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A B S T R A C T

The dynamics in the process of deployment of a flexible extendible boom as a deployable structure on the
spacecraft is studied. For determining the thermally induced vibrations of the boom subjected to an incident solar
heat flux, an axially moving thermal-dynamic beam element based on the absolute nodal coordinate formulation
which is able to precisely describe the large displacement, rotation and deformation of flexible body is presented.
For the elastic forces formulation of variable-length beam element, the enhanced continuum mechanics approach
is adopted, which can eliminate the Poisson locking effect, and take into account the tension-bending-torsion
coupling deformations. The main body of the spacecraft, modeled as a rigid body, is described using the natu-
ral coordinates method. In the derived nonlinear thermal-dynamic equations of rigid-flexible multibody system,
the mass matrix is time-variant, and a pseudo damping matrix which is without actual energy dissipation, and a
heat conduction matrix which is relative to the moving speed and the number of beam element are arisen. Nu-
merical results give the dynamic and thermal responses of the nonrotating and spinning spacecraft, respectively,
and show that thermal shock has a significant influence on the dynamics of spacecraft.
1. Introduction

The deployable booms have a wide range of applications in the space
technologies, such as communication antennas, instrument carriers, and
gravity gradient stabilizing [1–3]. In the course of boom deployed on
orbit, the exposed part will have sudden heating changes due to the
emitted thermal radiation and absorbed solar heat flux on the boom's
outside surface, that is, the flexible boom is successively subjected to
thermal shock during deployment. With the rapid changes of tempera-
ture gradients on the boom's cross-section, the time-dependent thermal
bending moments that result in the deformations and vibrations of
flexible structure are generated.

Many studies have focused on the thermally induced dynamic be-
haviors of deployable booms after deployment, that is, the length of
boom is not changed over time. A notable example of deployable booms
is STEM (Storable Tubular Extendible Member) [1], which is considered
as a cantilevered beam structure and has been extensively researched by
the analytical and numerical approaches. Thornton and Kim [4] derived
an approximate solution for thermally induced bending vibrations of
STEM as a closed thin-walled tube by means of the method of weighted
st 2017; Accepted 2 October 2017
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residuals, and thermal flutter phenomenon was shown in the dynamic
responses. Xue et al. [5] presented a numerical approach for investigating
thermally induced bending-torsion coupling vibrations of STEM as an
open thin-walled tube via the finite element method. By comparing the
numerical results, it is found that the temperatures and deflections re-
sponses over time are similar between the closed and open cross-section
beam models. Gulick and Thornton [6], and Ko and Kim [7] studied the
thermally induced vibrations of an axially spinning closed thin-walled
tube by the analytical method and the finite element method, respec-
tively. Shen and Hu [8] also studied thermally induced attitude dynamics
of a spinning spacecraft with an axial boom using the absolute nodal
coordinate formulation and the natural coordinates method. Above re-
searches, the coupled thermal-structural analysis model is extensively
employed, which assumes that there is an interaction effect between the
absorbed solar heat flux by the tube's outside surface and the structural
motions including elastic deformation and rigid rotation.

Deployable boom during deployment can be addressed as an axially
moving beam. It is obviously that its dynamic analysis is more difficult
than that of beam structures with constant length. A finite element
method for the axially moving beam was introduced by Stylianou and
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Tabarrok [9], in which the number of elements was fixed, and the size of
elements is changed over time. Chang et al. [10] studied the vibration
and stability based on the variable-domain element. Park et al. [11]
presented a nonlinear analysis model, wherein considered the coupling
effect between longitudinal and transverse vibrations of a beam with
deployment and retraction. Al-Bedoor and Khulief [12], and Wang et al.
[13] gave an approximate analytical solution for the free vibration of a
cantilever beam with coupling of an axial translation motion and flexural
deformation. Furthermore, the dynamic modeling of an axially moving
beam in rotation was introduced by Yuh and Young [14], in which the
approximated analytical solution was obtained by using the assumed
modes method. Al-Bedoor and Khulief [15] also analyzed a beam with
the rotational and translational motions, in which the softening effect
due to the centripetal acceleration was included. However, the above
proposed models cannot simultaneously describe the large rotation and
deformation for the axially moving beam.

