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a b s t r a c t

In this work, a chiral metacomposite is proposed by integrating two-dimensional

periodic chiral lattice with elastic metamaterial inclusions for low-frequency wave

applications. The plane harmonic wave propagation in the proposed metacomposite is

investigated through the finite element technique and Bloch’s theorem. Band diagrams

dynamic properties of the chiral metacomposite are numerically calculated to explain

low-frequency bandgap behavior in the chiral metacomposite. Interestingly doubly

negative effective density and modulus of the chiral metacomposite are found in a

specific frequency range, where a pass band with negative group velocity is observed.

Tuning of the resulting low-frequency bandgaps is then discussed by adjusting

microstructure parameters of the metamaterial inclusion and lattice geometry. Speci-

fically design of a metacomposite beam structure for the broadband low-frequency

vibration suppression is demonstrated.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice structures are used widely in a variety of engineering applications due to their outstanding stiffness-to-weight
ratio and high designable features. Typical engineering applications of lattice structures include space trusses [1] and
sandwich beams and panels [2]. Many lattice structures of various topologies have been proposed and extensively
investigated. Among these structures, chiral topologies [3], which have distinctive mechanical properties such as high
shear rigidity and negative Poisson’s ratio, are regarded as a superior choice for different engineering applications [4]. The
static behavior of the lattice/cellular solids has been intensively studied and fruitful results were found [5–7].

In the same time, wave propagation in periodic lattice materials has also drawn much attention. Both physicists and
structural engineers [8–10] found that wave propagation in periodic structures exhibits characteristic pass and stop bands.
Many efforts have been made to tailor lattice structures to achieve desired bandgap characteristics such that wave
propagation is forbidden in a specified frequency regime. A systematic study based on topology optimization procedures
was conducted to design phononic crystals with optimized bandgap properties [11,12]. The in-plane elastic wave
propagation in four representative planar lattice topologies: hexagonal, Kagomé, triangular and square honeycomb were
simulated to examine wave bandgaps and spatial filtering phenomena [13]. Wave directional behavior in cellular lattices
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and occurrence of wave beaming at specified frequencies were also investigated [14]. Phononic properties of the chiral
lattice were recently examined [15]. However, it is well known that the phononic bandgaps in most periodic lattice
structures are mostly limited in mid-high frequency ranges. This is because wave mechanism in the bandgaps is due to the
Bragg scattering, which requires that the microstructure size must be comparable to the corresponding wavelength. There
are great needs to design lattice structures with low-frequency bandgaps for engineering applications.

To enhance low-frequency wave suppression of lattice structures, most common methods are add-on treatments by adding
different microstructure or materials into the structures. Martinsson and Movchan [16] demonstrated that a microstructure of
concentrated masses connected to the primary lattice structure by a soft link can result in low-frequency bandgaps.
Introduction of resonating microstructures into the lattice structure is now considered as one of the most efficient approaches
for the low-frequency bandgaps. Many similar approaches based on the added resonance mechanism can be found recently
[17,18]. Following this concept, metamaterials, which are the materials with elaborately tailored microstructures, will be an
excellent candidate for this purpose. From the wave mechanism point of view, metamaterials are composites whose building
block can exhibit resonance under wave excitation. This concept was first introduced in 1968 by Soviet physicist Veselago [19]
for eletromagnetics (EM), and the proof-of-concept prototype of the EM metamaterial was realized in 2000 [20]. Inspired by the
EM wave, metamaterials are extended in parallel to elastic and acoustic (EA) waves based on the similarity between the EM
wave and the EA wave. Liu et al. [21] fabricated and investigated a metamaterial based on the idea of localized resonant
structures that exhibit bandgaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. This
idea had given a possible solution to the length-scale problem of bandgap materials. The realization of robust elastic wave
bandgaps in the low-frequency range can be clearly explained by the negative effective mass density [22] of the metamaterial
within certain frequency range. Li and Chan [23] reported theoretically a possibility of the existence of acoustic/elastic
metamaterials. They utilized the effective mass density and bulk modulus derived by Berryman [24] and showed that both the
effective mass density and bulk modulus can be simultaneously negative, in the sense of an effective medium. They claimed
that the double negativity is derived from low-frequency resonances, as in the case of electromagnetism, but the negative
density and modulus are derived from a single resonance structure as distinct from electromagnetism in which the negative
permeability and negative permittivity originates from different resonance mechanisms.

In the paper, we propose a new chiral metacomposite for the low-frequency bandgaps and wave filtering application.
The metacomposite is composed of a two dimensional periodic chiral lattice and a typical metamaterial inclusion. The
metamaterial inclusion is composed of a softly coated heavy cylinder, as proposed by Liu et al. [21]. The in-plane free wave
motion in the metacomposite is investigated through the finite element technique and Bloch’s theorem. Effective dynamic
properties of the chiral metacomposite are numerically determined in the low frequency range. Doubly negative effective
mass density and modulus are found at a specific frequency range, where a pass band with negative group velocity is
observed. Tuning of the low-frequency bandgaps is also revealed by adjusting microstructure parameters of the
metacomposite. Specifically design of a metacomposite beam for broadband wave filtering application is suggested.

