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The authors study the wave propagation in continuum acoustic metamaterials whose all or not all

of the principal elements of the mass tensor or the scalar compressibility can be negative due

to wave dispersion. Their time-domain wave characteristics are particularly investigated by the

finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz

dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature

of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a

general manner. It is found that anomalous negative refraction phenomena can appear in several

dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD

modeling. It is further proposed that two different metamaterial layers with specially assigned

dispersions could comprise a conjugate pair that permits wave propagation only at specific points in

the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation

capable of modulating radiation angle with the wave frequency can be realized with this conjugate

pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive

acoustic mediums, which makes a further step toward dispersion engineering and transient wave

control through acoustic metamaterials. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4971330]

[MRH] Pages: 4276–4287

I. INTRODUCTION

Dispersion and anisotropy are inherent physical proper-

ties of acoustic metamaterials consisting of complex

man-made microstructures. Dispersion arises from the local

resonance of microstructures, through which acoustic meta-

materials extrude the mass density or the compressibility

into the negative-value space. Anisotropic wave property

naturally exhibited by the structured metamaterials provides

an additional degree of freedom for acoustic manipulation.

Both features make acoustic metamaterial become an excel-

lent approach to the wave-control realization, and great

advances have been made in recent years.1–3 Different

structural types of acoustic metamaterials, including the

bulk composite,4,5 the discrete mass-spring structure,6–8 the

membrane structure,9,10 the resonant cavity,11,12 the

coiling-channel structure,13–15 and the chiral structure,16

etc., have been proposed to achieve various wave-control

functionalities, such as low-frequency acoustic isolation

and absorption,17 acoustic cloaking,18–20 acoustic super-

resolution imaging,21,22 and non-reciprocal acoustic trans-

mission,23,24 etc.

The time-harmonic analyses upon metamaterial-based

acoustic controlling mediums are frequently employed,

which have shown their value in the proof-of-concept inves-

tigations, as concerned in most of the aforementioned stud-

ies. The time-domain characteristics of wave phenomenon in

acoustic metamaterials are rarely paid attention to. However,

there exist at least two circumstances where the transient

analyses of metamaterials may be of great significance. One

refers to the case in which the time-harmonic scenario is

mismatched to practical environments. For example, in med-

ical focused imaging and underwater sonar detection the

short pulse excitations are commonly used. The other one

lies in the case where the unique time-domain characteristics

of metamaterials may provide surprising solutions to the bot-

tlenecks of hindering the metamaterial applications. As an

example, the material loss blocks the ultimate realization of

super-resolution focusing by metamaterials. By smart use of

the pulse excitation, lossy metamaterials may break the dif-

fraction limit in the initial regime of the time domain.25 The

facts mentioned above state the objective demand of studies

on the time-domain behaviors of acoustic metamaterials.

Acoustic metamaterials possess complex microstruc-

tures, which lead to complex dynamics on the micro scale.

However, due to the fact that the overall property is domi-

nated by the local behaviors of the cell structure,26 metama-

terials can be homogenized to be acoustic continua

following the linear acoustic equation, whose material

parameters involve a tensor mass density and a scalar com-

pressibility. Under the homogenization assumption, the dis-

persion and anisotropy of structural metamaterials have been

translated into the frequency-dependent material parameters

and the tensorial feature of the inertial mass of their

continua. Regarding dispersions, two classical Drude27,28

and Lorentz6,11 behaviors are commonly encountered, where

negative inertial mass and negative compressibility can be

well defined. Consequently, the continuum-material concepta)Electronic mail: zhxming@bit.edu.cn
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provides a phenomenological and convenient way to evalu-

ate the time-domain characteristics of structural metamateri-

als by analyzing their continua assigned with either Drude or

Lorentz dispersion models.

As a time-domain technique, finite-difference time-

domain (FDTD) method naturally treats and calculates

impulsive response of a dynamic system. The FDTD method

has enjoyed a long history of success in computational elec-

tromagnetics (EMs),29 and has been later extended to either

non-dispersive or dispersive acoustic equations. In the non-

dispersive realm, FDTD has been successfully developed for

applications in acoustic imaging,30 acoustic communication

devices,31 room acoustics,32 phononic crystal,33 etc. For

acoustic materials whose damping is nontrivial, dispersive

FDTD modeling is necessarily considered, for example, in

realms of the ultrasonic imaging in biological tissues, which

can be characterized by lossy acoustic materials following

the Debye relaxation model34 or frequency-dependent power

law model,35 etc. In contrast, acoustic Drude and Lorentz

dispersions of the interest in this work have never been

observed previously in natural materials. Therefore, there is

no motivation to introduce them to the FDTD study until

acoustic metamaterials emerged in the past decade. Now,

rapid development of acoustic metamaterial design and their

potential applications have made an urgent request for

FDTD study of the Drude and Lorentz dispersive materials.

To the best of our knowledge, those studies have not been

comprehensively conducted yet.

As a preliminary study of the issue, in this work we

develop a numerical tool based on the FDTD method to

solve a general acoustic equation, where the partial or full

diagonal elements of the mass density tensor or the scalar

compressibility are dispersive, obeying either the Drude or

Lorentz models. The details of algorithms are illustrated in

Sec. II. In Sec. III, dispersion and anisotropy properties of

continuum acoustic metamaterials are discussed in a general

manner and their time-domain signatures are examined by

the FDTD modeling. In Sec. IV, two different metamaterial

layers with specially assigned dispersions are studied, which

could comprise a conjugate pair that permits wave propaga-

tion in only two symmetry points in the wave vector space.