Thus, the absolute nodal coordinate formulation that is a non-
incremental finite element method is adopted in this work. The global
position and gradient vectors are selected as the nodal coordinates for
modeling the rotation and deformation field of an infinitesimal volume
within the element, which leads to a constant mass matrix, and elimi-
nates the centrifugal and Coriolis inertia forces in the equations of motion
[16–18]. The method has been widely used to study the dynamics of
deployable space structures [19,20], and was also applied to thermally
induced vibrations of flexible beam [21]. In addition, Kawaguti et al.
[22] proposed a time-varying length tether element using the dimen-
sionless variables in the frame of absolute nodal coordinate formulation.
Tang et al. [23] developed also a variable-length tether element based on
the absolute nodal coordinate formulation, in which the governing
equations were derived by means of the hybrid Eulerian and Lagrangian
framework, the arc-length coordinate of left node of tether element was a
time-varying coordinate only, and the number of elements was
increasing with the deployment of tether.

This paper focuses on developing an approach for determining the
dynamic responses of a deployable beam structure during extension due
to a sudden increase in external heating. A variable-length beam element
with a constant number of elements is proposed based on the absolute
nodal coordinate formulation. The coupled thermal-structural analysis
model is adopted, which is to able to find the unstable dynamic response
caused by thermal loading. The natural coordinates method is chosen to
describe the rigid body, because of that the node coordinates are both in
the global coordinate system for the absolute nodal coordinate formu-
lation and the natural coordinates method [24]. Thermal and dynamic
governing equations are solved by the weighted residual and general-
ized-α methods [25], respectively. Numerical results are conducted to
Fig. 1. Thermal-dynamic analysis model of the
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illustrate the dynamic responses of a spacecraft with a deploying boom
under non-thermal loading and solar heat flux.

2. Modeling of the spacecraft

Consider a spacecraft composed of a rigid hub and a flexible
deployable boom is subjected to solar heat flux S0, as shown in Fig. 1.
XYZ is the global coordinate system which is a fixed frame of reference,
and xyz and xyz are the local coordinate systems which are rigidly
attached to the flexible boom and the rigid hub, respectively. The rigid-
flexible structure can rotate about z-axis with an spin rate Ω at the initial
moment, and the boom simplified as a closed thin-walled tube is
deployed along its axial direction with a moving speed v(t) from the rigid
hub, one end is fixed on the rigid hub, and the other is with a tip mass.

For the rigid hub described by the natural coordinates method, the
position vector of one point is given by Ref. [26].

r ¼ Nðx; y; zÞqðtÞ (1)

where the matrix N is independent of the system's motion and therefore
remains constant with time, and q is the vector of natural coordinates,

q ¼ �
rTi rTj uT vT

�T (2)

that is defined by two basic points i and j, and two unit vectors u and v. As
shown in Fig. 1, the vectors u and v are parallel to x-axis and y-axis in the
local reference framexyz, respectively.

For the flexible deployable boommodeled as an axially moving beam,
the element position vector in the absolute nodal coordinate formulation
of one point is proposed

r ¼ NðxðtÞ; y; zÞqðtÞ (3)

where q is the element nodal coordinates, for the node k, the vector of the
absolute coordinates includes the position and slope vectors is defined
as [16].

qk ¼
�
rTk

∂rTk
∂x

∂rTk
∂y

∂rTk
∂z

�T
(4)

and N is the element shape functions written as

N ¼ ½N1I N2I ⋯ N8I � (5)

in which I is the 3 � 3 identity matrix, and the elements of matrix are
spacecraft with an axially moving boom.
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dependent on the time t,