The present paper is organized into five sections including Section 1—Introduction. Section 2 presents the geometry of the
proposed chiral lattice metacomposite. Section 3 describes the numerical method for the study of its characteristic wave
behavior. Section 4 discusses the relative numerical results. Finally the concluding remarks is summarized in Section 5.
2. Geometries of the chiral metacomposite

In the study, a chiral metacomposite is proposed by integrating a two-dimensional chiral lattice with a metamaterial
inclusion as low-frequency resonators. The topology of the hexagonal chiral lattice [3] is shown in Fig. 1a. The structural
layout is defined by circles of equal radius r linked by straight ligaments of equal length L. The ligaments are required to be
tangential to the circles and the angle between adjacent ligaments is equal to sixty degrees. The distance between circle
centers is denoted as R, while the angle between the line connecting the circle centers and the ligaments is defined as b.
The wall thickness of circles and ligaments are denoted as tc and tb, respectively. Based on Fig. 1a, we have

sinb¼
2r

R
, cosb¼

L

R
(1)

Among the parameters, the ratio L/R is of importance and denoted as the topology parameter [15]. The lattice is in-plane
isotropic and its Poisson’s ratio is around �1. To obtain low-frequency stop bands, a metamateraial inclusion, a softly
coated heavy cylinder (or disk), is added in the circles, as shown in Fig. 1b. Radius of the core cylinder is denoted as rc.

The whole chiral metacomposite assembly can be obtained by tessellating a unit cell on the sites determined by all
linear combination of the lattice vectors n1e1þn2e2, as shown in Fig. 2a, where ni are integers and ei are basic lattice
vectors with i¼ 1,2. The basic lattice vectors ei can be written in the orthogonal Cartesian vector basis (i1,i2) as

e1 ¼ ð
ffiffiffi
3
p

i1þi2ÞR=2

e2 ¼ ð�
ffiffiffi
3
p

i1þi2ÞR=2 (2)

Due to the periodicity, location of a point P in cell (n1,n2) can be expressed as

rPðn1,n2Þ ¼ r̂Pþn1e1þn2e2 (3)
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Fig. 1. (a) Geometry of a hexagonal chiral lattice and (b) unit cell of the chiral metacomposite.
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where r̂P defines position of the point corresponding to P in the reference cell ð0,0Þ. Given the direct lattice space defined
by the basic lattice vectors, basic reciprocal lattice vectors ðb1,b2Þ, as shown in Fig. 2b, can be defined as

biUej ¼ 2pdij (4)

where dij is the Kronecker delta. For the present chiral assembly, we have

b1 ¼
2p
R

i1ffiffiffi
3
p þi2

� �
, b2 ¼

2p
R
�

i1ffiffiffi
3
p þ i2

� �
(5)
3. Finite element procedure of free wave motion

The elastic wave propagation in a periodic structure is characterized by Bloch’s theorem [8]. If a harmonic plane wave is
admitted, the displacement u at a point P in the reference unit cell can be expressed as

uðr̂PÞ ¼ uPeiðot�kUr̂P Þ (6)

where uP is the wave amplitude, o is the angular frequency and k is the wave vector and i¼
ffiffiffiffiffiffiffi
�1
p

. According to Bloch’s
theorem, displacement of the point corresponding to Pat location rPðn1,n2Þcan be written in terms of the displacement of
the reference unit cell as follows:

uðrPÞ ¼ uðr̂PÞe
ikUðrP�r̂P Þ ¼ uðr̂PÞe

iðn1k1þn2k2Þ (7)

where ki ¼ kUei with i¼ 1,2. Bloch’s theorem, as described by Eq. (7), states that for any structure with repetitive identical
unit cells, changes in complex wave amplitude from cell to cell, due to a propagating wave without attenuation, do not
depend on the cell location within the periodic system. By virtue of the theorem, wave propagation in the entire lattice can
be fully identified by wave motion within the reference unit cell.
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Fig. 2. (a) Lattice layout and lattice vector and (b) reciprocal lattice and Brillouin zone.
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While the direct lattice defines spatial periodicity of the considered domain, the reciprocal lattice describes the
periodicity of the frequency-wave vector relation. According to Eq. (4), the wave vector k can be expressed as
k¼ k1b1þk2b2. If we replace k by ku¼ kþm1b1þm2b2 in Eq. (7), then the following relation is obtained as

uðrPÞ ¼ uðr̂PÞe
iðn1k1 uþn2k2 uÞ, kiu¼ kuUei ¼ kiþ2pmi (8)

which indicates the periodicity of the wave vector. In the two-dimensional lattice, the period corresponds to a region in
the reciprocal lattice whose area equals the area of the reciprocal lattice’s unit cell, known as the first Brillouin zone, as
shown in Fig. 2b. For the traditional hexagonal lattice, dark sub-region OAB in Fig. 2b is identified as the Irreducible
Brillouin Zone (IBZ), which is the smallest frequency-wave vector space to determine wave dispersion. The Brillouin zone
points are shown in Table 1. The wave vectors are chosen along the locus OAB; i.e., along the edges of the irreducible part
of the first Brillouin zone. For the traditional hexagonal lattice, instead of covering the entire IBZ, it is sufficient for k along
its feature path OABO in Fig. 2b. However, for the chiral structure, reflective symmetry may not be applicable and the path
BBu in Fig. 2b should be considered.

