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Smart three-dimensional 
lightweight structure triggered 
from a thin composite sheet via 3D 
printing technique
Quan Zhang, Kai Zhang & Gengkai Hu

Complex fabrication process and expensive materials have restricted the development of smart three-
dimensional (3D) lightweight structures, which are expected to possess self-shaping, self-folding 
and self-unfolding performances. Here we present a simple approach to fabricate smart lightweight 
structures by triggering shape transformation from thin printed composite sheets. The release of the 
internal strain in printed polymer materials enables the printed composite sheet to keep flat under 
heating and transform into a designed 3D configuration when cooled down to room temperature. The 
3D lightweight structure can be switched between flat and 3D configuration under appropriate thermal 
stimuli. Our work exploits uniform internal strain in printed materials as a controllable tool to fabricate 
smart 3D lightweight structures, opening an avenue for possible applications in engineering fields.

Smart three-dimensional (3D) lightweight structures are expected to possess self-shaping, self-folding and 
self-unfolding functions, which may have broad applications in assembly1–6, packaging7, robot actuator8–10, 
solar cells11, drug delivery and biological devices12–14. Complex fabrication process and expensive materials have 
restricted their development. A potential approach to fabricate such lightweight structure is the shape transfor-
mation from a flat sheet under external stimuli15,16. A typical mechanism of the approach involves non-uniform 
internal stress, generated via contrasted materials under swelling or heating17,18. Such formed structures can 
achieve a reversible unfolding deformation, compared with traditional technique by controlling local recovery of 
shape memory polymers19. Nowadays, novel structures with customized materials can be fabricated rapidly by 
3D printing technique20–22. However, the 3D printing technique is still challenged as a practical means to fabricate 
smart 3D lightweight structures with spontaneous responses under external stimuli.

It is reported that uniform internal strain is stored in printed polymer and it can be released when reheated, 
resulting in a heat-shrinkable phenomena of polymer materials23. Here we exploit the internal strain in printed 
polymer to fabricate smart 3D lightweight structures by self-folding thin sheets under thermal stimuli. The 
method integrates the advantages of 3D printing technique and the printed polymer with shape memory effect, 
thereby providing an efficient way to obtain complex 3D lightweight structures with self-shaping, self-folding/
unfolding performances. This work opens a door not only to address novel mechanism on thermal-induced 
shape transformation of 3D-printed composite materials, but also to practical fabrication of smart 3D lightweight 
structures or devices.

Results
Three-dimensional lightweight structures triggered from printed composite sheets. We fix a 
membrane of paper sheet, on the platform of a 3D printer. As shown in Fig. 1a, flat polylactic acid (PLA) strips 
with the width of 0.8 mm and thickness of 0.2 mm, which are similar to the structure of leaf vein, are printed on 
the fixed sheet. Then we cut the composite sheet to a shape with six petals and put it on a heating plate at 105 °C, 
keeping the layer of PLA materials faced up. It is common that multi-layer membrane structure, consisting of dif-
ferent materials in its thickness, can generate a 3D structure spontaneously under heating and recover to its initial 
flat shape gradually after cooling due to the mismatching coefficient of thermal expansion (CTE) between differ-
ent materials. As expected, the center of the 3D-printed composite sheet bends upward in the beginning, since 
the CTE of PLA materials on the top layer is larger than that of paper. However, as the temperature increases, 
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the whole composite sheet bends toward the opposite direction spontaneously, even making the composite sheet 
remain almost flat after reaching equilibrium temperature (Supplementary Video 1). The whole composite sheet 
can form a 3D structure with lifted edge at equilibrium state of heating process when the thickness of the printed 
PLA is increased. As the composite sheet is cooled down, the planar composite sheet will be transformed into a 
flower-like 3D shape spontaneously (Fig. 1b and Supplementary Video 2). The newly formed 3D structure can 
recover its initial planar shape when reheated (Supplementary Video 3), demonstrating that the processes of 
self-folding and self-unfolding are completely reversible. Thus, the 3D-printed composite sheet possesses the 
characteristics of self-shaping, reversible self-folding and self-unfolding. By tearing off the paper from the flow-
er-like 3D structure, a complex lightweight structure is also obtained in Fig. 1c, which is difficult to fabricate by 
3D printing technique.

