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• The interaction between a positive and negative springs in a mass-spring system is experimented, anti-phase movement is observed, confirming the
analytical solution.

• We further showed the dynamics of the system containing negative stiffness (NS) spring could also be derived from Hamilton’s principle.
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a b s t r a c t

Realization of negative stiffness (NS) in damping low frequency acoustic and mechanical vibration is
relevant in engineering applications. In this work, assemblage of two repelling magnets was used to
produce negative magnetic spring (NMS). A mass–spring system with NMS is experimented where the
free and forced vibrations of the system are examined. The anti-phase movement is observed due to the
presence of proposed NMS, confirming the analytical solution. We further showed the dynamics of the
system containing NS spring could also be derived from Hamilton’s principle.

© 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Negative stiffness (NS) material and behavior are naturally un-
familiar to engineer, having a material assisting in deformation
under load is imaginary. This unique property is however of in-
terest to researchers [1–5], hoping to have radical technological
innovations in the coming future. The idea of negative constitutive
property will continue to be an academic paradox until we have
sufficient analysis and experimental verification of these concepts.
ThoughNS is unstablewithout constraint, its usefulnesswith other
materials has resulted in a paradigm shift in engineering design.
The NS story is no longer of instability rather a useful way to im-
prove the performance of materials and structures. For examples
in acoustic metamaterials, Lee et al. [6] presented experimental
and theoretical results on amembrane-type acousticmetamaterial
that exhibits a negative effective modulus in a frequency range of
0–450 Hz, which may find application in low frequency acoustic
isolation and negative refraction. Another usefulness is found in an
energy harvester mechanism, where amechanical oscillator seizes
and stores energy at high energy orbit vibration which results in
an increased power harvesting output [7,8]. There are three broad
ways to obtain NS. The first one is negative stiffness element due
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to its instability that can survive within a surrounding posit ive
stiffness matrix [9–11]. The second one is to produce NS with
mechanical springs in different configurations, for example two
inclined springs [12–15], inclined Euler beam [16,17], and com-
pressed springs [18]. And the third one is using magnets in proper
configurations to produce negative restoring force. Magnets are
placed either in attracting manner with a mechanical spring in be-
tween [19,20], or in repelling way to produce NS [21–23]. Though
NS has growing interests in engineering field, achieving sufficient
condition for its stability in materials is a requirement before it
can be applied. To avoid failure of designs, theoretical bounds on
the effective properties of linear elastic inhomogeneous solids con-
taining NS and discrete systemwith NS have been proven [24–27].
This serves as guide in tailoring the NS appropriately to achieve the
desire objectives in structure. Though NS elements are available
and designed in prototype for low frequency vibration isolation,
their interaction with positive springs and dynamics of a mass–
spring system with negative stiffness element are not addressed,
particularly from experimental point of view.

In this paper, we focus on dynamics of a mass–spring system
with a NS element realized by magnets connected in a repelling
fashion. Previously, the use of magnets in producing NS has been
with one degree of freedom instead of two, to model NS spring.
Wehere propose experimentally a negativemagnetic spring (NMS)
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Fig. 1. (Color online) Systemwith an NMS. (a) Its built-up, NMS containing four magnets, twomagnets connected to mass 1 and the other twomagnets are attached to mass
2; (b) its mass and spring idealization.

that is used within positive stiffness springs, their interaction will
be examined. The NMS obtained is subjected to free and forced
harmonic vibrations to determine its dynamic response and its
interaction with the surrounding positive stiffness spring. Finally
we further show from energy principle that the total potential en-
ergy of the system containing negative stiffness is always positive,
as having been shown for a system with negative mass [28]. We
should alsomentioned that Pasternak et al. [29] have studied three
springs system with a negative linear spring in series under free
vibration without experiment validation.

The designedNMS is depicted in Fig. 1. The NMS ismade up four
identical magnets, two magnets are connected to the massm2 and
the other two magnets are fixed at the opposing side temporarily.
The analytical expression for the force interaction between two
magnets is proposed by Akoun and Yonnet [30]. For our model, the
force can be calculated as
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NS stiffness between themass and outermagnets along X direction
gives
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In these equations, J is the residual flux density of the permanent
magnet, µ0 is the permeability of vacuum. Rare earth magnet of
neodymium iron boron model, grade N35 with a residual flux
density of 1.21 T, and a relative permeability of 1.023 is used for the
experiments. And the magnet of dimension size 20 mm × 10 mm
× 2 mm (a, b, c) is used. The distance between the magnets β is a
parameter to be examined. Verification of the analytical equation
for the force displacement is done through experiment as shown in
Fig. 2. A laboratory scale experimental rig was designed and built
to measure the force displacement relationship of moving mass 2
and temporary fixed mass 1. Magnets of the same size are used for
the inner and outer positions as depicted Fig. 2(b).