The free wave propagation in the infinite lattice can be studied by solving the elastodynamics on the unit cell and
Bloch’s theorem. Due to geometric complexity of the current structure, the finite element (FE) technique is employed. The
FE discretization of the unit cell is shown in Fig. 3, where the circle and ligaments of the chiral lattice are discretized by
Timoshenko beam elements, while the metamaterial inclusion is modeled by four-node plane solid elements. Application



Table 1
The irreducible Brillouin zone points of the lattice.

Cartesian basis Reciprocal basis

O 0,0ð Þ 0,0ð Þ

A 2pffiffi
3
p

R
,0

� �
1
2 ,�1

2

	 

B 2p

R
ffiffi
3
p , 2p

3R

� �
2
3 ,�1

3

	 


u4, f4

u3, f3

u2, f2

u1, f1

u0, f0

ui, fi

u5, f5

Fig. 3. Finite element discretization of the unit cell.
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of standard FE procedures [25] yields the unit cell’s discretized equation of motion in the following matrix form:

ðK�o2MÞu¼Du¼ f (9)

where K and M are the global mass and stiffness matrices, u and f are the vectors of generalized nodal displacements and
forces, respectively, D¼ ðK�o2MÞ is the dynamic stiffness.

For convenience, the vectors containing generalized nodal displacements u and forces f in the cell are defined in the
form [15]

u¼ u0 u1 u2 u3 u4 u5 ui
� �T

f ¼ f0 f1 f2 f3 f4 f5 f i

n oT
(10)

where subscripts 0–5 identify quantities belongs to six boundary nodes, subscript idenotes quantities of internal nodes,
which are highlighted in Fig. 3. By virtue of Bloch’s theorem, we have

u3 ¼ u0eik1 , u4 ¼ u1eiðk1þk2Þ, u5 ¼ u2eik2 (11a)

f3 ¼�f0eik1 , f4 ¼�f1eiðk1þk2Þ, f5 ¼�f2eik2 (11b)

Eqs. (9) and (11) constitute a FE problem with constraint conditions in complex form. Most standard FE software does
not have features to directly deal with the problem with complex variables. In the study, the difficulty is overcome by
solving problems with real and imaginary parts of the constraint conditions separately. Considering the problem with two
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identical meshes, the field equation including the real and imaginary parts can be written as

D 0

0 D

� �
uRe

uIm

( )
¼

fRe

fIm

( )
(12)

where superscripts ‘Re’ and ‘Im’ denote real and imaginary parts of the fields in Eq. (10). The real and imaginary parts
communicate on their boundary nodes through the constraint Eq. (11a). For example, displacements of nodes 0 and 3 can
be written as

uRe
3 ¼ uRe

0 cosk1�uIm
0 sink1

uIm
3 ¼ uRe

0 sink1þuIm
0 cosk1 (13)

Eq. (11a) can be rewritten in matrix form as

uRe

uIm

( )
¼Q

uRe
r

uIm
r

( )
(14)

where the subscript r represents the reduced vector uRe
r ¼ uRe

0 uRe
1 uRe

2 uRe
i

n oT
, and Q is the corresponding rectangular

matrix. Substituting Eq. (14) into (12) and premultiplying by Q T yield the reduced field equation

Q T D 0

0 D

� �
Q

uRe
r

uIm
r

( )
¼

fRe
r

fRe
r

8<
:

9=
; or ~D ~u ¼ ~f (15)

The eigenvalue problem ~Dðk,oÞ ~u ¼ 0 of Eq. (15) is solved by a standard FE software to obtain dispersion curves of the
structure. In the study, the problem is solved by a commercial FE package ANSYS. The complete surface o¼oðkÞ is
denoted as phase constant surface or dispersion surface. There exist as many surfaces as there are eigenvalues of the
problem. If two surfaces do not overlap each other, there exists a wave bandgap in which no wave propagation occurs.
Furthermore, the normal to the phase constant surface at any point gives the Poynting vector or group velocity, and this
indicates the speed and direction of energy flow.

4. Numerical simulation

In this section, wave propagation of the proposed metacomposite structure is numerically studied. The free wave
motion properties are reported in the form of band diagrams, dispersion surfaces as well as phase and group speeds.
Effective properties of the proposed structure are also determined to further explain the low-frequency bandgap behavior.
Numerical simulation is also conducted to study microstructure effects on the wave propagation characteristics. Finally
design of a finite metacomposite beam structure is suggested and demonstrated for the low-frequency wave filtering

application. In the following, results are presented in normalized frequency O¼o=o0 with o0 ¼ p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðElt

2
b Þ=ð12rlL

4Þ

q
,

which is the first flexural frequency of a simply supported ligament of length L. A reference configuration of the structure,
including geometry and material parameters, is shown in Table 2.