Similarly, a number of smart 3D lightweight structures can be triggered from the planar composite sheets 
under thermal stimuli. Figure 2a–c shows some examples of constructing helical structures with different helical 
angles. After a piece of paper with width of 3 cm is fixed on the platform, PLA strips are printed on the paper 
with an angle β, defined as the angle between printed strips and horizontal direction. The width and thickness 
of the PLA strips are 0.6 mm and 0.2 mm, respectively, and the space between adjacent strips is 0.9 mm. β cor-
responding to Fig. 2a–c is π /3, π /4 and π /6, respectively. Similar to the fabricating process of the flower-like 3D 
structure, after being heated on a heating plate at 105 °C and then cooled down to room temperature, thin flat 
composite sheets roll up to form the helix structures. By printing staggered PLA strips on both surfaces of a rec-
tangular paper, corrugated structures can also be formed under the similar cycle of heating and cooling, as show 
in Fig. 2d,e. More interestingly, periodic 3D lightweight structure can also be formed by printing PLA strips peri-
odically on a flat paper sheet. As shown in Fig. 3a, a composite sheet, consisting of four periodic cells in square 
arrangement, is fabricated. Each cell includes a central region without PLA strips and four rectangular regions 
with printed PLA strips. The sizes of the cell and the central region are 7.2 ×  7.2 cm and 1.2 ×  1.2 cm, respec-
tively. Orthogonal PLA strips are printed on neighbor rectangular regions and the public edges between them are 
cut off. The width and thickness of the PLA strips are 0.8 mm and 0.2 mm, respectively, and the space between 
adjacent strips is 0.6 mm. After undergoing the similar process of heating and cooling, a periodic 3D lightweight 

Figure 1. Formation of flower-like 3D structure from initial planar sheet. (a) The initial planar shape of 
the 3D-printed composite sheet. (b) The final flower-like 3D shape after a process of heating and cooling. (c) A 
complex lightweight structure fabricated by tearing off the paper from the flower-like 3D structure. Scale bar is 
2 cm.

Figure 2. Different kinds of 3D structures created by self-folding printed composite sheets. (a–c) Helical 
structures with different degrees of spiral. (d,e) Corrugated structures by bidirectional folding of printed 
composite sheets. Scale bar is 2 cm.
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structure is triggered (shown in Fig. 3b). All of the newly formed 3D structures above can recover their original 
planar shapes when reheated.

Thermal response of PLA materials printed on paper sheet. In our previous work, we have explained 
how internal strain is generated when the PLA materials is printed directly on the platform of 3D printer23. Here 
we firstly evaluate internal strain stored in PLA materials when it is printed on a fixed paper. Long PLA strips with 
the size of 90 ×  1.6 ×  0.12 mm (length ×  width ×  thickness) are printed on a piece of fixed paper. Then we tear 
off the paper and put the long PLA strips on the surface of a heating plate at 90 °C. By calculating the ratio of the 
contraction to the initial length of the strips, we obtain the strains of the long strips during the deformation pro-
cess, as shown in Fig. 4a. As can be seen that the printed PLA strips expand in the beginning, but the expansion 
process is very short because the strips are so thin that they reach the equilibrium temperature very quickly. 
Subsequently, the printed PLA strips present a contraction phenomenon, resulting from the release of internal 
strain when their temperature exceeds the glass transition temperature of PLA (Tg, 60 °C)24,25. We consider the 
moment t0 corresponding to Tg as the beginning of the releasing process, a classic Voigt model which consists of 
a spring and a dashpot can be used to describe the strain of printed PLA strip εp with increasing time (t)23:

ε ε′ = −




−
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t e( ) 1
(1)p r

t
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Where ′ = −t t t0. We can obtain the stored internal strain εr  0.0155 and the relaxation time τ f  1.89 s, respec-
tively, by using equation (1) to fit the experimental data in Fig. 4a. By defining an equivalent linear CTE αeff  
through ε α′ = ′t Tt( )p eff  with heating rate T , the equivalent linear CTE of the printed materials for the releasing 
process of internal strain is given as

Figure 3. Formation of the periodic 3D lightweight structure from printed composite sheet. (a) Initial 
periodic printed composite sheet. (b) Final orthogonal periodic structure after a cycle of heating and cooling. 
Scale bar is 2 cm.