The conclusion is made in Sec. V.

II. FDTD ALGORITHMS OF CONTINUUM ACOUSTIC
METAMATERIALS

A. Basic equations of anisotropic acoustic medium

The time-harmonic (e�ixt) acoustic equations for an

anisotropic medium are written as

r � v ¼ �j�1 xð Þ @p

@t
; (1)

rp ¼ �q xð Þ @v

@t
; (2)

where the mass density qðxÞ is a second-order tensor and

the compressibility jðxÞ is a scalar. As a result of the mate-

rial dispersion, they are the functions of the frequency x.

Without the loss of generality, we consider the two-

dimensional (2D) scenario to examine the time-domain fea-

tures of acoustic metamaterials. In the 2D case, assume that

the q tensor is diagonalizable in the x-y space, namely, writ-

ten as q ¼ diag½qx; qy�. For a general representation, let the

symbol C denote either qx, qy, or j–1. Introducing the con-

stant C1 and polarization parameter vðxÞ associated to C,

we define

CðxÞ ¼ C1½1þ vðxÞ�: (3)

In Eq. (3), the Drude and Lorentz dispersions will be consid-

ered for locally resonant metamaterials, from which negative

material parameters can be well defined. For the Drude dis-

persion model, the polarization parameter vðxÞ takes

v xð Þ ¼ x2
c

x jc� xð Þ ; (4)

and for the Lorentz dispersion model vðxÞ takes

v xð Þ ¼ gx2
0

x2
0 � x2 þ 2jcx

; (5)

where c is the dissipation factor.

Referring back to acoustic Eqs. (1) and (2), we can write

their time-domain forms as

r � v ¼ �j�1 tð Þ � @p

@t
; (6)

rp ¼ �q tð Þ � @v

@t
; (7)

where the star operator on the right-hand side is referred to

as the convolution operation. The corresponding time-

domain polarization parameter vðtÞ can be obtained by

inverse Fourier transformation of Eqs. (4) and (5), yielding

v tð Þ ¼ x2
c

c
1� e�ctð ÞH tð Þ (8)

for the Drude dispersion, and

vðtÞ ¼ ae�ct sinðbtÞHðtÞ (9)

for the Lorentz dispersion, where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � c2
p

, a ¼ gx2
0=

b, H(t) is the Heaviside function. In Sec. II C, we provide the

numerical approach of solving Eqs. (6) and (7) together with

Eqs. (8) and (9) based on the FDTD method.

The simulation model of our interest is shown in Fig. 1,

where the anisotropic and dispersive medium governed by

Eqs. (6) and (7) is located inside a background medium that

is dispersionless. The computational domain is truncated by

the perfectly matched layers (PMLs) that serve as acoustic

absorption materials. For the completeness of the work, the

FDTD algorithms for the dispersionless medium will be

briefly introduced. The finite-difference formulations of

acoustic PML have also been provided and arranged in

Appendix A.
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B. FDTD algorithm of the dispersionless medium

The FDTD method employing the Yee algorithm36 is a

grid-based modeling technique and can be used for more

than just Maxwell’s equations. In an extension version to lin-

ear acoustics,37 pressure p and particle velocities vx, vy are

discretized using central-difference approximations to the

space and time partial derivatives, as schematically shown in

Fig. 2.

Using the same spatial discretization steps in the

Cartesian staggered grids results in Dx¼Dy¼ d. The time

interval is denoted by Dt. d and Dt need to satisfy the

Courant stability condition29

Dt � dffiffiffi
2
p

c0

; (10)

where c0 is the sound velocity. According to Fig. 2, acoustic

pressure p is determined at the grid positions ðmd; ndÞ and

the time qDt, given by

pðx; y; tÞ ¼ pq½m; n� ¼ pðmd; nd; qDtÞ; (11)

where m, n, and q are integer numbers. The particle veloci-

ties, vx and vy, are determined as follows:

vxðx; y; tÞ ¼ vq
x ½m; n� ¼ vxðmdþ d=2; nd; qDtþ Dt=2Þ;

(12)

vyðx; y; tÞ ¼ vq
y ½m; n� ¼ vyðmd; ndþ d=2; qDtþ Dt=2Þ:

(13)

Based on the grid approximation defined above, the finite-

difference formulations of acoustic Eqs. (1) and (2) in the

dispersionless case are written as

vqþ1
x m; n½ � ¼ vq

x m; n½ � � q�1
x

Dt

d
pq mþ 1; n½ � � pq m; n½ �
� �

;

(14)

vqþ1
y m; n½ � ¼ vq

y m; n½ � � q�1
y

Dt

d
pq m; nþ 1½ � � pq m; n½ �
� �

;

(15)

pqþ1 m; n½ � ¼ pq m; n½ � � j
Dt

d
vq

x mþ 1; n½ �
�

� vq
x m; n½ � þ vq

y m; nþ 1½ � � vq
y m; n½ �Þ:

(16)

C. FDTD algorithm of dispersive and anisotropic
continuum metamaterials

Going back to acoustic Eqs. (6) and (7) for dispersive

mediums, we can write straightforwardly their finite-

difference approximations in the Cartesian grid space

j�1 � pqþ1 m; n½ � � j�1 � pq m; n½ �

¼ �Dt

d
vq

x mþ 1; n½ � � vq
x m; n½ �

�
þ vq

y m; nþ 1½ � � vq
y m; n½ �Þ; (17)

qx � vqþ1
x m; n½ � � qx � vq

x m; n½ �

¼ �Dt

d
pq mþ 1; n½ � � pq m; n½ �
� �

; (18)

qy � vqþ1
y m; n½ � � qy � vq

y m; n½ �

¼ �Dt

d
pq m; nþ 1½ � � pq m; n½ �
� �

: (19)

In the following, we take Eq. (17) as an example to present

the finite-difference approach to the convolution operator.