4.1. Band diagrams

To explore the bandgap behavior, band diagram of the structure is constructed where the normalized wave frequency O is
plotted against the wave vector k. In the study, the path OABO in Fig. 2b is considered because it gives sufficient accuracy for
the wave characteristics of the structure, which is also reflected from the dispersive surfaces in the next section.

First, a modal analysis is conducted to understand effects of the metamaterial inclusion. Fig. 4 shows the first three typical
eigenmodes and their corresponding frequencies. In the simulation, boundary of the metamaterial inclusion is fixed. It can be
found that the first two basic resonance modes are caused by rigid translation and rotation of the core in the soft coating layer
Table 2
Geometric and material parameters of reference configuration.

Lattice parameters Metamaterial parameters

Topology parameter L=R¼ 0:9 Core to node ratio rc=r ¼ 0:5

Ligament length L=R¼ 26:4mm Young’s modulus of core Ec ¼ 17GPa

Node radius r¼ 6:4mm Poisson’s ratio of core vc ¼ 0:33

Ligament wall thickness tb ¼ 0:5mm Density of core rc ¼ 13g=cm3

Node wall thickness tc ¼ 0:5mm Young’s modulus of coating Es ¼ 5MPa

Young’s modulus El ¼ 71GPa Poisson’s ratio of coating vs ¼ 0:33

Poisson’s ratio vl ¼ 0:33 Density of coating rs ¼ 0:5g=cm3

Density rl ¼ 2:7g=cm3



Fig. 4. The first three eigenmodes of the metamaterial inclusion: (a) O¼ 0:83; (b) O¼ 1:15 and (c) O¼ 6:04.
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Fig. 5. Band diagrams of the lattice (a) with metamaterial inclusions and (b) without metamaterial inclusions (for interpretation of the references to

color in this figure, the reader is referred to the web version of this article).

X.N. Liu et al. / Journal of Sound and Vibration 330 (2011) 2536–25532542
(Fig. 4a and b); however, the third resonance mode is caused by the local deformation in the coating layer (Fig. 4c). The band
diagram of the metacomposite is shown in Fig. 5a. For reference, the band diagram of the lattice structure without the
metamaterial inclusion is also plotted in Fig. 5b. From the comparison in Fig. 5a and b, it can be immediately revealed that the
metamaterial inclusion has significant effects on the wave behavior of the structure, especially at the low-frequency range.
A low-frequency bandgap in the range [0.81, 1.43] appears, which is absent in the pure chiral lattice. The frequency range of the
low-frequency bandgap is close to the first and second resonant modes of the metamaterial inclusion at O=0.83 and 1.15
(Fig. 4a), which indicates formation of the low-frequency bandgap is due to the local resonance of the metamaterial inclusion.
For clear demonstration, dispersion curves of the first two lowest modes of the lattice without the metamaterial inclusion in
Fig. 5b are also added in Fig. 5a by red dashed lines, which correspond the P (longitudinal) and S (transverse) wave modes. From
the comparison, it can be found that the first two lowest wave branches of the original lattice structure are separated into five
branches due to the local resonance of the metamaterial inclusion. It is also noticed that band structures in the two lattice
structures with and without the metamaterial inclusion are almost unchanged at frequency range O 2 ½2,6�. This ‘uncoupled’
feature is of great advantage for the design and optimization procedure to yield desired stop bands.

Another interesting feature in Fig. 5a is the almost flat third branch which implies that its wave group velocity is close to zero.
Though narrow, this is indeed a pass band in O¼ ½1:14,1:16� interval. Specifically the negative slope along the OA path is
observed in the pass band, which implies appearance of a negative group velocity in the low-frequency range. The negative slope
becomes more obvious with increase of the microstructure geometry ratio rc=r. The negative group velocity in a low-frequency
range and the related concept of negative refraction index are the striking phenomena in the so-called left handed materials

(LHM), which have simultaneously negative effective density and modulus in elastic media [23]. Many efforts have been
undertaken in this subject, however, to our best knowledge, there is no practicable elastic LHM proposed in solid materials. In
the study, the rigid translational resonance of the core may induce negative effective density of the composite, our preliminary
results show that the rigid rotational resonance together with the ligament may provoke negative effective modulus.

