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Broadband dual-anisotropic solid 
metamaterials
Yong Cheng  , Xiaoming Zhou   & Gengkai Hu

We have proposed solid elastic metamaterials with anisotropic stiffness and inertial mass 
simultaneously, denoted as the dual anisotropy, for the potential use of elastic wave controlling. The 
dual anisotropy has been designed weakly dispersive in a broad frequency range, wherein broadband 
anisotropic mass is achieved by employing the sliding-interface concept in fluid-solid composites. 
Results have been validated through the band-structure, effective-medium, and modal-field analyses. 
We have further found that the proposed solid metamaterial, when its shear stiffness is diminished until 
neglected, would reduce to the pentamode-inertial material model. This reduced model is the general 
form of mediums following transformation acoustic theory, which has been proved vital for acoustic 
wave controlling. Our studies are expected to pave a new route toward broadband acoustic and elastic 
wave controlling using dual-anisotropic solid metamaterials.

Undergoing a rapid development in the past decade, metamaterials have shown the great potentials for manipu-
lating acoustic and elastic waves1–3. Assisted by the coordinate transformation theory and metamaterial concept, 
wave-controlling devices designed by artificial gradient microstructures are coming into reality. Anisotropic 
properties expected from metamaterial building blocks are thought to be pivotal factors for bending wave tra-
jectories in a reflectionless manner. Generally, anisotropic stiffness and anisotropic inertial mass are demanded 
simultaneously, which is denoted as the dual anisotropy here. In acoustics, the dual anisotropy is a typical man-
ifestation of pentamode-inertial material—the general material model derived from transformation acoustics4. 
For elastic wave control5,6, the dual anisotropy is fundamental, not to mention that the Willis couplings7 between 
stress and velocity as well as momentum and strain are additionally needed.

There has been a long history of studies exploiting solid structures with anisotropic elasticity8,9. Most of them 
yet have the isotropic mass, not acting accordingly as wave-controlling mediums requiring dual anisotropy. 
Distinct from the gravitational mass that is always isotropic, anisotropic mass indicated here refers to the dynamic 
inertial mass, which attains its tensorial nature from Newton’s second law of motion10–12. The inertial mass can be 
far different from the gravitational one at a finite frequency, being even negative for example, in a strongly disper-
sive medium with local resonance13–15. Following this idea has proposed the conventional resonance concept for 
making anisotropic mass. It means to introduce different resonant frequencies at various directions of composite’s 
building blocks10,16. Practical structure models have been extensively studied later, including the modified spheri-
cal particulate composites with elliptical cores or elliptical coatings17–19, and so on20–22. However, anisotropic mass 
acquired near the resonance is accompanied with the strong dispersion, resulting in inevitably a narrow band 
of operating frequency. The challenge for designing the dual-anisotropic solid metamaterials is to broaden the 
anisotropic-mass bandwidth, as is currently unavailable through the concept of resonance.

In contrast to all-solid metamaterials described above, fluid-solid composites are employing a non-resonant 
mechanism for making the anisotropic density that is dispersionless inherently23–27. It is caused substantially by 
the discontinuity or sliding effect of particle tangential motion at the fluid-solid interface. This distinct mecha-
nism has resulted in unusual density laws unlikely observed in all-solid realms. For example, alternating 
(A/B/A…) layered fluid-solid composites possess the anisotropic density that reads ρ ρ ρ= +c c1/ / /t A A B B along 
the direction tangential to the layer surface, and ρ ρ ρ= +c cn A A B B in the surface normal, where cA,B indicates the 
volume fraction28. As another example, effective density of a fluid host embedded with solid particles is governed 
by the Berryman’s formula29,30, rather than the intuitive volume-averaged density. Anisotropic inertial mass cre-
ated by the sliding-interface concept is dispersionless in a broad band ranging from quasi-statics. These fluid-solid 
composites are also called metafluids incapable of the shear resistance, and preferable for broadband acoustic 
control in fluid or gas. They have been intensively exploited in order to design acoustic cloaks31,32, sub-diffraction 

Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace 
Engineering, Beijing Institute of Technology, Beijing, 100081, China. Correspondence and requests for materials 
should be addressed to X.Z. (email: zhxming@bit.edu.cn)

Received: 28 June 2017

Accepted: 20 September 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-1933-1216
http://orcid.org/0000-0002-3240-9789
mailto:zhxming@bit.edu.cn


www.nature.com/scientificreports/

2SCiEntiFiC REPORTs | 7: 13197  | DOI:10.1038/s41598-017-13322-2

limited imaging devices33,34, and metasurfaces for the unprecedented wavefront modulation35, etc. The 
non-resonant sliding-interface concept appears as a feasible route towards broadband inertial anisotropy in 
metafluids. However, it remains rarely explored how the sliding-interface concept is implemented in all-solid 
structured materials that permit only fully bonded interfaces. We would make an attempt in this work.

Results
Metamaterial design. Consider a layered solid-solid structure, wherein the sliding boundary is imposed 
for all interfaces and one of phases constitutes the host, as shown schematically in Fig. 1. It is apparent that the 
overall inertial density is anisotropic. The vertical mass-component measures the total weight owing to the uni-
form motion in composite, while the horizontal one describes merely the host’s weight due to the slipping effect. 
Anisotropic mass attained in this model has inherited the motion-discontinuity feature of metafluids and there-
fore been dispersionless. However, structured materials containing the sliding interface, which can be represented 
by rollers running at the frictionless boundary as shown in Fig. 1(a), is mechanically unstable, since the internal 
structures would slip away. To ensure the stability, a moderate interface stiffness denoted by the springs needs to 
be introduced. This would inevitably induce a low-frequency resonance. Nevertheless, the nearly dispersionless 
anisotropic density can still be obtained in a broad frequency range beyond the resonance, as will be verified in 
this work. From a practical point of view, the slender joints at interfaces between layers act pertinently as rollers 
with a minor spring reinforcement, as schematically shown in Fig. 1(b). In the following, we base this structural 
model to propose a practical version of broadband dual-anisotropic metasolids.

The proposed dual-anisotropic 2D metasolid consists of a periodic hexagonal lattice as the host, connected 
internally to two vertically oriented bars, which have been sharpened at both the middle and two ends, as shown 
in Fig. 2. Broadband anisotropic density is to be realized due to the sharpened bar inclusions, wherein the slender 
cross-sections are made for pursuing a very small connecting stiffness in order to simulate the sliding-boundary 
effect. In addition, it is critical to choose the proper inclusion material having preferably the low stiffness for 
the minimum coupling to the lattice strut, the large density for the high anisotropic-density ratio, and the low 
loss that is essential in practical applications. The inclusion material suggested here is the low-loss fiber-glass 
filled fluorinated ethylene propylene36 with Young’s modulus EY = 1.7 GPa, Poisson’s ratio v = 0.4, and density 
ρ = 2200 kg/m3. The lattice host is made by aluminum (EY = 71 GPa, v = 0.33, and ρ = 2700 kg/m3) and functions 
primarily for the overall anisotropic elasticity9, which can be modulated by four independent geometric param-
eters, which are the lengths l0 for the beam directed horizontally and l1 for the others, the thickness t for all, and 
the included angle α between two adjacent declining beams. Notice that the lattice geometry employed here was 
considered previously for the host structure of pentamode materials37, which has been demonstrated possessing 
anisotropic mechanical properties and fluid-like elasticity in a broad frequency band. Consequently, the present 
model holds the potentials of being extended to the generalized pentamode-inertial materials, which would pos-
sess not only the anisotropic compressibility as usual, but also the broadband anisotropic mass newly developed 
here, as will be discussed in the final part of the study. Below, band structure calculations and effective medium 
analyses will be performed in order for fully decoding wave signatures of the proposed metasolid.