The method can be equally used for Eqs. (18) and (19).

When the compressibility is dispersive, j�1ðxÞ
¼ j�1

1 ½1þ vðxÞ�, the convolution operation j�1ðtÞ � pðtÞ
encountered in Eq. (17) is defined as

j�1ðtÞ � pðtÞ ¼ j�1
1 pðtÞ þ j�1

1

ðt

0

pðt� sÞvðsÞds; (20)

FIG. 1. (Color online) Schematics of the computational domain in which

anisotropic and dispersive acoustic metamaterials located inside a disper-

sionless background medium that is surrounded by the PMLs.

FIG. 2. (Color online) The Cartesian Yee grid used in the present acoustic

FDTD study in which the pressure p and particle velocities vx and vy are dis-

cretized using central-difference approximations to the space and time par-

tial derivatives.
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where the causality requires pðtÞ ¼ 0 when t < 0. To

implement the integration appearing in Eq. (20), the

recursive-convolution (RC) formulation38,39 can be adopted

to approximate continuous time function pðtÞ by a constant

value over each time-step Dt. It is worth noting that the RC

formulation of interest is numerically stable and sufficiently

accurate in the case of fine meshes as ensured in the exam-

ples of this work. The details of the RC algorithms have

been provided in Appendix B.

The RC techniques presented in Appendix B can be

applied in the same procedure to the remaining Eqs. (18) and

(19). Consequently, the time-domain responses of dispersive

and anisotropic acoustic metamaterials can be modeled

based on the presented algorithms. In Sec. III, the FDTD

method is used to analyze the wave reflection and transmis-

sion for a pulse obliquely incident from the air onto a Drude

dispersive metamaterial. Different dispersive parameters for

qx, qy, and j–1 will be particularly investigated.

III. TIME-DOMAIN MODELING OF DISPERSIVE
AND ANISOTROPIC CONTINUUM ACOUSTIC
METAMATERIALS

The one-interface problem will be examined in this

section, where the geometric space is divided into two

half-spaces occupied, respectively, by the dispersive meta-

material and a nondispersive air medium. In Sec. III A, the

propagation or non-propagation nature of waves in acoustic

metamaterials with all admissible material parameters will

be discussed in a general manner. The study in Sec. III B is

devoted to numerical experiments based on the FDTD

modeling in order to disclose the time-domain characteristics

of continuum acoustic metamaterials. Comparison analyses

of FDTD modeling results and theoretical predictions based

on dispersion curves will be also provided.

A. Material space of anisotropic acoustic
metamaterials

Suppose that the half-space with the positive x coordi-

nate is occupied by the metamaterial. In the time-harmonic

case, the pressure field of a plane wave is of the following

form:

p ¼ p0eiðkxxþkyy�xtÞ; (21)

where kx and ky are, respectively, the x and y components of

the wave vector, and x is the oscillation frequency.

Substituting Eq. (21) into acoustic Eqs. (1) and (2), one can

obtain the dispersion equation for an anisotropic medium

k2
x þ

qx

qy

k2
y ¼

qx

j
x2: (22)

In the lossless case, the sign of the solution k2
x to

Eq. (22) can be used to distinguish the wave-propagating

nature. It means that k2
x > 0 corresponds to the propagating

solutions, while k2
x < 0 means the evanescent (non-propagat-

ing) solutions. The positive k2
x solutions to Eq. (22) have

been illustrated with color regions in a three-dimensional

(3D) material space using qx, qy, and j as Cartesian coordi-

nates, as shown in Fig. 3. Empty regions denote the non-

propagating case. For all-positive material parameters, like

those in most natural materials, there exists a cutoff value

kc ¼ x
ffiffiffiffiffiffiffiffiffiffi
qy=j

q
, which is the solution to the case kx(ky¼ kc)

¼ 0 and separates the propagating wave and evanescent

wave spectra. To show this cutoff effect in the material space

(Fig. 3), the radial direction is defined as a new coordinate

ky; then the cutoff behavior lets an internal region (ky< kc) to

be propagating (the color gray). The same cutoff effect hap-

pens in the all-negative case (the color red), where qx, qy,

j< 0. In quadrants with qx> 0, qy< 0, j< 0, or qx< 0,

qy> 0, j> 0 (the color violet), the cutoff effect is reversed,

so that this anti-cutoff effect leads to the presence of propa-

gation behavior in an external region (ky> kc). In another

case of jqy> 0 and qxqy< 0 (the color green), waves are

always propagating for any ky; while for jqy< 0 and

qxqy> 0, waves are always prohibited. The above mentioned

anomalous behaviors enabled by acoustic metamaterials are

as rich as observed in EM indefinite media,40 and would pro-

vide a flexible degree of freedom for acoustic manipulation.

Further analyses will be given on the basis of the FDTD

simulations.

B. FDTD modeling of dispersive and anisotropic
acoustic metamaterials

The FDTD simulation model is shown in Fig. 4(a),

where the dispersive metamaterial occupies the positive x
region, and the adjacent half space is the air with the mass

density q0¼ 1.25 kg/m3 and sound velocity c0¼ 343 m/s.