Another attempt to explain the formation of the new low-frequency bandgaps can be made through the analysis of the
associated wave modes. Fig. 6 shows mode shapes of the first, third and fourth dispersive branches located at the points
(O, A, B) of the IBZ, respectively, which are shown in Fig. 5a. In Fig. 6, undeformed geometry (red line) is imposed as



Fig. 6. Mode shapes for reference configuration: (a–c) 1st branch; (d–f) 3rd branch and (g–i) 4th branch (for interpretation of the references to color in

this figure, the reader is referred to the web version of this article).
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reference. Fig. 6a–c shows wave modes of the first dispersive branch at points O, A, B, which are highlighted by green circles in
Fig. 5a. Mode shape in Fig. 6a corresponds to the rigid-motion of the whole structure, while the mode shapes in Fig. 6b and c
illustrate that main deformation of the structure is a rigid translation of the core in the soft coating layer and the lattice
structure is almost undeformed. In this case, most wave energies are trapped in the metamaterial inclusion due to its local
resonance. Fig. 6d, e, f shows wave modes of the third dispersive branch at points O, A, B, respectively, which are highlighted by
green triangles in Fig. 5a. Mode shape at point O is associated with the second rotational resonance of the metamaterial
inclusion. From the mode shapes at points A and B, it can be found that the wave motion of the structure is mainly through the
rotation resonance of the core and rib around the second natural frequency O=1.15 of the metamaterial inclusion. Fig. 6g, h, i
shows wave modes of the fourth dispersive branch at points O, A, B, respectively, which are highlighted by green squares in
Fig. 5a. Mode shape at point O is related to the first resonance of the core of the metamaterial inclusion. Mode shapes at points
A and B show how propagation of the polarizations occurs mostly through the bending deformation of the lattice ribs.

4.2. Effective properties of the chiral metacomposite

The use of dynamic effective mass density and modulus has proved successfully in describing and predicting wave
propagation in elastic metamaterials [26]. In the section, dynamic effective mass density and elastic modulus of the chiral
metacomposite are numerically determined under the low-frequency assumption, where wavelength in the host medium
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(pure lattice) is much larger than size of the unit cell of the chiral metacomposite. Six boundary nodes of the unit cell, as
shown in Fig. 3, are assumed to be subjected to a global displacement ub ¼ ~ubeiot . In the study, displacement phase
difference among the six boundary nodes is ignored due to the long wavelength assumption. Therefore, the effective mass
of the unit cell can be obtained numerically through the averaged reaction force in the six boundary nodes as

meff ðoÞ ¼
9 ~F9

�o29 ~ub9
(16)

where ~F is the obtained amplitude of averaged resultant force in the six boundary nodes of the unit cell. The effective mass
density is taken as the volume average of the mass as

reff ¼meff=Vcell with Vcell ¼ 3
ffiffiffi
3
p

R2=8 (17)

where the thickness of the chiral metacomposite is assumed to be one.
The effective mass of the chiral metacomposite can also be estimated through a simple ‘mass-in-mass’ Lorentz model

[27]. Based on the model, the effective mass of the chiral metacomposite can be written as

meff ¼m1þ
m2o2

0

o2
0�o2

(18)

where m1 and m2 are the masses of the lattice frame and core, respectively, o0 is the local resonance frequency of the
metamaterial inclusion, which can be numerically obtained as O0 ¼ 0:83. Fig. 7 shows the normalized effective mass
density of the chiral metacomposite in function of normalized wave frequency predicted by the proposed numerical
method and the Lorentz model. In the figure, the normalized effective mass density of the chiral metacomposite is defined
as reff

*
=reff/rlattice with rlattice being the density of the purely lattice structure. From the figure, very good agreement

between the two methods is observed. It is also interesting to notice that the frequency range with the negative mass
density matches the first bandgap in Fig. 5a quite well, which indicates that the wave mechanism in the first bandgap can
be explained by out-of-phase effects between the momentum and velocity for the metamaterial inclusion.

To further explain the pass band with negative group velocity, as shown in Fig. 5, effective modulus of the chiral
metacomposite should be determined. The major challenge of determination of effective modulus of the discrete lattice
structure is how to apply the suitable displacement field to the discrete boundary nodes. In the study, the formulation of the
continuum model with microstructures can be illustrated with the unit cell of a chiral metacomposite as shown in Fig. 8.

Using the classical micromechanics approach, the macro-strain and stress are defined, respectively, as the volume
averages of the strain and stress fields in the representative volume element (RVE)

E¼
1

V

Z
V
edV ¼/eS

R¼
1

V

Z
V
rdV ¼/rS (19)
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Fig. 7. Effective mass density of the chiral metacomposite.
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where r and e denote the local stress and strain fields in the original lattice medium, respectively, V is the volume of the
RVE. Note that the macro displacement vector U is defined from the relation E¼ 1

2ðr � UþU�rÞ.
Underlying the development of the continuum theory is the establishment of the relation between the local

displacement field u and the macro-strain E. In a RVE, the local displacement field, which is required to match the macro
displacement at the boundary @V of the region occupied by the RVE, can be assumed as

ub ¼UðXpÞþEUxb at @V (20)

The above matching condition will be used for determination of the dynamic effective modulus of the discrete chiral
metacomposite. To determine the effective bulk and shear modulus keff and meff , the global hydrostatic and pure shear
deformation in the homogeneous continuum medium are considered by applying global strain field as

E¼ e
1 0

0 1

� �
and E¼ eu

1 0

0 �1

� �
(21)

where e and e0 are the amplitudes of the applied strain field. For the unit cell of the discrete chrial metacomposite, the
corresponding displacement for the hydrostatic and shear deformation can be applied to the six boundary nodes based on
Eq. (20). The reaction forces at the boundary nodes are then calculated from the numerical analysis. The effective bulk
modulus and shear modulus of the chiral metacomposite can be determined through the energy equivalence between the
discrete unit cell and the homogenous continuum RVE as

W ¼
X6

i ¼ 1

fb
i Uub

i ¼ 4keffe2V

W ¼
X6

i ¼ 1

fb
i Uub

i ¼ 4meffe’
2V (22)

respectively, where fb
i are the calculated reaction forces at six boundary nodes.

