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Abstract: Due to solid and broadband nature, pentamode acoustic cloak
is more promising for engineering applications. A simple algorithm based
on an elasticity equation is proposed to obtain quasi-symmetric mapping
gradient and in turn the characteristic stress for arbitrary shape cloaks. A
high degree of symmetry of the obtained mapping gradient and nearly
perfect cloaking effect of the designed pentamode cloaks are confirmed by
numerical examples. The proposed method paves the way to design more
complicated transformation devices with pentamode materials.
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1. Introduction

Rendering an object invisible by designing a coating layer is a long standing inverse
problem. In 2006, based on the property of form invariance of Maxwell’s equation
under coordinate mapping, a concise mathematical approach was proposed to design
material distribution for a targeted wave pattern.1,2 This method usually called trans-
formation electromagnetics was soon validated by experiment through making an
invisible cloak realized with a metamaterial technique.3 Transformation acoustics
based on meta-fluid of anisotropic density was first proposed by observing the similar-
ity between acoustic equation and Maxwell’s equation.4 Meta-fluids with anisotropic
density can only be realized using metamaterial technology, such as alternating differ-
ent fluid layers,5 and they are basically fluidic in nature.

Another route is to make use of meta-fluids with anisotropic modulus, i.e.,
pentamode (PM) materials, which can be completely constructed from solids through
careful microstructure design.6 Wave equation for PM materials is found to be form-
invariant under a general coordinate mapping, so it can be used to design acoustic
cloak with PM materials.7 These findings stimulate an active study recently for this
material conceived theoretically 2 decades ago.8–12 PM material, including conven-
tional fluid as a special case, is defined as an elastic material with only one non-zero
eigenvalue of elasticity matrix, and supports only one kind of stress state. By micro-
structure design, PM material can be made anisotropic in contrast to conventional
fluids.10,11 In addition, its effective property is obtained under a long wavelength condi-
tion without using a resonant mechanism and thus is basically broadband. Acoustic
cloak using PM materials has advantages of finite mass, broadband efficiency, and
solid nature,7 is more promising for practical applications. However, in the design of
acoustic cloak using PM material, a divergence free and symmetric second order tensor
S is introduced and its choice is not available for general cases. This limits the design
of transformation devices with PM material to only simple cases, i.e., cylindrical cloak
in two dimensions or spherical cloak in three dimensions.

In this paper, we will re-examine transformation acoustics based on PM mate-
rial using an operator mapping technique and rigorously derive the continuity condi-
tion for the mapped physical field. It is found that the S tensor must have principal
axes parallel or normal to the outer boundary of cloak with a unit normal component
in order to guarantee an impedance match at the PM/fluid interface. This additional
condition together with divergence free and symmetric property can be fulfilled by
taking S¼ J�1F if the mapping gradient F is symmetric. Based on this observation, a
simple numerical method based on the elasticity equation is proposed to derive quasi-
symmetric mapping gradient for arbitrary cloaks and to design more complex transfor-
mation devices with PM materials.

a)Author to whom correspondence should be addressed.

J. Acoust. Soc. Am. 140 (5), November 2016 VC 2016 Acoustical Society of America EL405

Chen et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4967347] Published Online 14 November 2016

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  114.247.56.207 On: Fri, 02 Dec 2016 16:07:28

mailto:chenyi221@gmail.com
mailto:liuxn@bit.edu.cn
mailto:hugeng@bit.edu.cn
http://dx.doi.org/10.1121/1.4967347
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4967347&domain=pdf&date_stamp=2016-11-14


2. Methods

The elastic tensor of PM material is characterized by C¼KS�S,6 and S is called its
characteristic stress tensor. The stress in PM material is always proportional to S, i.e.,
r¼�pS, and p is called the pseudo pressure compared to pressure of fluid.7 Actually
conventional fluid can be considered as a natural PM material with the characteristic
stress tensor S¼ I. The wave equation for PM materials directly follows that of con-
ventional solids with a specified form of stress and modulus, _p ¼ KS : rv;
_v ¼ �q�1 � r � ðpSÞ. Here, an anisotropic dynamic density tensor q is assumed in order
to cover the general cases. In principal coordinate of the PM material, the characteris-
tic tensor S is able to write in a simple form, S ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Kn=K

p
enen þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Ks=K

p
eses, in which

Kn and Ks are called two principal bulk moduli of the PM material in contrast to one
of the conventional fluids.