N1 ¼ 1� 3ξ2 þ 2ξ3; N5 ¼ 3ξ2 � 2ξ3;
N ¼ lðtÞ�ξ� 2ξ2 þ ξ3

�
; N ¼ lðtÞ�� ξ2 þ ξ3

�
;
2 6

N3 ¼ yð1� ξÞ; N7 ¼ yξ;
N4 ¼ zð1� ξÞ; N8 ¼ zξ

(6)

where y and z are the cross-section coordinates of beam, l is the element
length changed with the elongating or shortening for the axially moving
beam, and ξ is the axial non-dimensional coordinate,

ξ ¼ xðtÞ � xkðtÞ
xkþ1ðtÞ � xkðtÞ ¼

xðtÞ � xkðtÞ
lðtÞ ; ðxk � x � xkþ1Þ (7)

and the axial coordinate of node k may be expressed as

xk ¼ ðk � 1ÞlðtÞ ¼ ðk � 1ÞLðtÞ
n

(8)

where n is the number of elements, and L is the beam length in the local
element coordinate system xyz.
2.1. Thermal-dynamic equations

For the axially moving thermal-dynamic beam element, the equations
of motion are derived using the D0Alembert's principle [27], which is
more fundamental and applicable to variable mass systems. The virtual
work of the inertia forces of an element can be represented by

δW ¼ ∫ A∫
xkþ1ðtÞ
xk ðtÞ ρ€rTδrdxdA (9)

in which A is the cross-section area of beam, and €r is the acceleration
vector of a particle on the beam element obtained by differentiating Eq.
(3) with respect to time t,

€r ¼ N€qþ 2 _N _qþ €Nq (10)

where

_N ¼ ∂N
∂ξ

_ξþ ∂N
∂t

(11)

and

€N ¼ ∂2N
∂ξ2

_ξ
2 þ ∂N

∂ξ
€ξþ 2

∂2N
∂ξ∂t

_ξþ ∂2N
∂t2

(12)

The rate of change with respect to time t of the element x-coordinate is
given by

_xðtÞ ¼ _LðtÞ ¼ n _lðtÞ (13)

The time derivatives of ξ can be then derived by using Eqs. (7), (8) and
(13), one gets

_ξ ¼
_l
l
ðn� jþ 1� ξÞ (14)

and

€ξ ¼
�€l
l
� 2

_l
2

l2

	
ðn� jþ 1� ξÞ (15)

Substituting the vectors of position and acceleration r and €r into Eq.
(9) yields

δW ¼ δqTðMe €qþ Ce _qþ KeqÞ (16)

where Me, Ce, and Ke are respectively the mass, pseudo damping, and
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equivalent stiffness matrices of element given by

Me ¼ lðtÞ∫ A∫
1
0ρN

TN dξdA (17)
Ce ¼ 2lðtÞ∫ A∫
1
0ρN

T _N dξdA (18)

Ke ¼ lðtÞ∫ A∫
1
0ρN

T €N dξdA (19)

The virtual strain energy with thermal effect of an element is derived
by means of the enhanced continuum mechanics formulation [28] to
remove the Poisson locking phenomenon in elastic forces formulation,
which can be written as

δU ¼ ∫ A∫
xkþ1ðtÞ
xk ðtÞ ðε� εTÞTD0δðε� εTÞ dxdAþ A∫ xkþ1ðtÞ

xk ðtÞ εTDνδε dx (20)

in which εT is the thermal strain vector produced only in the first part on
account of that thermal moment induces the vibrations of beam, D0 and
Dν are the elasticity matrices [28], and ε is the engineering strain vector
given by

ε ¼ �
εxx εyy εzz γxy γyz γzx

�T (21)

where the one of the normal strains may be expressed as

εxx ¼ 1
2

�
∂rT

∂x
∂r
∂x

� 1
	

¼ 1

2lðtÞ2
�
qT∂N

T

∂ξ
∂N
∂ξ

q� 1
	

(22)

and the one of the shear strains is

γxy ¼
∂rT

∂x
∂r
∂y

¼ 1
lðtÞq

T∂N
T

∂ξ
∂N
∂y

q (23)