Fig. 9 shows the normalized effective bulk modulus k�eff and shear modulus meff
*

in function of the normalized frequency

based on the proposed numerical method. The normalized effective elastic modulus is also plotted in the figure based on the
relationship of E�eff ¼ k

�
effþm

�
eff for the current two-dimensional problem. In the figure, the normalized effective parameters are

defined as k�eff ¼ keff=k0
eff , meff

*
=meff/keff

0
and Eeff

*
=Eeff/keff

0
with keff

0
being the static effective bulk modulus. From Fig. 9, the

effective negative bulk modulus is found in the frequency range O 2 ½1:05,1:17� and the effective negative elastic modulus is
observed in the frequency range O 2 ½1:16,1:17�, while the effective shear modulus is always positive. It is very interesting to
notice that the common frequency range for both the effective negative mass density and effective negative modulus is found
in the frequency range O 2 ½1:16,1:17�, which is very close to that O 2 ½1:14,1:15� of the pass band with the negative group
velocity. That means that the double negative properties of the chiral metacomposite are, at first time, achieved through
combination of the chiral structure and the elastic metamaterial inclusion. The small shift about the frequency range with
double negative properties may be attributed to the long wavelength assumption in the current model. Further correction
incorporating the spatial dispersion effect and the chiral effect will be considered in the future.

4.3. Dispersion surfaces, phase and group speeds

In the section, free wave properties are presented and discussed by dispersion surfaces, phase and group velocities. Dispersion
surfaces are evaluated in the entire Brillouin zone, and phase and group velocities provide important information about
anisotropic wave behavior of the structure, which shows existence of preferential directions of propagation and energy flow.

Fig. 10 shows contours of dispersion surfaces of the first, fourth, eighth and ninth wave modes in the metacomposite. The
first and fourth wave modes are lower and higher bands of the first low frequency bandgap. The contours are plotted in the first
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Brillouin zone and in Cartesian space ðk¼ x1i1þx2i2Þ. The IBZ is depicted in the figure by the dark triangle OAB. First, it can be
found that the iso-frequency contours do not possess the reflective symmetry because of the chirality. The contour curves show
isotropic when wave frequency is low, however, six-lobed contour curves become more apparent with the increase of wave
frequency. In Fig. 10a, the dispersion surfaces change rapidly in low-frequency regime and become flat as the frequency reaches
low bound of the first bandgap. This behavior is indicated by a large number of iso-frequency contour lines at short wave
vectors and much lower contour density towards the edge of the first Brillouin zone. In Fig. 10b, contour lines of the fourth
wave mode change rapidly at mediate wave vectors and become almost flat for small and large wave vectors. In Fig. 10c and d,
it is interesting to observe that the shape of the contours change significantly with wave vectors, which is similar with the pure
lattice. The wave propagation directionality is also clearly seen from Fig. 10. Isotropic behavior is found for the first and fourth
wave modes for small magnitude of k, while anisotropic propagation behavior is found for other cases. This will be further
clarified by the following phase and group velocity analysis.

Attention is also paid to wave phase and group velocities of the first and fourth wave modes. Specifically the phase
velocity at a given frequency o is evaluated by

cph ¼
o
k

k0 (23)

where k¼ 9k9o and k0 is a unit vector in the direction of the wave vector ðk0 ¼ k=kÞ. Important indication regarding the
energy flow within the metacomposite is represented by the group velocity as

cg ¼
@o
@x1

i1þ
@o
@x2

i2 (24)

The phase and group wave velocities are evaluated by variation of the wave vectors, i.e., the wave vectors change along the
contour line at a desired frequency. Fig. 11a and c shows the normalized phase velocities in the first and fourth modes,
respectively. In the figure, the phase velocity is plotted in the polar system, and velocity magnitudes are normalized by the phase
velocity of the first wave mode at k¼ 0, which corresponds to the quasi-static case. At low-frequency cases, phase velocities are
large in magnitude and the curve is approximately circular for both modes which implies nearly isotropic behavior. However,
with the increase of wave frequency, the phase velocity decreases and wave propagation behavior becomes anisotropic.