A basic idea of transformation acoustics based on PM material is depicted in
Fig. 1. A physical space, consisting of three adjacent domains denoted by xout, x, and
xin, respectively, is shown in Fig. 1(b). The background domain xout is occupied by a
homogeneous fluid with density q0 and bulk modulus K0. To derive material property
distribution in x, we consider another virtual space, shown in Fig. 1(a), with two adja-
cent domains X and Xout. Both of the domains are filled with the same fluid as that in
the domain xout of the physical space. In addition, the outer boundary of the domain
X and domain x are exactly the same, i.e., @X¼ @xþ. For simplification, two
Descartes coordinates are employed to characterize the different locations in the physi-
cal and virtual spaces. In the virtual space, the governing equations for acoustic pres-
sure are

_vðXÞ ¼ �q�1
0 rXpðXÞ; _pðXÞ ¼ �K0rX � vðXÞ: (1)

Here v(X) and p(X) are particle velocity and pressure at location X in the virtual space,
and the symbol rX represents the gradient operator in the virtual space and the dot
over the velocity and pressure symbols stands for derivation with respect to time. Now
consider an imaginary mapping function of the locations x and X, x¼ x(X), which
maps the domain Xout onto the domain xout, and the domain X onto x, respectively.
The mapping gradient is defined by F¼›x/@X or in component form Fij¼ @xi/@Xj, it
is an identity matrix in the domain Xout, F¼ I. Because of the relation between x and
X, one has the following relations between operators rX¼FT � rx and rX� ¼ Jrx
� (J�1F�), in which the identity rx�(J�1F)¼ 0 has been used and J is the Jacobian of F.
Therefore, Eq. (1) can be naturally re-casted in terms of x,

_pðXÞ ¼ �K0Jrx � ðJ�1S � S�1 � F � vðXÞÞ ¼ �K0JS : rxðJ�1S�1 � F � vðXÞÞ; (2a)

J�1S�1 � F � _vðXÞ ¼ �ðq�1
0 J�1S�1 � F � FT � S�1Þ � rxðpðXÞSÞ: (2b)

A divergence free and symmetric second order tensor in the physical space is intro-
duced here, ST¼S, rx � S¼ 0. An additional term J�1S21 � F is multiplied to both
sides of the first equation in Eq. (1) on the left. By defining the following new field
variables and material property, v0ðxÞ ¼ J�1S�1 � F � vðXÞ, p0ðxÞ ¼ pðXÞ, q0�1ðxÞ
¼ q�1

0 J�1S�1 � F � FT � S�1, C0ðxÞ ¼ K 0S� S, K 0 ¼ K0J. Equations (2) become

_p0ðxÞ ¼ �K 0ðxÞS : rxðv0ðxÞÞ; v0ðxÞ ¼ �q0�1ðxÞ � rxðp0ðxÞSÞ: (3)

These equations are exactly the same as the wave equation for a general PM material.
Thus, if PM materials with the property given by q�1ðxÞ, CðxÞ are distributed in the
domain x, the physical field in the domain x&xout can be directly mapped from that

Fig. 1. Illustration of transformation acoustics based on PM material. (a) Virtual space with coordinate XOY.
(b) Physical space with coordinate xoy.
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in the domain X&Xout using v0ðxÞ ¼ J�1S�1 � F � vðXÞ, p0ðxÞ ¼ pðXÞ. Since no scattering
takes place for any incident wave in Xout due to its homogeneous feature, there will
also be no scattering in xout for the same incident wave. Equations (3) are first derived
by Norris7 in a different way.

In order to achieve a perfect cloaking effect, the mapped solution should also
satisfy continuous condition at the boundary. In most cases, this condition for the
mapped solution is automatically verified with the continuous condition in the virtual
space. As for the considered transformation acoustics based on PM material, the
mapped material property is not able to satisfy the continuous condition at the inter-
face @xþ in the physical space, and further analysis is needed.