Simulation regions are bordered with the PMLs, which are

not shown for concise illustration. Acoustic excitation is

emitted from the line source of length l¼ 12 cm, whose geo-

metric location has been indicated in the figure. The pulse

signal of the source is given in terms of the pressure by

ps x;tð Þ¼exp �jx�xcj2

l2
s

" #
1�cos

2pfctrt

N

� �� �
sin 2pfctrtð Þ;

(23)

FIG. 3. (Color online) Propagating (color) or non-propagating (empty)

nature of anisotropic acoustic metamaterials designated in a 3D material

space using their mass densities qx, qy, and compressibility j as Cartesian

coordinates.
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where the first term on the right-hand side describes the

Gaussian distribution of the pressure in the source line, xc is

the coordinate of the central point in the line, and ls=l is

taken as 0.42. The remaining terms refer to the time varia-

tion that describes the tone burst signal, where fctr is the cen-

tral frequency and the cycle number N¼ 20 is used. Figure

4(b) shows the pressure field of acoustic source in the air

captured at an instant time 1.2 ms, where the central fre-

quency fctr is taken as 17 kHz. Acoustic source defined by

the form (23) is clearly seen to produce a spatially confined

pulse beam, which is suitably used in the following study.

Constant negative material parameters violate the cau-

sality, thus are not permitted in the time-domain modeling.

Without the loss of generality, acoustic metamaterials con-

sidered in the FDTD simulator take the Drude dispersion

model with the following parameters:

qx ¼ 6q0 1� f 2
c

f f � icð Þ

 !
; qy ¼ q0 1� 4f 2

c

f f � icð Þ

 !
;

1

j
¼ 1

3j0

1� 2:25f 2
c

f f � icð Þ

 !
; (24)

where fc¼ 10 kHz and c/fc¼ 10�4. Different dispersive

parameters for qx, qy, and j�1 are chosen to pursue the

diverse propagation behaviors: all-negative, partially nega-

tive with anti-cutoff and never cutoff, and all-positive ones

at different frequency regions in this single metamaterial.

When these frequency-dependent material parameters

[Eq. (24)] are considered, the eigenfrequency solutions f to

dispersion Eq. (22) for various kx and ky normalized to

ka ¼ 2pfc=c0 can be computed as shown by the contour plot

in Figs. 5(a)–5(d) corresponding, respectively, to frequency

regions f=fc 2 ð0:5; 1:0Þ, f=fc 2 ð1:0; 1:5Þ, f=fc 2 ð1:5; 2:0Þ,
and f=fc 2 ð2:0; 7:0Þ.

In the region of the frequency below fc where all param-

eters qx, qy, and j are negative, it can be observed from

Fig. 5(a) that the frequency is a concave function of kx and

ky satisfying r2f ðkx; kyÞ < 0 and reaches the maximum at

the central point of the k space. We note that this concave

profile, contrary to the convexity in conventional all-positive

mediums, is the origin of opposite directions of group and

phase velocities. For further explanation, the isofrequency

line is examined at a specific case f(kx, ky)¼ 0.9fc for both

the metamaterial (the solid line) and the air (the dashed cir-

cle line). In the excitation case of k0x¼ k0y as concerned in

Fig. 4(a), the group velocity vg, which is defined as the gradi-

ent of the frequency over the k space vg ¼ rf ðkx; kyÞ, would

point inwards because of the concave nature of the frequency

contour, and the phase velocity vp is directed outwards. As a

result, wave energy propagates forward but with a negative-

refraction angle, while the phase advances backward due to

kx< 0, as marked in Fig. 5(a). The rules governing the above

physical process can be generalized as follows. For an inci-

dent wave having the phase velocity v0, the wave vector

component kx in the metamaterial is determined from the

physical law that the transverse components of wave vector

should be conserved, i.e., ky¼ k0y. The group velocity vg,

which is normal to the isofrequency line, is oriented toward

the direction of frequency increasing; Meanwhile, the for-

ward component (the y component in this study) of vg must

be positive due to causality.

We perform numerical experiments based on the FDTD

to verify the refraction phenomenon predicted above and

disclose the time-domain signatures of anomalous wave

refraction by metamaterials. The simulation environment

shown in Fig. 4(a) is considered, where the incident pulse

beam is set with N¼ 20 and fctr¼ 0.9fc. Figure 5(e) shows

the snapshot of acoustic pressure captured at the instant time

3.0 ms. It can be found that the phase velocity direction that

is vertical to the wavefront indeed coincides with the pre-

dicted one. More information about the backward feature of

the phase velocity and negative refraction of the wave group

need be identified from the animation plot provided in the

supplementary material.41 The directions of phase advance

vp and group propagation vg determined by FDTD modeling

have been marked in Fig. 5(e), which coincide exactly with

the prediction. In addition, special attention should be given

to the variation of the envelope of nontrivial beam fields

after the refraction. In the incident medium, the major axis

of the ellipse-like beam envelope is in parallel to the group

propagation direction. It may be presumed that the elliptic

envelope is also bended in the same way as negative refrac-

tion of the wave group. However, the fact is that they are

misaligned, although the beam profile is indeed bended neg-

atively. Conclusively, the orientations of the beam envelope,

FIG. 4. (Color online) (a) Schematics of the FDTD simulation model for

pulse wave refraction by anisotropic and dispersive acoustic metamaterials.

Acoustic tone burst is emitted in the air by a line source having the Gaussian

pressure distribution. (b) Simulated pressure distribution of incident pulse

wave in the air captured at the instant time 1.2 ms, where the cycle number

N¼ 20 and the central frequency fctr¼ 17 kHz are used for the tone burst

signal.
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phase, and group propagation directions of a refracted beam

can be mutually different in a dispersive metamaterial.

