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In the framework of wave-based method, we have examined swing motion control for
double-pendulum and load-hoist models. Emphases are placed on wave scattering by the
middle load mass in the double-pendulum model and on time-varying configuration in the
load-hoist model. By analyzing wave transmission and reflection, trolley’s motion to alle-
viate swing is designed by absorbing reflected wave through adjusting the velocity of trol-
ley. Simulation and experiment are also conducted to validate the proposed control
method. The results show that with the designed trolley’s motion swings of load can be

significantly reduced for both double-pendulum model, suspended rod model which is
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1 Introduction

A typical task of crane is to displace load to a targeted position.
Its performance can be measured under various headings, includ-
ing minimization of sway during and at end of motion, tracking
along a desired trajectory, accurate repositioning payloads within
the shortest possible time, maximum repetition rate, and safety [1].
This problem in engineering is not well solved yet, and control
performance is still depending on the experience of crane driver.
Stable and high efficient control strategy is still demanding. To
tackle this problem of position and vibration control, different
methods have been proposed, which can be classified into two
main categories: closed-loop control and open-loop control.
Closed-loop control needs extra sensors to probe response of a
dynamic system and uses it as feedback to define control strategy.
This method is reliable and robust without detailed analysis on the
dynamics of the system, and it is widely used in system control.
Here, for our crane motion control problem, the objective is to
examine influence of wave scattering in a system on control strat-
egy, and an open-loop control is used because full understanding
of the dynamics of system may be helpful. The most common
approach to this problem is based on modal vibration control, and
dynamics of payload and string are idealized as simple- or double-
pendulum systems. Control strategy is proposed based on modal
response of the system. For example, a widely used open-loop con-
trol for this problem is input-shaping method, proposed initially by
Smith in the late 1950s [2], and three-dimensional (3D) pendulum and
double-pendulum problems have also been examined lately [3—11].

In the modal control method, we have to truncate a finite num-
ber of modes to characterize and control the system [12]. This
makes modal control method inadequate for large-scale flexible
structure usually with crowded modes at low frequency. A large
number of modes have to be considered to accurately characterize
and control their responses. In the revision of this paper, we notice
arecent work of Celentano [13]. This method allows the modeling
of a flexible robot, also under the hypothesis of large link
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demonstrated a special case of double-pendulum model, and load-hoist model. Simula-
tion results agree well with the experimental measurement. Launch velocity profiles may
have important impact on motion design, especially on force necessary to displace trol-
ley. Finally, a wave-based feedback control is also discussed to demonstrate the flexibil-
ity of method. [DOI: 10.1115/1.4036228]

deformations, with the essential methodology for rigid robots by
subdividing fictitiously link of the robot into sublinks. On the
other hand, for time-varying structures, such as deployable struc-
ture or gantry crane during lift of load, even modal concept is
questionable. Vibration is the result of standing wave. Wave-
based control method takes input as a disturbance traveling in a
structure, and vibration of the structure will be alleviated if
reflected wave is absorbed [14,15]. The first approach of this kind
to crane motion problem was proposed by Saigo et al. [16]. A fic-
titious structure is supposed to link to the examined system, and it
absorbs energy and eliminates in turn vibration by allowing wave
to go into infinite space. Later, O’Connor developed a simple
wave-based method to control motion of a gantry crane system
[17]. The basic idea is to absorb reflected wave from load by
adjusting velocity of the crane. Wave-based method is further
extended to feedback controls [18,19]. However, these works are
limited to simple structures, and wave scattering in structure is not
considered. For complex structures, waves will be scattered due to
impedance mismatch, e.g., presence of junctions, their impact on
wave-based control is not thoroughly examined yet. In addition,
application of wave-based method to time-variable structures is
few, except Ref. [20], where a polynomial function is used for
hoisting function and the control scheme is designed by using
inverse dynamics instead of wave absorption.

In this paper, we will consider a crane system with emphasize
on the following two problems: wave scattering by a junction and
time-varying string length. Both theoretical analysis and experi-
ment are conducted based on wave-based control method. The
paper is organized as follows: In Sec. 2, fundamental ingredients
of wave-based control method are first provided, then control
strategies are derived for a double-pendulum and load-hoisting
model. Detailed numerical simulation and experimental validation
are provided in Sec. 3. In Sec. 4, different loading strategies are
examined. Wave-based feedback control is discussed in Sec. 5.
Finally, conclusions are given in Sec. 6.