The rigid plasticmemberwith themass 1 is fixed on the balance
scale and the scale is set to zero. Plastic member is used to elimi-
nate the effect ofmagnets on the rigidmember. The electronic scale
surface ismade of aluminumwhich removes any interferencewith

magnets. The plane of the loop containing another two magnets
with opposing polarizations is then hanged down vertically at the
positionwhen x = −20mm. The innermagnets are located in such
a way that its magnetization direction is same as that of the outer
magnets. Readjusting the height of the rig downwards gives the
range of repelling force of the magnet in terms of displacement.

Figure 3(a) shows the force and displacement characteristics of
the magnets for different values of β as the upper holder moves
down along the x axis. Experimental measurements of the mag-
netic force with displacement for different magnet spacing were
carried out, which confirmed the analytical method. Therefore we
can plot the stiffness as function of displacement based on analyti-
cal formula, as shown in Fig. 3(b). First, we see that the smaller the
distance β between the outermagnets (mass 1) and innermagnets
(mass 2), the greater the force. Second, it is observed that the
minimum stiffness value appears when the relative displacement
of the masses is zero, and where the total restoring magnetic force
of the magnets is zero. At this unique position the mass is in
equilibrium due to symmetry of the repulsive forces in between
the magnet. Far away from the unique position, the stiffness is
positive as can be seen in both figures. When the distance β is
wide the force acting on the mass 2 is small, thus a little resistance
is developed for mass 1 to enter negative stiffness region. This
produces small region of negative stiffness. In contrast, when the
force is large (small distanceβ), themass 1 acts as positive stiffness
for a longer displacement before entering negative region. The
equilibrium position is taken as our origin for the analysis and ex-
periments. Though NMS exhibits strong nonlinear characteristics
along displacement x, but we shall keep vibration amplitude small
in order to approximately assume the linearity of the NMS.

For the NMS to act perfectly as mechanical spring in series, we
consider a simple two oscillators system shown in Fig. 1(a) with
its equivalent model in Fig. 1(b). Experimental setup for free and
forced vibrations is given in Fig. 4(a) and (b) respectively.

Using Newton’s second law, the governing equations as it was
previously published [29] give

m1ẍ1 = −k1x1 + k2 (x2 − x1) , (4)

m2ẍ2 = k2 (x1 − x2) − k3x2, (5)

where xi (i = 1, 2) is the displacement of the mass mi and dots
denote differentiation with respect to time. Firstly let us consider
the free vibration case of the system. Stability of a continuous
material requires that the effective stiffness of the springs is greater
than zero keff = (1/k1 + 1/k2 + 1/k3)−1 > 0 and the stiffness
matrix should be positive definite that is k1 + k2 > 0 and k1k2 +

k1k3 + k2k3 > 0 simultaneously [29]. The latter condition is
more stringent than the former. Hence, the choice for stiffness
should be guided by the latter condition for stability. For our
experimental model, we use m1 = 174 g, m2 = 56 g, k1 =

k3 = 124 N/m, and k2 depends on the distance β of the magnets.
Air track used by Yao et al. [31] was used in this experiment
where contact friction between themasses and the track is reduced
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Fig. 2. (Color online) (a) Experimental setup showing the two magnets holders attached to lower and upper holders; (b) measurement principle illustration.

Fig. 3. (Color online) (a) Analytical and experimental magnetic force as function of displacement, (b) analytical magnetic spring stiffness.

Fig. 4. (Color online) Experimental setup for two oscillators connected with NMS. (a) Free vibration, (b) forced vibration.

significantly. In the experiment, we initially displace the mass 1
from its equilibrium position and then relax this displacement,
inducing a free vibration in the system. Based on the different
initial conditionswe determined the trajectories of the twomasses
as function of time, which are shown in Fig. 5. Since we main-
tained the NS value below the critical value, the oscillators’ move-
ment is stable. The NMS modeled the linear mechanical springs
for the different spacing of magnets. In particular, from Fig. 5,
the movements of the two oscillators both for the experiment

and analytical agree closely with each other. Oscillator 2 moves in
anti-phase in relation to oscillator 1. The anti-phase movement of
oscillator 2 due to stored energy in NMS is hereby displayed in the
experiment. Instability was observed when the NS critical value
is exceeded making the equilibrium position unattainable exper-
imentally. Instead the masses separate and move to the nearest
equilibrium state (positive stiffness).

