ cosð4hÞ þ ðAi
5r4 þ Ai

6r6

þ Ai
7r�4 þ Ai

8r�2Þ sinð4hÞ: ð33Þ

By using the same idea, only considering cubic boundary condi-
tions, only non-zero component D1212 is derived for the heteroge-
neous material, which is called as anti-symmetric shear moduli j
in micropolar theory

j ¼ Eðu1ðmÞ þu2ðm;g1;g2Þf 3 þ Oðf 4ÞÞ; ð34Þ

where u1ðmÞ and u2ðm;g1;g2Þ are non-dimensional functions.
For porous materials,
Fig. 1. Variations of b=b0 as a function of f . Generally the normalized modulus
increases with f for g2 > 1 and is dominated by g2. For softened inclusions (g2 < 1)
the modulus decreases with f .
jp ¼ 6E
1þ m

� 8ð9þ 5mÞ
3ð1þ mÞ3

f 3 þ Oðf 4Þ: ð35Þ

From Fig. 2, it can be seen that for a general composite, the nor-
malized j=j0 increases with f and g2, but decreases with g1, where
j0 ¼ 6E=ð1þ mÞ is the corresponding quantity for the matrix mate-
rial. For porous materials, the normalized j=j0 decreases with the
increase of f . When f tends to zero, both j and jp return to j0.

As can be seen the micropolar effect is pronounced whenever
the inclusion properties differ from the matrix. This is different
with results obtained by Bigoni and Drugan [7], where higher-or-
der effect enters only for inclusions less stiff than the matrix. This
might be attributed to the different formulation and macroscopic
homogenized media employed. In their paper [7], a quadratic back-
ground displacement was considered, and then a presumed homo-
geneous couple-stress (constrained micropolar) media can be
solved under the same boundary displacement as a Cauchy mate-
rial. This is not the case for the present paper, which admits a cubic
displacement and full micropolar is obtained.

4. Conclusions

In the present paper an analytical method to identify material
parameters of micropolar theory for a composite material is pro-
posed. Based on quadratic and cubic displacement boundary con-
ditions on a cylindrical RVE, the analytical relations between the
higher-order moduli and the microstructure of the composite are
derived.
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