2 Mathematical Modeling

2.1 Wave-Based Control Method. A gantry crane system is
idealized as follows: A trolley, moving horizontally, is attached
by a flexible string with a load mass, as illustrated in Fig. 1. In the
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following analysis, the deformation and weight of string are
neglected. The angular deflection of the string is assumed small so
that the tension in the string equals to the weight of load mass
T =mG, here G is the acceleration of gravity. The motions of the
string and the load are characterized by wave equation and New-
ton’s second law, respectively.

Wave equation of the string, in the hypothesis of small defor-
mations, is given by

3y Py
Por  Toa="0 W
where y is the displacement of string from equilibrium position,
and T and p are the tension force and density of the string, respec-
tively. The corresponding boundary conditions are the velocity of
trolley and load, which are given by y|,—o=v, and y|,—; =w.

Total horizontal force propagating in the string at location x
and time ¢ is derived by superposing two counter-propagating
force waves flx — ct) and g(x + ct) [17]

dy
— aff(x—ctﬂ—g(x%—ct) )

Local velocity of the string is given by

0
v:g);: [f(x—ct) — glx+ct)]/z 3)
where ¢ = (T/p) is the wave speed, and z is the wave impedance
defined by z= pc = (pT) =T/c.

Newton’s second law of motion for load mass leads to

mw =f(l — ct) + g(l+ ct) 4)

where m and w are the mass and velocity of the load, respectively,
and / is the length of the string. The load is displaced from a static
position, and then, the system equations can be solved. To dampen
the swinging motion, the trolley speed should be controlled. The
control strategy is to adjust the trolley speed so that it absorbs
wave in the string arriving back to the trolley after reflection at
the load and/or at discontinuity in the hanging system. If the trol-
ley does not absorb this returning wave, it will be reflected back
to the system, and swinging motion will take place. If, however,
the trolley absorbs the returning wave and launches an incident

v
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m

Fig.1 Single load mass and uniform string model
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wave, this launch wave will gradually accelerate the load without
causing swing motion. The details of how this works will be
explained below, and we will use f=f(x — ct) and g = g(x + c?) for
simplification.

The trolley velocity v, is assumed to have two parts: launch
velocity v; and absorb velocity v,. The launch velocity v, is used
to generate incident wave and to accelerate the load, while the
absorb velocity v, is used to absorb reflected wave and to reduce
swing of the load. The total trolley velocity is then given by

Vi =Vi+Va (&)
The absorb velocity is expressed as
Va = _g‘x:O/Z (6)

When the launch velocity v, starts from a constant velocity v, = vy,
a force wave will propagate from the trolley to the load through
the string. In the beginning, internal force in the string is only
determined by the forward force wave f, since there is no reflected
wave

f = oz )

When the force wave arrives at the load, it will accelerate the
mass, and the motion of the load is determined by

mi =f+g ®)
wz=f—g )

with the initial condition w|,_, Je =0, the velocity of the load is
calculated by
w = 2vp(1 — e7al=1/<)) (10)

A reflected wave g will be generated from the load when it tends
to move forward

1

8ley = —wz = 2wz (e*ﬂ’*’/“> - 5) (11)

This reflected wave propagates from the load to the trolley, and
when it arrives at the trolley, it can be evaluated by Eq. (11) sim-
ply by replacing ¢ with £ — I/c, that is,

. 5 1
8li—o = 2voz (67(”2’/‘> — 5)

Therefore, by using Eq. (6), the wave to be absorbed is given by

(12)

Va = vo — 2vpe m=2/e) (13)
Finally, the designed velocity of the trolley is written as
Vo ,0<r<2l/c
(14)

V= ~Z(t—21/c)
2vo\1l —e m , t>2l/c

It is seen from Egs. (10) and (14) that the velocities of the trolley
and the load are almost same and the difference approaches zero
with increasing time, which means the load follows quite well the
motion of the trolley without swing, as shown in Fig. 2(a). This
feature leads to the velocity of load change smoothly, which is
completely different from input shaping. Input shaping is the most
used open-loop control method for precise position control nowa-
days. It can realize rest to rest motion, but seldom concern about
the swing during motion. Input shaping makes use of addition of
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Fig.2 Wave-based control (a) and input shaping (b) for simple pendulum

two input signal, it absorbs the energy when the second signal
input into the system. Figures 2(a) and 2(b) show the difference of
velocity changes of these two control methods for simple pendu-
lum model. For input shaping in Fig. 2(b), the first step of velocity
leads the motion of trolley, meanwhile causes dramatic vibration
of load. The oscillation of load velocity will be eliminated until
the second input step.