Similarly, the expression for the other normal and shear strains can be
also obtained. Thermal strain vector after ignoring thermally induced
transverse deformations can be written as

εT ¼ ½ αTðT � T0Þ 0 0 0 0 0 �T (24)

where αT is the coefficient of thermal expansion, T0 is the reference
temperature, and the temperature T is related to the structural de-
formations, and can be obtained by thermal analysis in the following
section. Substituting Eqs. (21)–(24) into Eq. (20) leads to

δU ¼ δqT
�
Q0 þQν �QT

�
(25)

where Q are the element elastic forces composed by three parts, in which
Qv considers the Poisson effect at the beam axis, Q0 neglects the effect,
and QT is produced by the gradient distribution of temperature on the
beam cross-section. Their expressions are written respectively as

Q0 ¼ lðtÞ∫ A∫
1
0

X6

i¼1

�
D0ε

�
i

∂εi
∂q

dξdA (26)

Qν ¼ lðtÞA∫ 1
0

X3

i¼1

ðDνεÞi
∂εi
∂q

dξ (27)

QT ¼ lðtÞ∫ A∫
1
0EαTðT � T0Þ ∂εxx∂q

dξdA (28)

where εi is the ith element of vector ε, and E is the Young's modulus.
For the rigid hub, the mass matrix can be derived by means of the

position vector in Eq. (1) and the virtual work of the inertia forces [26],
and follows to
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Fig. 2. The axially moving beam in rotation.

Fig. 3. Comparison of tip deflection history for the axially moving beam without rotation
and in constant rotating speed.
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wherem and R are the mass and radius of rigid hub, and I and 0 are 3� 3
identity and null matrices, respectively.

For the spacecraft as a rigid-flexible multibody system, the rigid joint
between the axially moving beam and the rigid hub is defined by the
constraint equations, one can write

Φ ¼

2
6666666666664

r1 � ri þ rj
2

� Ru

∂rT1
∂x

�
rj � ri

�
∂rT1
∂y

�
rj � ri

�
∂rT1
∂x

v

3
7777777777775
¼ 0 (30)

where the subscript 1 denotes the first node of beam, that is, k ¼ 1. And
the thermal-dynamic equations that along with the associated constraint
equations are given by

MðtÞ€eþ CðtÞ _eþ KðtÞeþQðe; tÞ þΦT

eðeÞλ ¼ 0 ΦðeÞ ¼ 0 (31)

where e is the total vector of generalized coordinates which includes q
and q, M is the global mass matrix composed by M and the assembly of
Me, and C, K, and Q are respectively the assembly of element matrices Ce,
Ke, and the element elastic forces in Eq. (25), Φ is the constraint equa-
tions which contains Φ and the rigid body constraints [26], Φe is the
Jacobian of constraint, and λ is the Lagrangemultipliers [27]. The system
of Eq. (31) is a set of nonlinear differential-algebraic equations with
varying-time coefficients, which may be solved by the generalized-α
method [25].

2.2. Thermal analysis of boom

The axially moving boom modeled as a closed thin-walled tube, is
subjected to thermal shocking during deployment because of an incident
solar heat flux S0. Using the coupled thermal-structural analysis model,
the heat conduction equation of tube can be derived based on the prin-
ciple of conservation of energy and the assumptions given in Ref. [29],
one gets

ρc
∂T
∂t

� kx
∂2T
∂x2

� kφ
R2

∂2T
∂φ2

þ σTεT
h

�
T4 � T4

∞

� ¼ αsS
h

δ sin φ (32)

where ρ is the mass density, c is the specific heat, kx and kφ are respec-
tively the thermal conductivity along the axial and circumferential di-
rections, R and h shown in Fig. 1 are respectively the radius and wall
thickness of tube, σT is the Stefan-Boltzmann constant, εT is the emis-
sivity, T∞is the surrounding temperature that is assumed to be 0 K, αs is
the absorptivity, and S is the norm of the projected solar heat flux S
shown in Fig. 1, which is dependent of the structural deformations and
motions, and can be obtained by

S ¼ �S0⋅
rz
jrzj (33)
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where rz is the slope vector along z-direction on the beam cross section,
and the parameter δ is given by

δ ¼
(
1; 0<φ< π

0; �π � φ � 0
(34)

that is, the upper part of the tube's outside surface is heated when δ is the
unity, as shown in Fig. 1.