Band-structure and effective-medium analyses. We examine firstly dispersion characteristics of the 
pure lattice without containing the inclusion. Figure 3(a) shows its band structure in two perpendicular ΓX and 
ΓY directions, whose definition in the first Brillouin zone is plotted as the inset. In either ΓX or ΓY directions, two 
dispersionless bands can be observed and adhered to the longitudinal (L) mode with a high phase velocity and 
the transverse (T) mode with a lower one, as recognized by the associated eigenfunctions. The L modes are asym-
metric in x and y directions, implying the overall anisotropic property of the lattice strut. These dispersionless 

Figure 1. Conceptual models of solids with broadband anisotropic mass. (a) A layered solid-solid structure 
with the sliding interfaces and one of phases constitutes the host, wherein a moderate interface stiffness, 
denoted by the spring, needs to be added in order for the mechanical stability. (b) A realistic structural material 
that is designed according to the model in (a) where the spring-reinforced sliding interface is practically realized 
by the slender geometric connection between layered solids.
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and asymmetric branches are always available in a finite band far below the zone boundary. For the metasolid cell 
containing the inclusion, the band structure in Fig. 3(d) shows that, in the ΓX direction, the L branch is broken by 
a gap near 1 kHz, accompanying there a strongly distorted dispersion, while the T branch remains uninterrupted. 
The similar phenomenon appears in the ΓY direction, yet has been reversed, showing that the T branch is now 
interrupted at the same gap frequency, whereas the L branch remains continuous. It can be seen that the linear 
dispersion of the host, has been distorted by the gap when the inclusion is added, yet recovered immediately 
beyond the gap and sustained in a broad frequency range. Based on an effective medium model developed in the 
following for the dual-anisotropic solid, we will demonstrate that asymmetric L branches for the pure lattice is 
due to the anisotropic stiffness only, while the anisotropic density has been additionally realized in that recovered 
linear dispersion regime when the inclusion is added.

From the unit cell geometry, it is straightforward to see that there exist two mutually perpendicular symmetry 
planes in alignment with the ΓX and ΓY directions. Thereby, the structured metasolid is best represented by the 
continuum with simultaneously the orthotropic stiffness and density. The constitutive equation governing the 
orthotropic elasticity is given by
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In order to retrieve all elastic parameters, the stress and stain fields, σαβ and εαβ (α, β = x or y), are obtained as the 
local field integration over a single cell38. To be more specific, the average normal stress and normal strain are 
defined from the L modes and then used to compute uniquely four elastic constants c11, c12, c21, and c22 according 
to σ σ ε ε= c c c c[ , ] [( , ), ( , )][ , ]xx yy xx yyLX 11 12 21 22 LX and σ σ ε ε= 



c c c c[ , ] [( , ), ( , )] ,xx yy xx yyLY 11 12 21 22 LY

. Average shear 
stress and shear strain are defined from the T modes and the resultant shear modulus c44 is computed by either 
σ ε= ( )c( ) 2xy xyTX 44 TX

, or σ ε= ( )c( ) 2yx yxTY 44 TY
. On the other hand, the equation of inertial motion considering 

the anisotropic density reads

ω
ρ

ρ










 = −





























F
F

u
u

0
0 ,

(2)

x

y

x

y

x

y
2
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Figure 2. Realistic model of the dual-anisotropic structured material. The model consists of a periodic 
hexagonal lattice as the host, governing the overall anisotropic stiffness, and two bars as the inclusion, achieving 
the anisotropic inertial density. Slender cross-sections are made at both the middle and two ends of bars in 
order to simulate the sliding boundary in fluid-solid interfaces, meanwhile keep the structure mechanically 
stable. Structural parameters are l0 = 2l1/3 = 8t = 10 mm and α = 140° for the lattice host, and d = 10d1 = 4 mm, 
dt = 2.15 mm, and h1 = 0.8 h for the inclusion.
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We have first computed effective-medium parameters of the pure lattice, as shown in Fig. 3(b) and (c). It is 
found that the density is an isotropic one ~598 kg/m3, which is exactly the static gravitational one as expected. 
Anisotropic effective stiffness is observed, namely ≠c c11 22, which accounts for the unsymmetrical L branches in 
ΓX and ΓY directions. Note that the retrieved off-diagonal components c12 and c21 are equal exactly, and in addi-
tion, c44 is unique regardless of being determined from LX or LY modes. These are the evidences verifying the 
Cauchy continuum nature of structured materials. Retrieved effective density and stiffness of the metasolid are 
shown respectively in Fig. 3(e) and (f). In comparison to the pure lattice, the reinforcement effect of elasticity is 
minor due to the added ‘soft’ inclusion. The distinction is revealed by the variation of density. We observe that ρy 
is nearly the composite average density ~1563 kg/m3, whereas ρx agrees with ρy at statics, but converging quickly 
to a smaller constant ~820 kg/m3 after passing through a strong resonance-like fluctuation zone, which is relevant 
to the bandgap region. Results clearly demonstrate that the gap-related modulation that arises from the added 
inclusion plays a vital role in the transition from isotropic density of the host lattice to anisotropic one of the 
metasolid. The anisotropic density achieved here is nearly dispersionless in a broad frequency range ~2.0–6.0 kHz, 
which corresponds well to the recovered linear dispersion regime in band diagrams.