For the deceleration process, a simple way to break down load
is time-reversal of the start-up motion, it is able to suppress swing
of load at the end of operation [17]. Hence, in this case, only con-
trol strategy of the accelerating process is considered.

2.2 Double-Pendulum Model. For a double-pendulum sys-
tem (Fig. 3), incident wave will be reflected and transmitted when
it reaches the midload mass (load mass 1), mass 1 is therefore
accelerated. The transmitted wave will accelerate in turn load
mass 2 and be reflected back. The wave traveling process is much
more complex than that in the single pendulum system, but the
basic principle remains the same, i.e., absorbing the reflected
wave at the trolley to alleviate swing motion. According to equi-
librium equation and continue condition of the velocity at the mid-
dle mass, the motion of load 1 is determined by

mwi = fi(x1 — cit) + g1(x1 + c1t) — fo(x1 — eat) — ga(x1 + e2t)
(15)

wi = (fi(x1 —cit) = gi(x1 +er)) /21

= ((x1 — caf) — g2(x1 + c2t)) /22 (16)
where f; and g; are the forward and backward waves in the string i
(i=1, 2), respectively. c; and z; are the wave speeds and impedan-
ces in the string i, and w; is the velocity of the load i.

The motion of load 2 is provided by solving the following
equations:

mawy = fo(xa — ct) 4 g2(x2 + c) (17)

Wy = (fz(Xz*Ct) *gz(X2+Cl‘))/22 (18)
In the following, we still consider the case of a constant launch
velocity v, =vy, i.e., fi =voz;. To design trolley velocity, we con-
sider an incident wave that is excited from the trolley and travels
into the system. #; is defined as the time needed for wave to travel
through the upper string which is #; =1/,/c, and ¢, is defined as the
corresponding time of the lower string which is #, = [/c,. At time
t;, the front of the force wave first reaches load 1, and at this
moment, no wave is reflected back from load 2, i.e., g, =0. So,
the motion of m; at time interval [#, f; 4+ 2t,] is given by

mwy + (z1 + z2)wy = 2f (19)
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And with the initial condition wy(#;) =0, we get

2oz 2oz o 2(=n) 20)

wp =

1tz 21+

According to Egs. (15) and (16), we derive the reflected and the
transmitted waves at load 1

vozi(zr — z 2y, 2 g,
Gl = fi —wiz = 0z1(22 — 21) n 0T 21
21+ 21+
fHh=wizp = vonz _ 2712 67%('7“) (22)

o1+ 1+
When the reflected wave g; reaches the trolley, it is absorbed by
defining the absorb velocity of the trolley as v, = —g,/z;, so the
designed trolley velocity is v, 4+ v, =vo — g1/2;.

At the time #; + t,, the transmitted wave f> reaches load 2 and
speeds it up. The motion equation of m, at time interval [¢, + 5,
t; + 31,] is given by

myWwa + 2wy = 2f> (23)
And with the initial condition w(¢; + t;) =0, we have
z1+2
4vyzy 4dmyvyzi 2o - m ([_[1 —l2)
)= - e
Z1+ 22 (mlz2—m2(zl+zz))(zl+zz)
2
dmvoz1zo 4vozy *m_z(’_ h—h)
— e
(mz—my(z21+2))(z1+22) z1+2
(24)
In turn, a reflected wave from load 2 is generated
2\/02122
S =fi—wn=———""
1+ 2o
Z1+ 2
2v02122(m122+m2(21 +22)) m (f—[l —t2)
(mizy —my(z1 + 22))(z1 + 22)
= (t—t1— 1)
Amyvozizo 6* my 1 2 (25)

7}’}’1122 — mz(Zl +Zz)

When the reflected wave g, reaches load 1, the motion equation of
my changes to
miwy + (21 + 22)wi = 2(fi — &) (26)

By solving this equation, the velocity of load 1 in the time period
from #; + 2¢, to t, 4+ 4t, can be known. Repeating the processes by
solving the motion equations of m; and m, alternately, the
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Fig. 3 Double-pendulum model

velocity of both loads will be obtained. The velocity of the trolley
is designed by absorbing the reflected wave each time as
v,=Vv;—g1/z, and the swing of both loads can be eliminated
remarkably. Here, g; will include the reflected wave directly from
load 1 and the wave reflected from load 2 and transmitted through
load 1 as well.