Next, let us consider a situation when oscillator 1 is subjected
to a forced harmonic displacement loading of x1 = x̄1 cosωt , then
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Fig. 5. (Color online) Normalized amplitude–time diagram of the systems under free vibration. (a) β equals 25 mm
(
k2 = −13 N/m

)
with initial condition, x1(0)

= 4.2, x2(0) = −0.5. (b) β equals 40 mm
(
k2 = −2.0 N/m

)
with initial condition x1(0) = 2.9, x2(0) = −0.1. All experiments and simulations with ẋ1(0) = 0, ẋ2(0) = 0.

we obtain the solution for Eq. (5) as

x̄2 =
δ

ω2
n − ω2 x̄1, (6)

where ω2
n = (k2 + k3)/m2 and δ = k2/m2. Dynamic stability

of an elastic system is ensured by real and positive eigenvalue of
the problem that is ω2

n ≥ 0. Figure 6 shows the forced harmonic
loading and displacement response of oscillator 2 for both exper-
iment and theory. To cater for the difference in initial amplitude
of the experimental data, we enforced the experimental initial
condition to get new theoretical total response of the oscillator 2,
plotted with blue dash dot line in Fig. 6. Better agreement with
experiment is found if the initial displacement of the oscillator is
considered. It is necessary to examine the importance of the role
the NS plays in the system during forced vibration. We observed
out of phase deformation of oscillator 2 due to NMS presence in the
matrix, it tends to assist rather than resist deformation as a result of
internally stored energy [1]. All this property canwell be predicted
by setting the negative value of magnetic spring, and it agrees with
experiment as well.

In view of theoretical physics, magnetic spring releases some
of its stored energy when the system is disturbed and work is
done on the environment. It is in this manner that NS systems
violate the conditions for thermodynamic. However, the energy
stored and released during perturbation is harnessed in damping
the response of the oscillator. This phenomenon is observed in the
experimental testing in delayed response as NS increases; when
energy is put into the system, the stored energy is released into
the system by first neutralizing the perturbation energy on the
oscillator 2, thereafter propelling it in the opposite direction. As the
stored energy increases in the system, the displacement response
of the oscillator in opposite direction tends to increase further.

It is instructive to consider the energy of the system with the
NMS. Since we are considering thermodynamic state of a system
undergoing loading, the Gibbs’ theorem guarantees a stable equi-
librium. Therefore, considering our free vibration loading case, it
is reasonable to approximate the total energy Π of our discrete
system, as the summation of the internal energies of each of its
parts.

Π =

n∑
i=1

Πi. (7)

Energy interaction between two magnets is given by Akoun et al.
[30]. For our magnets configuration, the energy can be written as
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The variables are the same as in Eq. (2). The total kinetic and
potential energies of the system can be defined as

T =
1
2
m1ẋ21 +

1
2
m2ẋ22,

Π =
1
2
k1x21 + Λ (x2 − x1) +

1
2
k3x22.

(9)

Introducing the Lagrangian L gives

L =
1
2
m1ẋ21 +

1
2
m2ẋ22 −

1
2
k1x21 − Λ (x2 − x1) −

1
2
k3x22, (10)

where ẋi is the velocity of the mi. The equation of motion then
becomes
d
dt

(
∂L
∂ ẋ

)
−

∂L
∂X

= 0, (11)

m1ẍ1 + k1x1 − k2 (x2 − x1) = 0, (12)

m2ẍ2 + k3x2 + k2 (x2 − x1) = 0. (13)

Considering the forced harmonic loading case,

T =
1
2
m2ẋ22,

Π = Λ (x2 − x1) +
1
2
k3x22,

(14)

L =
1
2
m2ẋ22 − Λ (x2 − x1) −

1
2
k3x22. (15)

The equation of motion then becomes

m2ẍ2 + k2 (x2 − x1) + k3x2 = 0. (16)

From Eq. (10), Λ is the stored energy of the magnets which is
positive. Eqs. (12), (13) and (16) derived based on Hamilton’s
energy principle are the same as Eqs. (4) and (5) respectively based
onNewton’s second law. Therefore, in terms of energy equation for
NS spring mass systems, inverting the sign of the stiffness without
taking note of anti-phase displacement of next oscillatorwill result
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Fig. 6. (Color online) Experiment and theory under dynamic loading. (a) β equals 25 mm
(
k2 = −13 N/m

)
with frequency ω = 4.4 Hz with initial condition

x1(0) = −0.14, x2(0)1 = 0, x2(0)2 = −0.14, displayed as black, red and pink, respectively. (b) β equals 40 mm
(
k2 = −2.0 N/m

)
with frequency ω = 3.8 Hz with

initial condition x1(0) = −0.01, x2(0)1 = 0, x2(0)2 = −0.01.

in negative energywhich does not characterize the energy function
of the system. In the alternative, the equation containing stored
energy at the initial configuration should be used. Furthermore the
NMS did not violate the law of thermodynamics because the total
potential energy from the derivation is positive definite for both
static and dynamic loading, as demonstrated by Zhou et al. [28] for
a system with negative mass.

In this work, we have demonstrated through experiment the
possibility of having NS within a positive matrix without buckling
or snap through of member. The boundary constraints on the
system allowed the system admit NS value and NS is set within
the allowable range to make for overall stability. Under dynamic
loading, NMS behaves as a linear mechanical spring with anti-
phase movement. Admissibility of NS without violating the law of
thermodynamics is proved. This will pave way for new material
design in composite engineeringwhere theory has recognized that
NS behavior can improve damping property of the material.
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