Analysis of modal fields. Deeper physical insights into broadband anisotropic density can be gained by 
analyzing average displacements of the inclusion with respect to the lattice host, u u/x i x h, and u u/y i y h

, 
which are retrieved respectively from LX and LY branches, as shown in Fig. 4(a) and (b). For more details, the 
modal displacement fields of LX and LY branches at a certain frequency 3 kHz that is inside the linear dispersion 
regime are shown in Fig. 4(c) and (d). Here, the LX branch indicates the mode of the cell structure oscillated 
horizontally. The ux field in Fig. 4(c) reveals that, due to the slender connection made at both ends of bars, the 
central region of the inclusion remains almost motionless, mimicking the sliding-boundary effect in fluid-solid 
composites. The slender connection between the host and inclusion acts as a soft spring, which together with the 
inclusion’s mass effect comprises a mechanical resonator. This explains the fact that the spectrum profile of ρx in 
Fig. 3(e) follows approximately the Lorentz dispersion model ω ω ω= + −w w w /( )m i 0

2
0
2 2 , wherein wi and wm 

resemble respectively the weight of the inclusion and host, and the resonant frequency ω0 is associated to the 
connecting stiffness between them. We can then understand the broadband anisotropic densities through the 
Lorentz dispersion characteristics. It means that perfect sliding boundary corresponds to the case of zero 

Figure 3. Wave characteristics of the dual-anisotropic material. Band structures of the pure lattice unit (a) and 
the metasolid cell (b) in two perpendicular ΓX and ΓY directions, whose definition in the first Brillouin zone 
is shown in the inset. (b) Effective inertial densities and (c) stiffness parameters retrieved for the lattice host. 
(e), (f) Effective-medium parameters of the metasolid, showing that weakly dispersive dual anisotropy can be 
achieved in a broad frequency range ~2.0–6.0 kHz.
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connecting stiffness, namely ω = 00 , hence a dispersionless mass =w wm is acquired, which is irrelevant to the 
weight of inclusion. In the nonideal case with a small boundary stiffness ω → 00 , which is practically needed in 
order to ensure the motion stability of inclusions, the nearly dispersionless density ≈w wm can still be achieved 
at frequencies far beyond ω ≈ 00 , as is the case of our model. It is worth to stress that, the slender cross-section 
carved at the middle of the bar is essential to decrease further the resonant frequency ω0, as evidenced by the 
comparison result in Fig. 4(a).

Figure 4(d) shows the displacement field uy of the LY mode, which is linked to the structure vibration along 
the vertical direction. Uniform displacement distribution is observed and accounts for why ρy measures the aver-
age density of the whole composite. The result states that the internal bars, though sharpened at ends and the 
middle, yield still a strong bonding along the bar axial direction. According to the Lorentz model, the strong 
bonding means ω → +∞0 , and then causes a dispersionless density ≈ +w w wm i at frequencies far below 
ω ≈ + ∞0 . The Lorentz model has shown that the limiting anisotropic ratio of densities in metasolids reads 

+(w w)/wm i m. The strategy to enlarge the anisotropic ratio is to choose heavy inclusion and lightweight host 
structure. The anisotropic ratio approaches around 1.9 in our example, but can be definitively enhanced by 
weighting the inclusion through, for example, adding heavy attachments.