Finally, it is interesting to note that a rigid rod connected to the
trolley by a flexible string is a special case of the examined
double-pendulum model. Consider, for example, a rigid-rod sys-
tem in Fig. 4, when writing down equation of motion (given in the
Appendix), it is easily found that the motion equation of the rigid-
rod model is exactly the same as that of the double-pendulum
model with the following rescaled parameters:

[/1211,[/2:2[2/3, M1:M2/3 (27)

where the primed quantity refers to the equivalent one in the
double-pendulum model. So, the control strategy of a double-

pendulum model can be used directly in a rigid-rod system with
the rescaled parameters.

2.3 Load-Hoist Model. In this section, we will consider a
simple pendulum system moving horizontally with the same time
load height control, as shown in Fig. 5. The change of string

v
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Fig.4 Arigid-rod model
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length alters the natural frequency of the system, and in terms of
wave propagation, only wave traveling time between the trolley
and the load needs to be modified. So, the hoisting load model
may be derived from a single pendulum model by modifying
wave traveling time in each time increment. As the geometry of
this model is not symmetric, deceleration process could not be
derived by time-reversal of the acceleration process. The load will
be decelerated by setting the launch velocity to be zero and
absorbing continually the reflected waves.

To design the trolley velocity in the acceleration process, the
launch velocity v, starts from a constant velocity v, and at the
same time, the load mass moves upward with a speed a. Here, for
simplicity, a is assumed constant. The force wave propagates
from the top of the string to the bottom, since there is no reflected
wave g at the beginning, and the internal force in the string is
given by f=voz. At the time ¢, = //c, the force wave arrives at the
load and accelerates it, and the velocity of the load mass is still
characterized by Eqgs. (8) and (9). With the initial condition
w(t;) =0, the velocity of the load in the entire acceleration process
can be calculated as

w = 2vg(1 — e7al=") (28)
With further move of the load, a reflected wave from the bottom
will be generated as

2 (29)

. 1
g=f—wz=2vz (eW(H‘) - —)
The reflected wave travels from the bottom load to the top trolley
and the length of the string gets shorter at the same time. So, at
time #, = (¢ —a)l/(c +a)c, the reflected wave arrives at the top
trolley, and it is written as

: 1
g =2voz (675(17)‘2) - 5)

The absorb velocity for this reflected wave from =1, is given by
using Eq. (6)

(30)

Vo = —g/z = vo — 2vpe ")
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y
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Fig.5 Hoisting load model
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So, the total velocity of the trolley in the entire acceleration pro-
cess should be

) ,0 <t<tb
vV = B 2
2vg — 2vpe ,

To decelerate the load, the launch velocity v, is removed, for
example, at a given time #;. Without new force wave entering the
string, the entire system will come gradually to rest due to the
absorption. To derive the necessary velocity of the trolley in this
deceleration process, we consider the incident wave arriving at
the load at time #4 =13 + (I — at3)/c. The motions of Egs. (8) and
(9) of the load lead to

(32)
t>th

m % +zw =0 (33)
And with the following initial condition:
wits) = 2vo(1 — e7alts=)) (34)
The velocity of the load is derived as
w = 2vp(1 — e7ills=1))gmill=14) (35)
According to Eq. (3), the reflected wave is given by
8licsoar, = —2voz(1 — e7ils=1))euli=14) (36)

At time 15 = ([ — aty)/(c + a) + t4, this reflected wave arrives at the
top trolley, and it is written as

8limo = —2voz(1 — el )il =) 37
So, the absorb velocity is determined by
Ve = 2vo(1 — ealla=1)) e lt=15) (38)

As the launch velocity is removed, the designed velocity of the
trolley is equal to the absorb velocity. So, the velocity of the trol-
ley in the deceleration process should be

“(t— 1)
vo — 2vpe m : 3 <t<ts
v = B B (39
= (ty —t = (t—t
ZVO(I*e " 1)>e m 5),r2t5

3 Simulation and Experiment

In this section, we will illustrate the efficiency of the proposed
method in Sec. 2 through numerical examples and compare them
with experiments. In the experiment, the string with a load is
mounted on a line guided track, driven by a stepper motor. The
velocity of the trolley is controlled by rotation speed of motor and
the displacement of the load is measured by laser displacement
sensors. The material and geometric parameters are as follows:
the density of the cotton string is p = 6.2 X 1074 kg/m, the masses
of the loads are m; =m,=0.005kg, /y =/, =0.25m for the seg-
ments of the string in the double-pendulum model, m =0.057 kg,
[y =0.51m, and /;, =0.205 m in the rigid-rod model, m =0.0135 kg,
and the initial length of the string / = 0.62 m in the load-hoist model.