Falling between fc and 1.5fc is the anti-cutoff region, in

which qx> 0, qy< 0, j< 0. Figure 5(b) shows the contour

plot of frequency solutions to dispersion Eq. (22). For clear

illustration of dispersion behavior, the isofrequency curve is

concerned at a specific case 1.4fc. It turns out to be hyperbola

with the two vertices located at the ky axis. Obviously, the

hyperbolic curve of this kind supports the propagating mode

in the wavenumber region beyond the cutoff ky¼ kc, which

is the distance from the center to the vortex in Fig. 5(b).

Figure 5(f) shows the snapshot of FDTD simulation results

at time 2.3 ms when the pulse beam with fctr¼ 1.4fc is

launched. It is found out41 that, as in agreement to the pre-

diction from the dispersion curve, the energy group of an

acoustic beam is again refracted negatively. But the fact dif-

ferent from the all-negative case is in that the energy flux

direction is almost vertical to the phase one, and the latter

becomes forward in this case. In the next region between

1.5fc and 2fc, the parameters belong to the always propagat-

ing case. The isofrequency curve chosen at an arbitrarily fre-

quency 1.7fc is still hyperbolic [Fig. 5(c)], however the two

vertices locate at the kx axis in contrast to Fig. 5(b). This

explains the never-cutoff effect, since kx would always attain

a real value for any ky. The FDTD results in Fig. 5(g) shows

that negative refraction of acoustic beam happens again, and

their time-domain signatures are similar to the phenomenon

in the anti-cutoff case [Fig. 5(f)].

In the region of the frequency beyond 2fc, all parameters

qx, qy, and j are positive, which is the usual case in natural

materials. The isofrequency curve chosen at 2.1fc reveals the

elliptic profile as shown in Fig. 5(d). Due to the strong anisot-

ropy qx/qy � 51.5 in this example, the y component k0y of the

incident wave falls in the evanescent regime (k2
x < 0) of the

metamaterial, resulting in the prohibited wave propagation.

This has been demonstrated by the FDTD results shown in

Fig. 5(h), where the incident pulse beam with the central fre-

quency fctr¼ 2.1fc is totally reflected by the metamaterial.

FIG. 5. (Color online) The diverse

wave refraction phenomena observed

in all-negative [(a) and (e)], partially

negative with anti-cutoff [(b) and (f)]

and never cutoff [(c) and (g)], and all-

positive [(d) and (h)] frequency regions

in a single anisotropic metamaterial as

defined by Eq. (24). Left panels: con-

tour plot of eigenfrequency solutions

to dispersion Eq. (22) of the studied

metamaterial, which are shown in four

adjacent frequency regions: (a) f=fc

2 ð0:5; 1:0Þ; (b) f=fc 2 ð1:0; 1:5Þ; (c)

f=fc 2 ð1:5; 2:0Þ; (d) f=fc 2 ð2:0; 7:0Þ.
Right panels: The snapshot of acoustic

pressure field in the case of different

central frequencies (e) 0.9fc, (f) 1.4fc,
(g) 1.7fc, and (h) 2.1fc of the incident

pulse shows the typical wave refrac-

tion behaviors in different frequency

regions.
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In this part of the study, we explain physical properties

of continuum metamaterials with all-negative, partially-neg-

ative, and all-positive material parameters in terms of

numerical examples. Negative refractions are observed in

three dispersion cases and their distinct time-domain charac-

teristics have been clearly discovered. In Sec. IV, studies are

devoted to an interesting transmission phenomenon found in

a two-layer structure, of which one layer is the cutoff

medium and the other is the anti-cutoff one having the same

cutoff wavenumber.

IV. WAVE PROPAGATION IN THE kC-CONJUGATE PAIR

Consider two anisotropic acoustic mediums (labeled

with subscripts “1” and “2”) whose material parameters

satisfy

q1xq2x < 0; q1y ¼ q2y > 0; j1 ¼ j2 > 0: (25)

We call them the kc-conjugate metamaterial pair based on

the fact that they share the same cutoff value of kc ¼
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1y=j1

q
¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2y=j2

q
, however exhibit the opposite,

namely, cutoff and anti-cutoff, behaviors. In the k space, it

means that the propagating regions of two mediums never

overlap, but contact at only two symmetry points kx¼ 0,

ky¼þkc and kx¼ 0, ky¼�kc. Wave characteristics of the

kc-conjugate pair will be studied in this section.

A. Dispersion and wave transmission analyses

Consider the following parameters for a pair of

materials:

q1x ¼ q0; q2x ¼ q0 1� 2:25f 2
c

f f � icð Þ

 !
;

q1y ¼ q2y ¼ 2q0 1� f 2
c

f f � icð Þ

 !
; j1 ¼ j2 ¼ j0; (26)

where we set fc¼ 10 kHz and c/fc¼ 10�4. When f/fc¼ 1.14 is

taken, the footprints of this kc-conjugate pair in the k space

are schematically shown in Fig. 6(a), where the isofrequency

curves of the 1 and 2 mediums of the pair refer, respectively,

to the borders of the ellipse (the color gray) and hyperbola

(the color violet). It is obvious that their propagation-

dominated areas never overlap, but contact at the points

kx¼ 0, ky¼6kc. For clear explanation, consider only the

positive regions of ky hereafter.