Pentamode-inertial material model. Study further a reduced model of the proposed metasolid, which is 
modified with a sufficiently small shear stiffness c44. To achieve that, we simply sharpens the ends of all six strut 
beams in a lattice unit, and keep the inclusion’s geometry unaltered, as shown in Fig. 5(a). Band diagrams plotted 
in Fig. 5(b) show that the linear dispersion is still achieved in a broad frequency range beyond the resonance gap. 
The distinction is obviously revealed, wherein the slope of the linear T modes is lowered greatly, while the slope 
is dropped down slightly for L modes. Results are in good accordance with the effective-medium predictions, in 
which the shear stiffness c44 has been decreased remarkably to 0.07 GPa, while c11 and c22 are lowered by a small 
amount to 1.3 and 9.2 GPa respectively, as evidenced in Fig. 5(c). In addition, there is almost no change for broad-
band anisotropic densities upon the geometric variation of the lattice beams. The model geometry considered 
here hasn’t been optimized; one can diminish further the connection thickness t1, until c44 can be neglected from 
a practical point of view. Consequently, the metasolid having a negligible shear resistance has reduced to the 
pentamode-inertial (PI) material—the solid material with the fluid-like elasticity and anisotropic density. The PI 
material has been recognized as a general model following transformation acoustic theory4. It appears to be the 
first time that the structured model of PI materials is practically designed in our study, which may open a new 
avenue for acoustic wave controlling.

Discussions
The proposed dual-anisotropic metamaterial is of the host-inclusion type, consisting of the stiff hexagonal lat-
tice in which the soft two-bar inclusions are embedded. The overall anisotropic stiffness is fully governed by 
the lattice strut, and is nearly irrelevant to longitudinal, bending, or buckling deformations of bars since the 

Figure 4. Displacement field distributions of some specific eigenstates. Average displacements of the inclusion 
with respect to the lattice host, (a) u u/x i x h, and (b) u u/y i y h

, calculated respectively from LX and LY band 
diagrams. Mode shapes of displacement fields (c) ux and (d) uy at a certain frequency 3 kHz that is inside the 
linear dispersion regime. (c) The ux field verifies that the central region of the inclusion remains almost 
motionless, mimicking the sliding-boundary effect in fluid-solid composites. The slender cross-section carved 
at the middle of the bar helps to further diminish the resonant frequency as verified by a comparison to the 
straight-bar case. (d) Uniform displacement distribution uy observed in the LY mode explains why ρy reaches 
the composite average density.
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inclusion material is very soft. The sharpened bar inclusion is designed by mimicking the sliding-boundary effect 
in fluid-solid composites in order to pursue the broadband anisotropic density. Effective medium methods of 
metamaterials have been developed, making the micro-macroscopic relationships clearly identified. Note that the 
proposed solid metamaterials with dual anisotropy, if the Willis couplings are further incorporated, would fulfill 
the requirement of transformation elastic theory5,6. However, under some special forms of coordinate transfor-
mations, for example in the case of linear transformation, the Navier elastodynamic equation retains its original 
form. It is the case where elastic wave controlling can be made possible by using our dual-anisotropic materials 
without requesting Willis coupling effect.

In our model, the dynamic coupling between the host and soft inclusion is very weak, allowing us to modu-
late the overall stiffness without influencing anisotropic densities. We have then proposed a significant reduced 
model by diminishing the shear stiffness of the metasolid, which is the so-called pentamode material with aniso-
tropic inertial. Pure pentamode materials39–42 with the anisotropic stiffness only, suggested firstly by Milton and 
Cherkaev37, have only one non-zero elastic eigenvalue that is of the hydrostatic stress state, exhibiting therefore 
the fluid-like elasticity. They belong to a special scenario of transformed acoustic equations43,44. The most general 
material form enabled by transformation acoustics under an arbitrary coordinate transformation refers to the PI 
material as realized here. All of our model studies have been validated through band-structure, effective-medium, 
and modal-field analyses. Results are expected to make an important step toward acoustic and elastic wave con-
trolling with important applications to cloaking, seismic protection, and shock mitigation.

Data Availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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