3.1 Double-Pendulum Model. In the simulation and experi-
ment, a double pendulum is displaced by a motor from rest to a
displacement d = 0.588 m during a period of time 12, the veloc-
ity of the trolley is designed based on the wave-based control

Journal of Dynamic Systems, Measurement, and Control

method explained previously, and the launch velocity is 0.03 m/s.
The displacement and velocity are set according to the length of
line guide track available in the experiment, which are different
from real crane applications, but the principle holds for large
launch velocity. In simulation, the pendulum models are built in
commercial finite element software AnNsys using the link and mass
elements, and the control signal is applied under a series of time
steps. Figure 6 shows the analytical and finite element results of
displacement (@) and velocity (b) for load 2 as a function of time
when the trolley moves following the designed velocity. It is seen
from the analytical result that load 2 follows closely the motion of
the trolley and moves with little swing, and its velocity fluctuates
a little at beginning and converges toward the target velocity pro-
file, i.e., the velocity profile of the trolley, with reducing swing
motion. The numerical displacement of load 2 follows well with
the analytical result. Some errors accumulated in load velocity as
the load velocity is divided into discontinuous load step in numer-
ical calculation. Here, only the acceleration process is considered,
and the deceleration process can be obtained by time-reversal
technique, not shown in the figure.

Figure 7 illustrates the computed force on load 2 for a period
time of 10s (acceleration process), it is seen that both incident
force wave f; and reflected force wave g, quickly decay out at the
end of the acceleration process, so as the total force f> + g».

To validate the model, experimental measurement is also con-
ducted, as shown in Fig. 8. The displacement of load as a function
of time is measured by laser displacement sensors, and the veloc-
ity of the load can be then obtained. In the experiment, the launch
velocity is taken the same as in the simulation v;=0.03 m/s. For
comparison, we also analyzed the case where the trolley moves at
a constant velocity v. =0.049 m/s, this velocity is chosen in order
to make the same displacement in the same period of time as in
the controlled motion, so two motions have the same average
velocity. Figure 9(a) shows the comparison of the displacement of
load 2 as a function of time for the cases where the trolley follows
the designed velocity and the constant velocity in experiment. Fig-
ures 9(b) and 9(c¢) show the simulation and experiment of the
velocity of load 2 in the designed velocity case and the constant
velocity case, respectively.

Compared to the constant velocity case, the load moves and
stops at end without significant swing when following the
designed motion. In the constant velocity motion, a large accelera-
tion is needed at the beginning to accelerate the trolley to the
desired velocity. This will induce the observed large swing
motion. The predicted responses of load agree well with the mea-
surement, as shown in Fig. 9.

Finally, a gantry crane with a suspended rigid rod is also ana-
lyzed to reduce the swing motion of the rod. The rigid rod is dis-
placed from rest to a displacement 0.525 m during a time 7s. The
launch velocity v;=0.1m/s is taken in the designed motion. A
constant velocity loading case is also considered for comparison,
in which the velocity of the trolley is adjusted to be v.=0.08 m/s.
Figure 10 shows the comparison result of the displacements at the
bottom end of the rod for the constant velocity motion and the
wave-controlled motion, respectively. The proposed control strat-
egy reduces efficiently the swing of the rigid rod during displace-
ment, and the swing amplitude at the arrival decreases from
31.76 mm of the constant velocity motion case to 4.27 mm in the
proposed control motion. Again, the simulation agrees well with
the experiment.

3.2 Load-Hoist Control. In this section, we will consider the
load-hoist model discussed previously. The load is displaced from
rest to a horizontal distance of 0.585 m, and at the same time, it is
hoisted at a constant velocity @=0.06m/s for a period of
time 7.5s. To design the motion, the launch velocity is set to
be 0.05m/s, and a constant velocity (horizontal) motion
v.=0.078 m/s is also examined for comparison. In the experiment,
a rotational motor is used to lift the load in addition to a stepper
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motor providing a horizontal motion, and the experimental setup is
shown in Fig. 11.