It is readily found that the cutoff value kc depends on

the frequency

kc ¼
k0

f=fc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 f=fcð Þ2 � 1

h ir
: (27)

Equation (27) underlines that kc can take any values between

zero and k0 ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=j0

p
when the frequency sweeps from fc

and 1.5fc. Thus, the kc-conjugate pair can potentially be used

as an acoustic filter, which suppresses all signals in the wave-

number domain 0� ky� k0, except with a certain

wavenumber component ky¼ kc. In other words, if a plane

wave is incident at an angle h on the pair, only the wave of

the incident angle satisfying h¼ arcsin(kc/k0) is permitted for

propagation. This specific angle h is 42:8� in the case of f/
fc¼ 1.14 and varies monotonically with the operating fre-

quency due to the metamaterial dispersion, as shown in Fig.

6(b).

The cutoff wavenumber ky¼ kc is the only permitted

point for propagation, while it is still necessary to analyze

acoustic transmission amplitude across the pair at this point.

The transmission coefficient T of two layers of anisotropic-

mass acoustic mediums with thicknesses h1 and h2 is given by

T ¼ 2iq0q1xq2xk0xk1xk2x

q1xk1x cos k1xh1ð ÞT1 þ sin k1xh1ð ÞT2

; (28)

where

T1 ¼ 2iq0q2xk0xk2x cos ðk2xh2Þ

þ ðq2
0k2

2x þ q2
2xk2

0xÞ sin ðk2xh2Þ; (29)

FIG. 6. (Color online) (a) Typical dispersion characteristics of the kc-conju-

gate pair, one of which follows the cutoff (the color gray) dispersion, and

the other belongs to the anti-cutoff (the color violet) one; they never overlap

but contact at the cutoff points kx¼ 0, ky¼6kc. (b) The incident angle of

waves that are permitted for propagation across the kc-conjugate pair is

determined by kc and monotonically proportional to the wave frequency due

to the inherent dispersion of metamaterials.
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T2 ¼ q2xk2xðq2
0k2

1x þ q2
1xk2

0xÞ cos ðk2xh2Þ

� iq0k0xðq2
1xk2

2x þ q2
2xk2

1xÞ sin ðk2xh2Þ: (30)

At the point ky¼ kc, the x components of wave vectors in the

air and the pair are

k0x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � k2
c

q
; k1x ¼ k2x ¼ 0: (31)

We attempt to simplify Eq. (28) under the conditions of Eq.

(31). To do this, assume k1x and k2x to be an infinitesimal

value d, instead of being zero as shown in Eq. (31). Then the

following approximations can be obtained cos(k1xh1)

� cos(k2xh2) � 1, sin(k1xh1) � dh1, and sin(k2xh2) � dh2. By

use of these relations, Eq. (28) can be simplified as

T � 2iq0

2iq0 þ q1xh1 þ q2xh2ð Þk0x þ o dð Þ
: (32)

To achieve high transmission at the limiting case d! 0, the

minimization of the term ðq1xh1 þ q2xh2Þk0x in the denomi-

nator of Eq. (32) needs to be pursued. This usually requires

that the thickness of the pair is as small as possible compared

to the wavelength in the background medium. However, this

is not a strict requirement, as concluded in the following

example.

Choose a not sufficiently small thickness h1¼ h2¼ 1 cm

for the pair used in Fig. 6. At this case, the total thickness of

the pair is up to 0.58 times of the air wavelength at fre-

quency fc. Figure 7(a) shows the contour plot of transmission

amplitude jTj of the pair at different incident angle and fre-

quency. Nearly total transmission in the vicinity of the h - f
curve (the dashed line) as provided previously in Fig. 6(b)

is found, which demonstrates the minor influence of the

term ðq1xh1 þ q2xh2Þk0x even though the pair is thick. The

underlying physics is similar to that observed in the near-

zero-density metamaterials,42 which also have the zero x
component of the wave vector. The results can be seen more

clearly in Fig. 7(b), which shows the line plot of transmis-

sion amplitude versus the incident angle for five different

frequencies f/fc¼ 1.08, 1.11, 1.14, 1.17, and 1.2. The maxi-

mum transmission in each curve corresponds to the point

ky¼ kc, which is almost unity and slightly lowered as the fre-

quency increases because of the enhanced thickness-to-

wavelength ratio. The transmission on the left (right) side of

the hilltop is lowered because they fall into the evanescent

zone of the hyperbolic (elliptic) dispersion materials in the

pair.

B. FDTD modeling of acoustic radiation
by the kc-conjugate pair

The wave leakage by the pair at the single point ky¼ kc

and their monotonic dependency on the frequency can be

verified by acoustic radiation simulation based on the

FDTD. Take the wavelength kc in the air at frequency fc as a

measure. A point source is placed at a distance kc/10 to one

side of the pair, and launches the tone burst signal in the

following form:

ps tð Þ ¼ 1� cos
2pfctrt

N

� �� �
sin 2pfctrtð Þ with N ¼ 20:

(33)

On the other side of the pair, take the point that lies in the

same surface normal with the source point as the origin. At

the radius 10kc far from this origin, the time-domain signals

of the pressure are computed based on the FDTD method

and collected as a function of the radiation angle. They are

then Fourier transformed to obtain the pressure fields in the

frequency domain.