Figure 4. (a) Experimental data and theoretical strain-time curve for printed PLA strips. (b) Experimental and 
theoretical angle of rotation for printed composite strips.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:22431 | DOI: 10.1038/srep22431

α
ε

= −
′





−






τ−
′

Tt
e1

(2)eff
r

t
f

In comparison with common materials with constant CTE, when the 3D-printed materials is reheated, it 
behaves as common PLA materials in the beginning, but shows an equivalent negative linear CTE as soon as 
its temperature is above Tg. After the residual strain has been released completely, the equivalent linear CTE 
approaches to zero.

Bending deformation of printed composite strip under thermal stimuli. Now we explain the 
deformation of printed composite strips under heating. Similarly, long composite strips, which consist of paper 
and PLA strip with the size of 60 ×  0.8 ×  0.12 mm (length ×  width ×  thickness), are fabricated. The lateral side of 
the composite strip is heated on the heating plate at 90 °C and the angle θ between the normals of both ends of the 
composite strip is measured. As shown in Fig. 4b, the angle increases with time in the beginning, indicating that 
the composite strip starts to bend toward the direction of paper under heating due to the contrasted CTE between 
the printed polymer and paper. According to the reference26, when the temperature is below Tg, the bending angle 
for the thermal expansion process can be given as

θ α κ= − −
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+ +
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Where ∈x l[0, ] and l means the length of the composite strip, T  is the heating rate. p and m denote the printed 
polymer and membrane of paper, respectively; αi, hi , bi are the CTE, thickness and width of the materials (i =  p, m),  
respectively; κ α α= /m p, =h h h/pm p m, =b b b/pm p m. =E E E/pm pg m, Epg and Em denote the elastic modulus of 
the printed polymer and paper below Tg, respectively.

After heating the composite strip for about 3 s, the angle θ drops sharply and then keeps constant (Fig. 4b). 
The release of internal strain stored in PLA strip can generate a negative equivalent linear CTE of 3D-printed 
materials, and further result in an obvious bending of the composite sheet in the opposite direction of bending 
deformation, which enables the printed composite sheet to keep in planar state. For heating process over Tg , the 
corresponding bending angle is expressed as:

θ α κ′ = − ′ − ′
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Where κ α α′ = /m eff , ′ =E E E/pm pe m, Epe is the elastic modulus of the printed polymer over Tg. Therefore, the 
total bending angle for >t t0 will be expressed as the sum of θ x t( , )1 0  and θ ′x t( , )2 , where t0 represents the 
moment at which temperature of the composite strip reaches Tg. Finally, the theoretical result is plotted in Fig. 4b, 
showing fine agreement with the experimental result (Parameters of the composite strip seen in Methods).

After the printed composite strip reaches its equilibrium state on heating plate, removing it from the heat-
ing plate makes the printed composite strip bend toward the direction of PLA materials. As a result, a curved 
strip is formed spontaneously. The final shape of the curved strip is described by Equation (4), that is, the shape 
transformation is only dependent on the released internal strain, having no relations to the interaction between 
contrasted CTE of materials. We plot the final bending angle of the composite strip with varying thickness (hp) 
and elastic modulus over Tg (Epe) of printed PLA in Fig. 5. It can be seen that appropriately increasing hp or Epe 
of printed materials finally forms the curved composite strip with larger bending angle. Since the formation of 
the final curved strip is due to the thermal elastic deformation generated during cooling process, the curved strip 
can recover the initial flat strip reversibly under reheating. For the printed composite sheet, it can be regarded 
as the combination of a series of composite strips. The total bending moment is the sum of the bending moment 

Figure 5. The relationship between the final bending angle of the composite strip and the thickness (a) or 
elastic modulus over Tg of printed PLA strip (b).
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generated from each composite strip (expressed in Supplementary Note), then the bending angle is further 
obtained to describe the deformation of the printed composite sheet.