Normalized group velocity dependence upon wave frequency in the first and fourth modes is shown in Fig. 11b and d,
respectively. In the figure, velocity magnitudes are normalized by the phase velocity of the first wave mode at k¼ 0. In
Fig. 11b, it can be found that the group velocity pattern in the first mode is similar to that of the phase velocity shown in
Fig. 11a. The phase and group velocities are nearly identical at low frequencies, which further confirm the non-dispersive
behavior for long wavelengths. As wave frequency increases, the group velocity becomes vanishing and anisotropy as the
dispersive surface becomes flat. The anisotropic behavior of the fourth branch (Fig. 11d) displays a more complex pattern,
which is characterized by caustics [15]. The caustics of group velocity plot corresponds the iso-frequency contour lines
with alternative convex and concaves. Such caustics are associated with strong energy focusing along specific directions.
To demonstrate phenomenon of the energy focusing, the fourth wave mode is shown in Fig. 12 at normalized frequency
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O¼ 1:75, from which the wave front is presented. The topology parameters in Fig. 12 are the same as those in Fig. 11. The
group velocity directions, which are normal to the wave front, appear to be mostly confined to four directions as shown in
Fig. 12. If wave vectors spanning 3601 is considered, the corresponding group velocity vectors are mostly oriented in six
directions.
4.4. Microstructure effects on bandgaps of the chiral metacomposite

The objective of this section is to investigate microstructure effects on width and location of possible low-frequency
bandgaps. Specifically effects of the topology parameters of the chiral lattice and microstructure configuration of the
metamaterial inclusion upon the low-frequency bandgaps will be investigated.

Fig. 13 shows the band diagrams of the metacomposite structure for the topological parameters L=R¼ 0:75 and 0.6. In
order to maintain the ligament length L unchanged, distance between the node centers R and node circle radius r varies
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correspondingly, and the remaining parameters are the same as those in Table 2. As L=R decreases with L being unchanged,
circles of the chiral lattice become larger (shown in Fig. 13). In the study, core volume fraction of the metamaterial keeps
constant. Compared the results in Fig. 5, substantial changes of the wave band structure can be observed. The location of
low-frequency bandgaps becomes lower and denser with the decrease of L=R. The appearance of the lower frequency
bandgaps is due to the increase of the core mass with the decrease of L=R. The denser low-frequency bandgaps can be
explained by the fact that the global stiffness of the structure becomes lower with the increase of r.

Another important factor about the low-frequency bandgaps is the microstructure parameter of the metamaterial
inclusion. As we discussed above, the new low-frequency bandgaps are mainly dependent on the local resonant
mechanism. The most direct way to tune the resonant frequency is to adjust the core density and the geometry ratio
rc=r. Fig. 14a shows the effects of the normalized core density r�c ¼ rc=rref

c upon the normalized low-frequency bandgaps
with rref being the density of the metamaterial inclusion core in Table 2. The low-frequency stop bands within O 2 ½0,2� is
represented by red regions. The pass band, which has negative group velocity, corresponds to the white strip. As shown in
Fig. 14a, the width of the bandgap increases with the increase of the core density. It is interesting to note that the pass
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band, corresponding to the white region in the figure, emerges until r�c ¼ 0:5 and its width decrease with the increase of r�c .
Fig. 14b shows the dependence of the normalized low-frequency bands upon the geometry ratio rc=r. As shown in the
figure, the width of the total bandgap increases with the increase of rc=r. The pass band can be found until rc=r¼ 0:4 and its
width increases with the increase of rc=r. These results elucidate how the microstructure parameter of the metamaterial
can be used as a tuning parameter for low-frequency bandgaps and the chiral metacomposite can be a good candidate for
low-frequency vibration suppression. From this perspective, tuning of the band gap distribution of the chiral metacom-
posite can be achieved without the need of the change of the overall topology of the chiral lattice.

4.5. Filtering properties of the finite chiral metacomposite

In the previous sections, free wave motion characteristics of the infinite chiral metacomposite has been analyzed,
however, it may not be suitable for load-carrying application. In this section, a finite metacomposite beam is proposed as
shown in Fig. 15. In the beam structure, the periodic chiral metacomposite is sandwiched into a beam frame and the end of
the ligament is rigid linked to the frame. The dimension of the beam is W=810 mm in length and H=88 mm in height.
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The material properties of the frame are the same as those of the ligament, and its wall thickness is 1 mm. The structure
contains 32 unit cells in length direction and 3 unit cells in height direction. The configuration of the chiral metacomposite
is the same as that in Table 2, except for material properties of the metamaterial inclusion. Silicon rubber (Es ¼ 3MPa,
us ¼ 0:48, rs ¼ 1:1g=cm3) and lead (Ec ¼ 17GPa, uc ¼ 0:42, rc ¼ 11:3g=cm3) are selected as the coating and the core of the
metamaterial inclusion, respectively. The beam is free at the right end and the vertical harmonic loading is applied at the
left edge of the beam, as shown in Fig. 15. The excitation frequency is swept from 0 to 4000 Hz, corresponding to
O 2 ½0,2:5�, to cover a wide range of structural resonances. The response of the beam is characterized by the frequency-
response functions (FRF) of the free-tip displacements at points A and B.