Figure 8 shows acoustic radiation patterns in the angular

and frequency domains at different source central frequen-

cies, fctr/fc¼ 1.08, 1.11, 1.14, 1.17, 1.20, and 1.23. The h - f
curve in Fig. 6(b) is cited again by the dashed line as the

reference. Since the acoustic field of a point source can be

expressed as the field superposition of an infinite number of

plane waves with different ky, nearly complete transmission

at only ky¼ kc makes the pair behave like a leaky wave

acoustic antenna, which operates in the manner that the radi-

ation angle h¼ arcsin(kc/k0) can be varied with the source

frequency. Results have been verified in Fig. 8, where the

tight radiation spots are found at all examined cases and

quite close to the predicted h - f curve. In our previous

study,43 acoustic directive radiation modulated by frequency

FIG. 7. (Color online) (a) Contour plot of transmission amplitude jTj across

the kc-conjugate pair for plane acoustic waves with different incident angle

and frequency; (b) line plot of transmission amplitudes against the incident

angle in case of five different frequencies f/fc¼ 1.08, 1.11, 1.14, 1.17, and 1.2.
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has been realized by the spatial dispersion of dynamic mass

density in thin-plate acoustic metamaterials. It is worth

emphasizing here that the similar functionality has been real-

ized by a kc-conjugate pair without employing the spatial dis-

persion effect. This clearly reveals the powerfulness of

dispersion engineering by anisotropic acoustic metamaterials.

V. CONCLUSIONS

In this work, we develop a FDTD-based simulation tool

to study time-domain characteristics of anisotropic contin-

uum acoustic metamaterials following either Drude or

Lorentz dispersions. Wave propagation characteristics in

acoustic metamaterials with all admissible material parame-

ters are clearly addressed. Negative refraction phenomena

have been found in three different dispersion regimes, and

verified by the time-domain simulation using acoustic pulse

beam as the excitation. It is found that the envelope orienta-

tion of the beam, and its phase and group velocity direction

in the refracted medium, can be mutually different. We have

also studied acoustic characteristics of the kc-conjugate pair

that permits wave propagation at only the cutoff wavenum-

ber. Due to the inherent dispersion of the pair, the cutoff

point varies monotonically with the frequency. These fea-

tures let the kc-conjugate pair to be an acoustic radiation

device capable of modulating the radiation angle by the

source frequency, as demonstrated by the FDTD simulation.

The developed numerical simulator based on the FDTD

can be easily extended to the three-dimension case and could

serve as a powerful tool to study the transient behavior of

dispersive metamaterials. In the continued work, the meta-

material application under transient wave environment of

practical engineering will be deeply explored with the help

of this dispersive FDTD simulator.
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APPENDIX A: FDTD ALGORITHM OF THE PMLs

The PMLs serve as a non-reflection boundary designed

to prevent the interference between the unwanted reflection

waves and physical fields of the interest. The PML techni-

ques are invented first for EM free-space simulation44 and

later adopted in acoustics. In a general case, the lossy acous-

tic equations including a dissipation factor ad are expressed

as

r � v ¼ �j�1 @p

@t
� adp; (A1)

rp ¼ �q
@v

@t
� adqjv: (A2)

In order for the thorough impedance matching, the pressure

can be decomposed to be px and py according to the rule

p ¼ px þ py. Then Eqs. (A1) and (A2) can be modified as

�j�1 @px

@t
� axpx ¼

@vx

@x
; (A3)

�j�1 @py

@t
� aypy ¼

@vy

@y
; (A4)

�q
@vx

@t
� axqjvx ¼

@p

@x
; (A5)

�q
@vy

@t
� ayqjvy ¼

@p

@y
; (A6)

where ax and ay are decomposed dissipation factors. Their

values are different in PML regions I, II, and III of Fig. 1

and can be taken as45

FIG. 8. (Color online) FDTD modeling

results of acoustic radiation by the kc-

conjugate pair backed by a point pulse

source operating at different central

frequencies fctr/fc¼ 1.08, 1.11, 1.14,

1.17, 1.20, and 1.23. Radiation patterns

refer to the far-field pressure distribu-

tions in the angular and frequency

domains and are in accordance to the

h - f curve predicted by Fig. 6(b).
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ax m; n½ � ¼
M � 1=2� m

M � 1=2

� �2

amax
x ;m ¼ 0; 1;…;M � 1

ay m; n½ � ¼ 0

for region I;

8><
>: (A7)

ax m; n½ � ¼ 0

ay m; n½ � ¼
N � 1=2� n

N � 1=2

� �2

amax
y ; n ¼ 0; 1;…;N � 1

for region II;

8><
>: (A8)

ax m; n½ � ¼
M � 1=2� m

M � 1=2

� �2

amax
x ;m ¼ 0; 1;…;M � 1

ay m; n½ � ¼
N � 1=2� n

N � 1=2

� �2

amax
y ; n ¼ 0; 1;…;N � 1

for region III:

8>>><
>>>:

(A9)

It is worth noting that M and N are total numbers of the PML grids. m and n are counted as starting from the outer boundary of

the PML. For the sake of rapid wave dissipation within the PML, the exponential-difference approximation to the time partial

derivatives should be used.46 Take Eq. (A3) as an example; the finite-difference formulation of the left-hand side of Eq. (A3)

is given by

j�1 @px

@t
þ axpx ¼

ax pqþ1
x � pq

xe�axjDt
� �

1� e�axjDt
: (A10)

Applying the above exponential-difference approximation to Eqs. (A3)–(A6) yields

pqþ1
x m; n½ � ¼ e�ax m;n½ �jDtpq

x m; n½ � �
1� e�ax m;n½ �jDt

dax m; n½ �
vq

x mþ 1; n½ � � vq
x m; n½ �

� �
; (A11)

pqþ1
y m; n½ � ¼ e�ay m;n½ �jDtpq

y m; n½ � �
1� e�ay m;n½ �jDt

day m; n½ �
vq

y m; nþ 1½ � � vq
y m; n½ �

� �
; (A12)

vqþ1
x m; n½ � ¼ e�ax m;n½ �jDtvq

x m; n½ � �
1� e�ax m;n½ �jDt

dqjax m; n½ �
pq

x mþ 1; n½ � � pq
x m; n½ � þ pq

y m; nþ 1½ � � pq
y m; n½ �

� �
; (A13)

vqþ1
y m; n½ � ¼ e�ay m;n½ �jDtvq

y m; n½ � �
1� e�ay m;n½ �jDt

dqjay m; n½ �
pq

x mþ 1; n½ � � pq
x m; n½ � þ pq

y m; nþ 1½ � � pq
y m; n½ �

� �
; (A14)

which are the finite-difference formulations of acoustic PML.