Since the mapping function should maintain the boundary @X unaltered, the
mapping gradient F at the boundary @X¼ @xþ should have the following form:
F¼ esesþ (Jenþ aes)en, where es and en are the tangential and normal unit vectors at
the boundary, J characterizes the normal extension, and a stands for the distortion. At
the boundary @xþ, the mapped solution should satisfy the continuity conditions for
normal particle velocity and normal stress, respectively. As for the normal stress at the
interface @xþ, we need

½en � r0ðxÞ�j@x ¼ �pðXÞ½en � S�j@X ¼ 0: (4)

Here, the symbol [�]j@B denotes the jump of the physical variable across the interface
@B, and the pressure p(X) is taken out of the jump symbol due to its continuity in the
virtual space. Equation (4) provides a constraint condition for S at the boundary, i.e.,
[en � S]j@X¼ 0. Taking into account the symmetry of S and S¼ I in xout, we conclude
that S must have principal axes parallel or normal to the boundary @xþ, in addition
its normal component must be unity. As for the continuity condition of the normal
velocity at the interface @xþ, we get

½en � v0�j@x ¼ ½J�1en � S�1 � F � v�j@X ¼ 0: (5)

Substituting S and F into Eq. (5), the continuity condition of the normal velocity is
automatically satisfied. So in addition to symmetry and divergence free, the character-
istic stress should be S¼ enenþ Ssseses at the boundary @xþ to maintain the impedance
match condition at the PM/fluid interface @xþ. With similar analysis, one can verify
that the transformed material properties derived from transformation acoustic with
meta-fluid of anisotropic density or transformation optics and asymmetric transforma-
tion elasticity automatically satisfy the impedance match conditions.

Because of the stringent constraint on the characteristic stress tensor S, no
general method for determining S is available at present. This is a major obstacle pre-
venting PM materials from practical design for a complex shaped target. One solution
is to find a symmetric gradient mapping field, then we can simply take S as
J�1F 5 enenþ J�1eses in the design of an arbitrary shaped PM cloak. This special form
of S obviously guarantees the impedance match condition at the boundary and makes
the required PM material with isotropic density as well, which is preferred in designing
PM acoustic cloaks,11 q0�1ðxÞ ¼ q�1

0 J�1S�1 � F � FT � S�1 ¼ q�1
0 JI.

The mapping function is able to choose freely so long as the boundary @X
remains unaltered, thus it is possible to propose a numerical algorithm to obtain a
symmetric or quasi-symmetric mapping gradient, just as the quasi-conformal mapping
algorithm widely used in transformation optics.13 In the following, we will explain how
to find an almost completely symmetric mapping gradient for arbitrary shape cloak.
Inverse mapping function of x¼ x(X) is denoted as X 5 xþ u(x), which means a point
x in the physical space is displaced to the position X in the virtual space through elas-
tic displacement u. The displacement should satisfy the following boundary conditions
deduced from the mapping operation:

u ¼ 0 ðx; yÞ 2 @xþ; u ¼ ðe� 1Þx ðx; yÞ 2 @x�; (6)

where, as frequently used in the transformation method, a positive small parameter
0< e � 1 is introduced to avoid singularity in material property. It can be verified; the
displacement must satisfy the differential equation, r� u¼ 0, if F is a symmetric ten-
sor. This first order differential equation is not sufficient to determine the displacement
field with the boundary conditions given by Eq. (6). Taking the curl operation on
equation r� u¼ 0 leads to the following second order differential equation:

r� ðr � uÞ ¼ rðr � uÞ � r2u ¼ 0: (7)
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This equation is similar to the elasticity equation with special isotropic elastic materi-
als, and can be solved easily using an elasticity module in FEM software with the fol-
lowing special elastic constants:

k ¼ ðn� 2Þl; jnj � 1; (8)

where another small parameter jnj � 1 is introduced to avoid degeneracy of the elastic
equation. With these Lam�e constants, the simplified elastic equation can be written as

r� ðr � uÞ ¼ nrðr � uÞ: (9)