Figure 12 shows the corresponding measurements for displace-
ment and velocity of the load. It is seen that the load moves
smoothly and stops with little swing with the proposed control
motion, and the amplitude of swing drops from 52.04 mm to

2.84 mm, compared to a constant velocity motion. It is also inter-
esting to note from the velocity variation that the frequency
increases due to the shortening string length, and the swing of the
load is significant if without control.

4 Influence of Launch Velocity

In the previous motion design discussed in Sec. 2.1, the launch
velocity is taken constant, as initially proposed by O’Connor [17].
The constant launch velocity will rapidly accelerate the load;
however, the velocity of the trolley needs quickly to be dropped to
nearly zero at the beginning to avoid large swing of the load. To
circumvent this problem, different forms of the launch velocity
can be assumed to design velocity profile of the trolley. In this
section, we will examine the influence of launch velocity on the
designed velocity profile of the trolley. In the following, we con-
sider only a single pendulum system, moving horizontally with
the parameters /=0.5m, m = 0.4kg, and p =1 x 10~ *kg/m.

For the first example, the launching velocity is assumed to fol-
low an exponential form of v; = vy(1 — e/ ™), where z and m are
the impedance and mass, respectively. This profile will make the
velocity converge to a constant value, which is easy to meet maxi-
mum velocity required in engineering and also easy to make a
deceleration through velocity reversal. The incident force wave is
given by f = vz = voz(1 — e~#/"). By solving the motion equa-
tions mw =f + g and wz =f — g, the velocity of the load is
expressed as

laser displacement sensor

Fig. 8 Experimental setup for double-pendulum model
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ity variation in the wave-controlled case, and (c) velocity variation in constant velocity case

ZV()Z

w = 2vo(1 — e~7=)/m) (t —to)e 2 7m (40)

m

where ¢. = I/c is the wave traveling time in the string. The acceler-
ation of the load is obtained as

. 2\'0 Z 2

(- A1)

According to the wave-based method, the designed velocity of the
trolley is written as by absorbing reflected wave

06F g
E
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—— Wave controlled
0 1 1 1

Time (s)
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—zt/m

(1 _ e—:(r—Zr()/m)

Vv = 2vy — Ve — vV
B2y g2 m 42)
The acceleration of the trolley is given by
a= %ﬁi + 2}‘:;2 (t—2t) — % S

For the second example, the launch velocity of the trolley is
assumed to follow a trapezoid form, i.e., a velocity with constant
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Fig. 10 Displacement of rigid rod (the bottom end) for constant velocity motion and wave-controlled motion:

(a) simulation and (b) experiment
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SR

Fig. 11 Experimental setup for load-hoist model

acceleration of v;=apt from the period of O to #; and then fol-
lowed by a constant speed v, = agt,. For the period of the constant
acceleration, the incident force wave is given by f = v;z = apzt.
By solving the motion equations mw = f 4 g and wz = f — g, the
load velocity is derived as

2 e 2
= A0 —ae-i/e) 4 2ao(t —1/c) — Mdo (44)
The designed velocity of the trolley is provided by
2 :
v, = @ (e7#(=21/) — 1) + 2ag(t — 1/c) 45)

According to the trolley velocity, the acceleration of the trolley is
written as

a; = 2ao(1 — e #119) (46)
Figure 13 shows the designed trolley velocity profile (a) and the

finite element simulation of the load response (b) according to the
different launch velocity functions, including constant, exponential,

06F
€
S 04rp
£
[0)
(&)
©
Q.
k2]
O o2f
------ Constant velocity
—— Wave controlled
0.0 : - : : ’
0 2 4 6 8 10 12
Time (s)

(@

and trapezoid forms. The launch velocity of the constant form pro-
vides a rapid increase in velocity, but will in turn induce a large
acceleration. Compared with the constant launch velocity case, the
launch velocity of the exponential form shows a slower and
smoother increase in velocity, therefore avoid velocity jump. The
load response in the case of the launch velocity of the trapezoid
form manifests a little swing due to the switch of the acceleration.

Force acting on the trolley depends intimately on its velocity
variation. Figure 14 illustrates the acceleration profiles of the trol-
ley (a) and the load (b) for different launch velocity profiles. It is
found that the accelerations of the trolley and the load mass of the
exponential and trapezoid profile inputs are much smaller than
those in the constant velocity one, hence smaller force will be
induced in the string. The trapezoid form velocity input will trig-
ger swing motion and cause acceleration oscillation, as shown in
Fig. 14(b).