APPENDIX B: RC FORMULATION FOR ACOUSTIC DRUDE AND LORENTZ DISPERSIVE MEDIUMS

By use of notation pq ¼ pðqDtÞ, the finite-difference formulation of Eq. (20) can be written as

j�1 � pq ¼ j�1
1 pq þ j�1

1
Xq�1

s¼0

pq�s

ððsþ1ÞDt

sDt

vðsÞds: (B1)

Similarly using pqþ1 ¼ pðqDtþ DtÞ, we have

j�1 � pqþ1 ¼ j�1
1 pqþ1 þ j�1

1
Xq

s¼0

pq�sþ1

ððsþ1ÞDt

sDt

vðsÞds; (B2)

which can be rearranged as

j�1 � pqþ1 ¼ j�1
1 pqþ1 þ pqþ1

ðDt

0

vðsÞdsþ
Xq�1

s¼0

pq�s

ððsþ2ÞDt

ðsþ1ÞDt

vðsÞds: (B3)

Now subtract Eq. (B1) from Eq. (B3) to obtain

j�1 � pqþ1 � j�1 � pq ¼ j�1
1 ðpqþ1 � pqÞ þ j�1

1 pqþ1

ðDt

0

vðsÞdsþ j�1
1
Xq�1

s¼0

pq�s

ððsþ2ÞDt

ðsþ1ÞDt

vðsÞds�
ððsþ1ÞDt

sDt

vðsÞds

" #
: (B4)
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For convenience, define the parameter vs as

vs ¼
ððsþ1ÞDt

sDt

vðsÞds; (B5)

with which Eq. (B4) can be rewritten as

j�1 � pqþ1�j�1 � pq

¼ j�1
1 ð1þ v0Þpqþ1�j�1

1 pqþj�1
1
Xq�1

s¼0

pq�sðvsþ1� vsÞ:

(B6)

Let Dvs ¼ vs � vsþ1, and introduce the auxiliary variable Sq

with the following definition:

Sq ¼
Xq�1

s¼0

pq�sDvs: (B7)

The implicit formulation of pqþ1 is then obtained from Eq.

(B6) as

pqþ1 ¼ 1

1þ v0

pq þ 1

1þ v0

Sq

þ j1
1þ v0ð Þ

j�1 � pqþ1 � j�1 � pq
� �

: (B8)

Substitute Eq. (B8) into dispersive acoustic Eq. (17) to

achieve its finite-difference formulation

pqþ1¼ 1

1þv0

pqþ 1

1þv0

Sq� j1
1þv0

Dt

d

	 vq
x mþ1;n½ �� vq

x m;n½ �þ vq
y m;nþ1½ ��vq

y m;n½ �
� �

:

(B9)

The auxiliary variable Sq is to be determined by the spe-

cific dispersion model. Regarding the Drude dispersion hav-

ing the form (8), the vs defined in Eq. (B5) is calculated to be

vs ¼
x2

c

c

ð sþ1ð ÞDt

sDt

1� e�csð Þds

¼ x2
c

c
Dt� x2

c

c2
e�scDt 1� e�cDtð Þ; s ¼ 0; 1;…:

(B10)

The interval Dvs and its recursive formulation can be readily

derived as

Dvs ¼ �
x2

c

c2
e�scDt 1� e�cDtð Þ2; (B11)

Dv sþ1 ¼ Dv se
�cDt: (B12)

By substitution of Eqs. (B10)–(B12) into Eq. (B7), the recur-

sive formulation of the auxiliary variable Sq can be derived as

Sq ¼ pqDv0 þ e�cDtSq�1; (B13)

where the initial values of Sq are taken as S0 ¼ S1 ¼ 0.

Regarding the Lorentz dispersion, it is more convenient

to compute Sq in the complex-value space.38 Construct the

complex function vCðtÞ according to vðtÞ ¼ Re½vCðtÞ�, so

that expression (9) can be rewritten briefly as

vCðtÞ ¼ �jaeð�cþjbÞt: (B14)

The complex functions corresponding to vs, Dvs, and Dvsþ1

are easily calculated to be

vC
s ¼

�ja
c� jb

e�s c�jbð ÞDt 1� e� c�jbð ÞDt½ �; s ¼ 0; 1;…;

(B15)

DvC
s ¼

�ja
c� jb

e�s c�jbð ÞDt 1� e� c�jbð ÞDt½ �2; (B16)

DvC
sþ1 ¼ DvC

s e�ðc�jbÞDt: (B17)

By substitution of Eqs. (B15)–(B17) into Eq. (B7), the recur-

sive formulation of Sq
C for the Lorentz dispersion is achieved

Sq
C ¼ pqDvC

0 þ e�ðc�jbÞDtSq�1
C ; (B18)

where the initial values of Sq
C take S0

C ¼ S1
C ¼ 0. Finally, Sq

is received from Sq ¼ Re½Sq
C�.
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