To solve Eq. (32), the term including δ is considered by Fourier series
expanded technique, which is expressed as [8].

δ sin φ � 1
π
þ 1
2
sin φ (35)

and the temperature distributions along the circumferential and axial
directions are approximated by means of the trigonometric functions and
the linear interpolation functions, respectively. The temperature of an
arbitrary point on the beam element can then be written as [8].

T ¼ ½ 1� ξ ξ �
"
T ð0Þ
k þ T ð1Þ

k sin φþ T ð2Þ
k cos φ

T ð0Þ
kþ1 þ T ð1Þ

kþ1 sin φþ T ð2Þ
kþ1 cos φ

#
(36)

where ξ is the axial non-dimensional coordinate given in Eq. (7), k is the
node number, T(0) is defined as the average temperature, and T(1) and T(2)

are the perturbation temperatures.
Substituting Eqs. (35) and (36) into Eq. (32), then decoupling the

obtained equation by means of the weighted residual method, and using
1-ξ and ξ as the weight functions, respectively, one can obtain the
element equations in a matrix form of the average temperatures,

CT
_T
ð0Þ þ ½KxðtÞ þ KcðtÞ þ KrðTð0Þ Þ �Tð0Þ ¼ RTðqÞ (37)

where the constant coefficient CT is the element capacitance matrix, the



Fig. 6. Configuration of the spacecraft wi

Fig. 5. Deploying speed profile of the axially moving boom.

Table 1
Thermal-structural data for thin-walled tube.

Parameter Value Units

R 9.53 � 10�3 m
h 2.03 � 10�4 m
E 152.18 GPa
ν 0.3 –

ρ 8026 kg/m3

c 502 J/kg.K
kx 16.6 W/m.K
kφ 16.6 W/m.K
αs 0.5 –

αT 1.69 � 10�5 1/K
εT 0.13 –

S0 1350 W/m2

Fig. 4. Comparison of tip deflection history for a cantilevered and non-moving beam
under the solar heat flux.
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time-dependent coefficients Kx and Kc are the element conductance
matrices related to heat conduction along the axial direction, the
temperature-dependent coefficient Kr is generated by radiation heat
transfer [30], and the vector RT that is related to the structural de-
formations and motions is the heat loading due to the solar heat flux,
which are, respectively, given by

CT ¼ ρc
6

�
2 1
1 2

�
; Kx ¼ kx

lðtÞ2
�
1 �1
�1 1

�
; (38)

Kc ¼ ρc
6

_lðtÞ
lðtÞ

��3nþ 3k � 2 3n� 3k þ 2
�3nþ 3k � 1 3n� 3k þ 1

�
; (39)

Kr ¼ σTεT
2h

"
T ð0Þ
k 3 0

0 T ð0Þ
kþ13

#
; RT ¼ αsS

2πh

�
1
1

�
(40)

It should be noted that Kc involves the axially moving speed and the node
number. Using (1-ξ) sinφ, ξ sinφ, (1-ξ) cosφ, and ξ cosφ as the weight
functions, respectively, one obtains

CT
_T
ð1Þ þ �

Kx þ Kc þ Kφ þ 4Kr

�
Tð1Þ ¼ π

2
RT (41)

CT
_T
ð2Þ þ �

Kx þ Kc þ Kφ þ 4Kr

�
Tð2Þ ¼ 0 (42)

where the constant coefficient Kφ is the element conductance matrix
related to heat conduction along the circumferential direction,

Kφ ¼ kφ
6R2

�
2 1
1 2

�
(43)

The boundary conditions of boom are the constant temperature 290 K
and the heat insulation at the rigid joint and the tip mass, respectively.
Finally, Eq. (37) as a set of non-linear equations can be solved by means
of the Wilson-θ method together with the Newton-Raphson iteration
[30]. The perturbation temperatures T(1) in Eq. (41) are then calculated
by substituting the obtained average temperatures T(0) into the element
matrix Kr, and the perturbation temperatures T(2) are not evaluated due
to no thermal loading in Eq. (42). Especially, the thermal-dynamic
coupling analysis is performed by solving interactively Eqs. (31), (37)
and (41) in each time step.