Wave-based control method is based on the analytical solutions
of wave equations. If errors of geometry and material parameters
exist in the structures, the control strategy will result in residual
vibration. Natural frequencies of structures depend on the parame-
ters of geometry and materials. In order to confirm the sensitivity
of wave-based control with respect to model and parameter uncer-
tainties, errors of natural frequency are induced to evaluate the
change of amplitudes of residual vibration. Figure 15 shows the
amplitudes of residual vibration as a function of errors of natural
frequency in different launch velocity inputs. The results are got-
ten by the numerical results of the simple pendulum model under
different forms of launch velocity input. It can be seen that the
vibration percentage increases linearly with the increase of fre-
quency error. But for different input control strategy, the levels of
residual vibration amplitude vary a lot. The exponential input con-
trol strategy is robust. Even the frequency error is as large as 0.25,
its vibration percentage is still under 0.6%, which is much better
than the uniform velocity control strategy. The vibration percent-
age reaches 5% when the frequency error is 0.25.

5 Wave-Based Feedback Control Model

Wave-based method explained previously is not only limited to
define open-loop control strategy but also can be used to design
feedback control as well, which may be more simple and robust.
By implementing an additional sensor to measure the velocity of
load and inclined angle of the string, instead of analytical deriva-
tion as in the case of the open-loop control, a feedback control
strategy can be defined by adjusting trolley’s velocity through
absorption of reflected wave. In this section, we will provide two
simple examples to illustrate basic idea of wave-based feedback
control without consideration of delay of feedback.
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Fig. 12 Comparison of measured horizontal displacement (a) and velocity (b) of load for constant velocity

motion and proposed control motion
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launch velocity control method

According to Egs. (2) and (3), two counter-propagating force
waves can be obtained according to the velocity v at each point on

the string and string tilt angle 6 = Jy/Ox

flx—ct) = (vz— T%)/z

“47)
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= oy
glx+cr) = (vz + T8x> /2 (48)

The feedback velocity is set to generate a desired incident wave
and to absorb the reflected wave. With the help of velocity of trol-
ley v, and the string tilt angle at the trolley end 0,, the launch
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Fig. 16 Swing of load for a single pendulum: (a) with control and (b) without control

velocity v, and absorb velocity v, can be derived to satisfy the
requirement of the incident and reflected waves.

If controller keeps launch wave constant, the launch velocity is
derived in this case as

(wz — T%) /2 =v.z (49)
vi=2v.+T0,/z (50)
Absorb velocity is derived by absorbing reflected wave
vaz:g(x+ct)=f(vz+T%)/2 Q)
Vg = —V/2 —T0,/2z (52)

Total velocity of the designed feedback control is to sum up the
launch velocity (Eq. (50)) and the absorb velocity (Eq. (52)), i.e.,
it is obtained by adding a feedback of velocity and a feedback of
tilt angle of string on a constant velocity
Vi =V + v =2ve — v, /2 +T0,/2z (53)
Particularly, if the launch wave f is set to zero, this method can
alleviate initial vibration by absorbing reflected wave as well
Vi =v, = —v/2—T0,/2z (54)
In order to validate the proposed feedback control strategy, we
use two laser displacement sensors to measure the velocity of load
and the string tilt angle during motion. To make a feedback, the

0.03

With control

0.02f
001}

0.00kp [+ \i

Displacement (m)

001t Vi

-0.02F 1}

-0.03

trolley’s velocity is calculated and applied for a given time incre-
ment step-by-step. In the first step, a constant velocity v, of the
trolley is set. When the trolley moves, the velocity of load and
the string tilt angle are measured, and they are used to evaluate
the velocity for the next step according to Eq. (53). This process
repeats until the trolley stops and the load mass comes to rest.
Two examples are analyzed, vibration control for a simple pendu-
lum of m =0.005kg and /=0.25 m moving at a constant velocity
for a given distance which is controlled by adding the feedback,
and the other is vibration suppression for single and double pendu-
lums with initial swing motion. The parameters of the double pen-
dulum are the same as previously discussed in Sec. 3.

For the constant velocity with feedback control motion of a sin-
gle pendulum, the constant velocity is set to be v.=0.015m/s and
keeps for 8s, which makes the trolley move over a distance of
0.12m. The feedback control time increment is set to 0.2 s. From
the beginning, the tilt angle of string is measured and the velocity
of trolley is calculated for the next step 0.2 s. Then, the entire pro-
cess repeats itself with velocity updated in real-time. The delay of
0.2 s in the feedback will induce the load to swing for some cycles
before catching up with speed of trolley. Swing of load during
motion and stop is given in Fig. 16(a), and that of the load without
control is also illustrated in Fig. 16(b) for comparison. It is found
indeed that swing of load is reduced rapidly with the wave-based
feedback control strategy.