Theoretically, the cycle times of folding and unfolding is infinite since the formation of the final 3D structure is 
due to the thermal elastic deformation generated during cooling process. However, according to our experimental 
observation, after undergoing a dozen times of heating and cooling cycle, the final 3D structure can’t recover to 
the initial flat sheet completely under reheating due to the aging of polymer materials. In addition, the internal 
strain stored in PLA materials is relatively small (about 0.0155 with a building speed of 30 mm s−1), when it is 
printed on a fixed paper. According to our previous work23, increasing both the building speed and the elastic 
modulus of the substrate significantly result in larger internal strain stored in printed PLA materials. Thus the 
self-folding/unfolding force of these smart 3D lightweight structures can be enhanced by using hard paper board 
as well as increasing the building speed.

The proposed adaptive metamaterials. Conventional composite sheet consisting of different materials 
can also lead to self-folding. However, the 3D configuration can only be kept at abnormal temperature. In com-
parison, the printed composite sheet can be triggered into 3D configuration at room temperature but transforms 
into the planar state in hot environment. Furthermore, it is reported that the 3D printing technique generates a 
uniform internal strain in polymer in a controllable way23, enabling the shape of the printed composite membrane 
to be transformed precisely. Our method may inspire the innovation of 3D printing technique to fabricate smart 
lightweight structures or devices for specific applications, such as mechanical metamaterials, optical components 
and tissue engineering.

For example, inspired by the self-folding mechanism we reported, here we conceptually propose a new type 
of adaptive metamaterials, whose band gaps can be switched by reversibly changing the configurations of lattice 
structures under thermal excitation. Although lattice structures have attracted much attention in recent years 
mainly for their abilities to manipulate and control elastic waves27,28, most lattice structures can only have band 
gaps with fixed frequency ranges or even have no band gaps, limiting more potential applications. It is reported 
that mechanical instability29,30, fluid-structure interaction31, and piezoshunting32,33 can be employed to achieve 
adaptive metamaterials with tunable bandgaps. Here the proposed adaptive metamaterials is constructed by intro-
ducing self-folding beams into standard two-dimensional square lattice materials, as shown in Fig. 6a. Composite 
beam, fabricated by printing PLA on a membrane, is attached to each wall of a lattice structure. According to the 
self-folding mechanism, after undergoing a process of heating and cooling, the attached straight beams are folded 
to curved beams, thus the whole lattice structure transforms into a new configuration as depicted in Fig. 6b. 
Afterwards, the lattice structure can switch back and forth between these two configurations under appropriate 
thermal stimuli. The schematic diagrams and band structures for this kind of adaptive metamaterials are shown 
in Fig. 7.

We use commercial software COMSOL Multiphysics to simulate the band structures corresponding to these 
two configurations in Fig. 7a,b. In the simulation, we focus on a representative element, which comprises a square 
main frame, four composite beams fabricated by printing PLA on membranes, and four rectangular solids which 
connect the composite beams to the main frame. The main frame along with all the rectangular solids are made of 
PLA materials, the composite beams are equivalent to uniform beams with the same material parameters as PLA. 
In the simulation, plain strain triangular element is chosen with the maximum element size of 3.0*10−4 m. The 
band structure diagrams are presented in Fig. 7c,d and there is a clear band gap for the configuration with curved 
beams (Fig. 7d). Several flat bands at frequency about 1,311 Hz, which corresponds to the first natural frequency 
of a resonant structure consisting of the curved beam and the rectangular solid, indicate a typical feature of band 
gap based on local resonance. However, the band gap related to local resonance will completely close when the 
lattice structure transformed into the other configuration (Fig. 7c). The proposed metamaterials can be therefore 
used as a wave switch that provides on or off function.