3. Validation

In order to validate the proposed beam element without thermal ef-
fect, a classical dynamics analysis for an axially moving beam shown in
Fig. 2 is firstly considered. The beam has the mass density ρ¼ 2738.6 kg/
m3, Young's modulus E ¼ 68.335 GPa, cross-sectional area
A ¼ 1.4661 � 10�3 m2, area moment of inertia I ¼ 1.1073 � 10�8 m4,
and a constant moving speed 0.1 m/s. At the initial time, the beam length
th a spin rate 3 rpm at certain times.



Fig. 7. Tip z-deflection history of the axially moving boom. (a) Ω¼0 rpm; (b) Ω¼3 rpm.
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is 1.8 m, and the deflection at the tip is 5 mm. Fig. 3 shows the tip de-
flections over time for the beam without and in rotation, respectively.
The results obtained by the present approach using 10 beam elements
agree well with the methods in references.

To verify the presented thermal-dynamic analysis, another
128
comparison is shown in Fig. 4. The beam is a cantilevered and non-
moving tube structure, and subjected to solar heat flux. It has the
length 7.5 m, the initial temperature 290 K, and the tip mass 1.5 kg. And
the other properties are listed in Table 1, where ν is the Poisson's ratio,
and S0 is the norm of solar heat flux S0. As shown in Fig. 4, the response
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computed by the present approach using 10 beam elements is nearly the
same as that obtained by means of the analytical method in Ref. [4].

4. Numerical results

In this section, dynamic and thermal responses for the spacecraft
shown in Fig. 1, are presented to illustrate thermally induced dynamics of
a flexible deploying boom under the solar heat flux. For the rigid hub, the
height L is 2 m, the radius R is 1.5 m, and the mass m is 500 kg. For the
axially moving boom, the initial length is 0.1 m, the initial tip z-deflec-
tion is 1 mm, the initial temperature is 290 K, the tip mass is 1.5 kg, and
the other properties are given in Table 1. In addition, the moving speed
v(t) is shown in Fig. 5, the boom's length L(t) can then be obtained by
integrating the moving speed, and the boom length after deployment is
7.5 m. As shown in Fig. 5, the deploying boom has a constant acceleration
0.1 m/s2 for 0 � t � 2 s, a constant velocity 0.2 m/s for 2 � t � 37 s, a
constant acceleration�0.1 m/s2 for 37� t� 39 s, and a constant velocity
0 m/s for t � 39 s, that is, the deployment is stopped at 39 s.

The configuration at certain times for the spinning spacecraft with a
flexible deploying boom without thermal loading is shown firstly in
Fig. 6, in which the spin rate 3 rpm is applied on the spacecraft at the
initial moment. In order to illustrate the influence of the rigid hub
rotation to dynamic responses, the non-spinning spacecraft (Ω ¼ 0 rpm)
is also considered in the following. The deflection responses of the flex-
ible boom are described in the body coordinate system xyz, which can be
calculated by the transformation matrix between the local and global
components defined as

A ¼ �
u v

�
rj � ri

��
L
�

(44)