The second example is control of initial swing of single and dou-
ble pendulums with wave-based feedback control method. The trol-
ley remains at rest but with initial swing motion of the load. In this
case, the launch velocity equals to zero; and the velocity of trolley
is adjusted by the absorb velocity with consideration of feedbacks
from the trolley velocity and the tilt angle in real-time (Eq. (54)).
Figures 17(a) and 17(b) show the experimental results for the single
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Time (s)

(@

Fig. 17 Swing of pendulum with and without control: (a) single pendulum and (b) double pendulum
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and double pendulums with and without controls, respectively.
Again, the initial swing motions are rapidly attenuated both for sin-
gle and double pendulums with the proposed control strategy.

6 Conclusions

Wave-based open-loop control strategies are examined for gan-
try crane motion to reduce swing of loads, and double-pendulum
and load-hoist models are considered with the objective to
examine the wave scattering and configuration change with the
wave-based method, respectively. In the analysis of the double-
pendulum model, wave reflection and transmission in the system
were analyzed. The gantry crane motion is determined by absorb-
ing both reflected waves from the midload mass and end-load
mass through adjustment of trolley velocity. The numerical simu-
lation demonstrates high efficiency for swing motion alleviation,
and the experimental measurement is also conducted to validate
the proposed control strategy. It is also found that the suspended
rigid-rod model can be derived as a special case of the double-
pendulum model. In the load-hoist model, although the string
length changes during the displacement of trolley, this can be sim-
ply taken into account by modifying the wave traveling time in a
single pendulum model. The experiment is performed to validate
this model. We also show that the launch velocity profiles may
have important influence on the motion design, particularly on the
peak force to move the trolley. Finally, wave-based feedback con-
trol is also discussed to demonstrate the power of this method.
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Appendix: Rigid-Rod Model

The rigid-rod model is shown in Fig. 3, the trolley moves hori-
zontally, and the rod motion is restricted to a plane, we use two
angles o and f to characterize its motion. The potential energy
and the kinetic energy of the load are written as

V:mg[(ll—o—%) — (llcosoc+[§2cos[5’)} (A1)
1 1 .
T = oM + 51 I3 (A2)

where Veeneer 18 the velocity of the mass center of the rod, and /7., is
the rotation inertia related to the center. The Lagrangian of the
system can be written as

1 2. .
L= Fm Vv +l%5(2 +22/32 + 21yv cos ad + X cos fff

+1 1l (sinasin ff 4 cos o cos a)a'c[.f} (A3)

1 . I}
+ﬂml§/32 —mgl (1 — cosa) — mg%(l —cos f3)

According to Lagrange equation, the motion equation of the rod
can be derived

1 .
ml; 28+ ml; cosaiy —|—§m11lz(sinoccosﬂ—cosozsinﬁ)ﬁ2

1 ..
+—=mlr(sinasin ff+cosocos f)f +mgly sino=0
12 1 (A4)
gmléﬁ +§mlz cos ¥ +§mh lh(cosasinff — sinoccosﬁ)dc2

1 1
+§m11lz(sinasinﬂJrcosoccosﬂ)& +§mg12 sinf=0

Journal of Dynamic Systems, Measurement, and Control

For the double-pendulum model in Fig. 2, we choose the same
two parameters as in the rigid rod to characterize the motions of
the two masses. Following the same method, the motion equations
of the two mass are
(ml -+ I’)’Q)l,lz& + (ml + }’}’Zz)lll Cos Otjéo

. . -2
+ mal'1'5(sin o cos f — cos ocsin §)

+mal' (' (sinocsin ff + cos acos B)f + (my + my)gl'y sino = 0

mzl’iﬁ + mal'y cos kg + myl' '3 (cos asin f§ — sin o cos f§)d>

+mpl'11'5(sinasin f + cos ocos f)d + maglasin f =0
(A5)

Compared with the motion equations of the two models, it can be
found that when the parameters of the double-pendulum model
are scaled as I\ =1y, I, =2I,/3, andm; = m,/3, the motion of
the rigid rod can be derived from the double-pendulum model.
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