Conclusion
We investigate the thermal response of polymer materials printed on a paper sheet and present a novel approach 
for fabricating smart 3D lightweight structures by printing PLA strips on a membrane. The corresponding mech-
anism is that the release of the uniform internal stress in 3D-printed materials, generated during 3D printing 
process, counteracts the deformation caused by the mismatching CTE of composite materials. As a result, the 

Figure 6. Fabricated adaptive metamaterials. (a) The initial structure is constructed by introducing auxiliary 
beams into standard two-dimensional square lattice materials. (b) After undergoing a process of heating and 
cooling, the whole lattice structure transforms into a new configuration with curved beams. Scale bar is 2 cm.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:22431 | DOI: 10.1038/srep22431

printed composite sheet remains in flat state on heating plate, but transforms into 3D configuration when cooled 
down to room temperature. The 3D structure can recover its initial flat shape reversibly under heating, since the 
formation of the final 3D structure is due to the thermal elastic deformation during the cooling process. Finally, 
inspired by the self-folding mechanism we reported, we conceptually propose a type of adaptive metamaterials 
constructed by introducing self-folding beams into standard two-dimensional square lattice materials. The sim-
ulation results indicate that the proposed metamaterials can be used as a wave switch in a particular frequency 
range. Our study offers new insights into the design, manufacture and application of smart lightweight structures 
in engineering fields.

Methods
The printed material in our work is PLA Filament, whose glass transition temperature (Tg) is about 60~65 °C. 
Mechanical properties of PLA including tensile modulus, tensile strength, and thermal analysis by using a differ-
ential scanning calorimetry (DSC) and dynamic mechanical analyses (DMA) can be found in other literatures25.

All the composite sheets are fabricated by printing PLA materials on fixed paper sheets via a 3D polymer 
printer (MakerBot Replicator 2, MakerBot, Brooklyn, NY 11201 USA) with the highest resolution 0.1 mm per 
layer. The nozzle temperature is fixed to be 230 °C and the building speed is set to be 90 mm s−1. The ambient 
temperature is about 20 °C.

Long PLA strips with the size of 90 ×  1.6 ×  0.12 mm (length ×  height ×  thickness) are printed on fixed paper 
with a resolution of 0.12 mm per layer. The building speed is 30 mm s−1 and the nozzle temperature is fixed to be 
230 °C. Afterwards, we tear off the paper and put the PLA strips on a heating plate with temperature of 90 °C. The 
deformation process of the printed PLA strips under heating is recorded using a digital camera. Then we measure 
the contraction of the long PLA strips at different moments and calculate the ratio of the contraction to the initial 
length of the strips. Five measurements have been made to obtain the mean strain with heating time.

To measure bending deformation of the printed composite materials, the size of the PLA strips is changed to 
be 60 ×  0.8 ×  0.12 mm (length ×  width ×  thickness), keeping the other printing conditions the same. The whole 
printed composite strips are then heated on a heating plate with temperature of 90 °C, the angle θ between the 
normals of both ends of the composite strip is also measured by digital camera. Five printed composite strips have 
been tested under heating and the mean bending angle with heating time is shown in Fig. 4b. In the theoretical 
calculation, the dimension of paper strip is 60 ×  0.8 ×  0.07 mm (length ×  width ×  thickness). The coefficient 
of thermal expansion of printed PLA is averaged to be 6.0× 10−5/K by using a dilatometer (NETZSCH DIL 402 
PC) and elastic modulus of paper is 5 GPa by using a testing machine (MTS, Eden Prairie, MN, USA). Five meas-
urements are made to obtain the mean value, respectively. Elastic modulus of printed PLA is 3.5 GPa in the glass 

Figure 7. Proposed adaptive metamaterials and corresponding band structures. (a) The initial configuration 
with straight beams. (b) The configuration with curved beams after undergoing a process of heating and 
cooling. (c) A clear band gap exists when the auxiliary composite beams in the lattice are in curve configuration 
and (d) disappears once the auxiliary composite beams deform to be straight under heating.
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state according to the reference24,25 and assumed to be 50 MPa when the temperature is over its glass transition 
temperature (60 °C). The coefficient of thermal expansion of paper is assumed to be zero.

The representative element used in numerical simulation comprises (i) a square main frame with side 
length L =  40.0 mm and thickness t =  0.4 mm, (ii) four composite beams with length l =  31.5 mm and thick-
ness ta =  0.8 mm, fabricated by printing PLA on membranes, and (iii) four rectangular solids with the length 
b =  3.2 mm and thickness ta which connect the composite beams to the main frame. The main frame along with 
all the rectangular solids are made of PLA materials, whose Young’s modulus E =  3.5 GPa, density ρ =  1270 kg m−3  
and Poisson’s ratio v is assumed to be 0.3324,25.
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