It is seen that Eq. (9) is a good approximation of Eq. (7) when n is small enough.
Although Eq. (7) does not guarantee r� u¼ 0 in reverse, it will be shown by subse-
quent numerical examples that the displacement field based on Eq. (9) is almost curl-
free and thus the mapping gradient F has a high degree of symmetry. It can also be
proved that, for the derived inverse mapping gradient F�1 from Eq. (9) combined
with the boundary condition Eq. (6), its overall deviation of symmetry in the domain x is
zero,

Ð Ð
xððF

�1Þ21 � ðF�1Þ12Þda ¼
Ð Ð

xðr� uÞ � da ¼ �ðe� 1Þ
Þ
@x�x � dr ¼ 0. After getting

the mapping gradient F, one just needs to choose S as J�1F and then derives the required
PM material property q�1ðxÞ, CðxÞ for the cloaking layer x.

3. Results and discussion

We consider in the following a physical space and the corresponding virtual space as
shown in Fig. 2. In the physical space, the outer boundary of the cloaking layer x is a
circle with radius r¼ 2 m, and its inner boundary is an ellipse with long axis ain¼ 1 m
and short axis bin¼ ain/1.5, respectively. The fluid in the background domain has a
density q0¼ 1000 kg/m3 and bulk modulus K0¼ 2.25 GPa. The mapping gradient is
obtained by solving Eq. (9) with the appropriate boundary condition. Parameters are
chosen as l¼ 1 Pa, e¼ 10�3, and n¼ 10�4. Symmetry deviation jF12 � F21j shown in
Fig. 3(b) is much smaller than 10�3 in the most region and becomes a little bit larger
only near the inner boundary due to large deformation.

Therefore, when the determined mapping gradient F shows a high degree of
symmetry, we can use S¼ J�1F to obtain the required PM material parameter of the
cloak. It is found that the density in the cloaking layer follows 0<qs/q0< 2, and the
anisotropy of PM modulus, i.e., the ratio of two principal bulk moduli, is relatively

Fig. 2. Design of arbitrary shaped PM acoustic cloak. (a) Physical space with background region xout, cloaking
layer x, and cloaking region xin. (b) Virtual space.

Fig. 3. (Color online) (a) Displacement field juj. (b) Symmetry plot of F (F12 � F21). (c) Normalized density. (d)
Anisotropy degree Kt/Kn. (e) and (f) Pressure field for 0� and 45� incident with frequency f¼ 1.5 kHz.
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small 1<Kt/Kn< 25, which lies in the obtainable range of possible microstructure for
PM unit cells.11

To validate the cloaking effect with the derived PM material property, a plane
wave incident onto the designed cloak is simulated using acoustic/solid coupling mod-
ule in COMSOL Multiphysics. The PM material domain is modelled with an elastic
solid and the background domain is modelled using acoustic media with Perfectly
Matched Layer enclosing the computed domain. Figures 3(e) and 3(f) show the pres-
sure fields for the plane wave’s incident from 0� and 45� directions onto a rigid scatter
with the designed cloaking layer, respectively. In the figure, color in the PM material
stands for the pseudo pressure p¼�Jrx/Fxx. It is clearly seen that the incident waves
onto the cloak are successfully guided by the graded PM material layer to go around
the central cloaking region, and come out unperturbed from the other side of the
cloak. The proposed numerical method is also applied with success design to complex
shaped cloaks, like double ellipse, double pentagon or carpet cloaks, as indicated in
Figs. 4(a)–4(c).

4. Conclusions

In conclusion, transformation acoustics based on PM materials is re-examined with
emphasis on the continuity condition at boundary of different media. It is found that
if the mapping gradient F is symmetric, the characteristic stress in the form of
S¼ J�1F satisfies a naturally continuity condition and symmetric and divergence free
as well. An efficient numerical algorithm based on an elasticity equation with special
Lam�e constants is proposed to obtain a quasi-symmetric mapping gradient, and are
further exploited to design arbitrary shaped PM acoustic cloaks. Numerical examples
are provided to demonstrate the efficiency of the proposed algorithm, and the cloaking
effect of the designed PM acoustic cloaks is also validated through numerical simula-
tion. The proposed method paves the way to design complex shaped acoustic cloaks
with PM materials.
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