Fig. 16a shows calculated response spectra at points A and B of the metacomposite beam. For comparison, response
spectra at the same points A and B of a pure chiral lattice beam are also shown in Fig. 16c. Fig. 16b shows the band diagram
of the infinite chiral metacomposite, where two stop bands are marked with two gray areas. Significant low transmittance
in frequency O¼ ½0:75,1:15� is found for the metacomposite beam, which agrees well with the prediction from the band
diagram. However, for the pure lattice beam, the low transmittance cannot be found in the low-frequency range. In
relatively high-frequency range, low transmittances are observed in the range O¼ ½2:25,2:4� for both beam structures. The
frequency range from the finite beam structure is slightly different from the second bandgap O¼ ½2:1,2:3� predicted from
the band diagram, which is based on the infinite periodic structure. This difference may be attributed to the fact that
bandgap wave mechanism from the band diagram is the Bragg scattering, which fully relies on the periodicity.

To understand wave mechanism, a deformation snap shot of the metacomposite beam is shown in Fig. 17 at the
excitation frequency O¼ 0:97, which is near the middle of the first bandgap. At the frequency, transmittance of the
metacomposite beam at the points A and B is less than �21 dB. From the figure, it can be observed that the deformation is
localized in the metamaterial inclusion and trapped in the region where the load is applied, and decay very quickly along
the length direction. Very small deformation energy is stored in the lattice structure. Since the system is pure elastic and
absent of dissipation, the attenuation process in the stop band is very interesting. Through a discrete mass–spring
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metamaterial model, Huang and Sun [28] clarified this mechanism through a periodic store-and-return process of the
resonance energy in the metamaterial.

To give a deep insight of the spatial attenuation, Fig. 18 shows normalized displacement responses along the top surface
of the beam under harmonic loadings with frequencies neighboring the resonant frequency O0 ¼ 0:70 of the metamaterial
inclusion. In the figure, the normalized transverse displacement amplitude is defined as U� ¼ uy

 = uy0

  with uy and uy0

being the response and excitation displacements, respectively. It is obvious that the displacement response exhibit
significant attenuation when the frequency is close to the resonance frequency. The wave will decay totally within two or
three unit cells when O¼ 1:01O0 and decay much slower when the frequency is away from the local resonance frequency.

As we discuss, formation of the low-frequency bandgap in the metacomposite structure is due to the local resonance of
the metamaterial inclusion not the Bragg scattering, hence the periodic requirement of the metamaterial inclusion may
not be necessary for the low-frequency bandgap. This feature is important since the light weight requirement of a
structure is crucial for many engineering application. The proposed metacomposite does not change mechanical properties
of the original lattice structure, however, it would result in a considerable weight increase. This non-periodicity feature
offers an excellent opportunity to reduce the total weight of the structure by randomly taking off the metamaterial
inclusions in the structure. A numerical analysis is conducted on a new metacomposite structure with 50% reduction of the
metamateiral inclusion in the metacomposite structure discussed in Fig. 15. Numerical results show that the response
spectra of the new metacomposite structure are almost the same as those in Fig. 16. Based on the concept, a boardband
vibration suppression can be designed by a chiral metacomposite beam with different types of the metamaterial
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inclusions. In addition to the metamaterial inclusion (inclusion A) used in Fig. 16, another metamaterial inclusion
(inclusion B) is also included in the chiral metacomposite beam. The coating’s Young’s modulus of the new metamaterial
inclusion (inclusion B) is changed as EB

s ¼ 1MPa and the other properties of the metamaterial inclusion B are the same as
those of the metamaterial inclusion (inclusion A). Fig. 19a shows the response spectra of the new metacomposite beam
with the two metamaterial inclusions (inclusions A and B). In the study, the same beam structure is used as that in Fig. 16
and the metamaterial inclusion A is inserted in the left half of the beam and the metamaterial inclusion B is used in the
right half of the beam. For reference, the band diagrams of the metacomposite with the single metamaterial inclusion
(inclusion A or B) are shown in Fig. 19b and c, respectively. From the figure, excellent broadband vibration attenuation is
achieved in the frequency range =[0.4, 1.2]. Specifically the frequency range is just the sum of that by each individual
metamaterial inclusion. This feature will provide a great potential for the design of the broadband vibration suppression.

5. Concluding remarks

In this work, a new chiral metacomposite is suggested by integrating a two-dimensional chiral lattice and a
metamaterial inclusion for the low-frequency bandgaps. The matematerial inclusion, which is responsible for the local
resonance, composes of a heavy core and a soft coating layer. The in-plane wave propagation in the metacomposite is
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studied through the finite element technique and Bloch’s theorem to illustrate specific wave properties. Effective dynamic
properties of the chiral metacomposite are determined to understand wave mechanism of the low-frequency bandgaps in
the chiral metacomposite. Tuning of the resulting low-frequency bandgaps is then discussed by adjusting microstructure
parameters of the metamaterial inclusion and lattice geometry. Specifically a design of a metacomposite beam structure
for broadband low-frequency vibration suppression is demonstrated.
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