Fig. 7 shows the transverse vibration on z-direction of the boom
during and after deployment. It can be seen that the thermal loading has a
significant influence on the vibration responses, and the difference is
more and more obvious as the increasing of thermal loading. That is
because there is the thermal moment at the cross-section when the boom
is subjected to solar heat flux, which is related to the thermal elastic force
in Eq. (28). For the dynamic responses during deployment, the vibrations
are generated due to the small deflection at the initial moment, the
amplitude and the frequency are increased and decreased respectively
with the increasing of the boom's length, and there is no significant dif-
ference between Ω ¼ 0 rpm and Ω ¼ 3 rpm. For the dynamic responses
after deployment, the thermal flutter [1] is still demonstrated in Fig. 7(a)
for β ¼ 80�, which is similar to the results in Fig. 4, and can be obtained
only by the coupled thermal-structural analysis. The beat phenomenon
induced by the spin of spacecraft is also found in Fig. 7(b), but the
phenomenon is not obvious for the non-thermal loading.

Fig. 8 shows only the transverse vibration on y-direction for the boom
in rotation, because there is no y-deflection for the boom on non-spinning
spacecraft. In addition, the response for thermal loading β ¼ 0� is shown
Fig. 8. Tip y-deflection history of the ax
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only due to that there is almost no difference between β ¼ 80� and β ¼ 0�.
And there is no significant difference between the results with and
without thermal loading, due to that the boom's deformations induced by
the solar heat flux is only on the z-direction. In addition, there is no y-
deflection at the initial moment, thus the vibration responses during
deployment are caused by the rotation of rigid hub and the deployment
of flexible boom.

Fig. 9 shows the attitude angle of the rigid hub, which is evaluated by
the include angle between z-axis and Z-axis. For the non-spinning
spacecraft (Ω ¼ 0 rpm), a sign convention is established so as to define
positive and negative values for the attitude angle. The positive value is
that the angle is counterclockwise from Z-axis to z-axis in X-Z plane. The
direction that is opposite to it is considered negative. However, for the
spinning spacecraft, three coordinate direction angles are needed to
determine its attitude, which results in that the above sign convention
cannot be used. The attitude responses of rigid hub are caused by the
change of boom length and thermal elastic force. It is also obvious that
the thermal loading has a significant influence on the attitude dynamics
of spacecraft. For the attitude angle during the deployment of boom, the
amplitude of oscillation is remained increase over time. In addition, the
response shape in Fig. 9(a) is similar to that of z-deflection in Fig. 7(a),
and the beat phenomenon is also shown for the spinning spacecraft in
Fig. 9(b). Specially, the amplitude of attitude angle is not decreased with
the rotation of rigid hub by comparing these results between Fig. 9(a)
and (b).

Fig. 10 shows the thermal responses of average temperature T(0) and
perturbation temperature T(1) for some certain point on the axially
moving boom without rotation. The average temperature in Fig. 10(a) is
decreased gradually with increase of time, on the contrary in Fig. 10(b).
That is because the absorbed solar heat flux is less than the radiated
thermal energy through the outside surface of boom for the 80� solar
incident angle. However, the perturbation temperatures that cause the
thermal bending deformations are both increased over time. In addition,
the perturbation temperature for β ¼ 80�, as shown in Fig. 10(c), has a
small oscillation, which results in the thermal flutter phenomenon shown
in Fig. 7(a). For the response shape of node 3, there is obviously an in-
flection point, which is due to that the node 1 temperature is fixed at
290 K, and the distance between node 1 and node 3 is relatively near.

5. Conclusions

A new thermal-dynamic finite element in the frame of absolute nodal
coordinate formulation is developed for determining the thermally
induced dynamics of a spacecraft with the flexible deploying boom
subjected to a sudden solar heating. The longitudinal and transverse vi-
brations of an axially moving beam in large rotations and deformations
can be analyzed by means of the proposed element. In the equations of
motion, the mass, damping, and stiffness matrixes are all dependent of
time, and the coupling between rigid hub and flexible boom may be
ially moving boom for Ω ¼ 3 rpm.



Fig. 9. Attitude angle history of the rigid hub. (a) Ω¼0 rpm; (b) Ω¼3 rpm.
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easily achieved by the constraint equations. The present approach shows
a good performance by comparing the results with references.

Through the numerical results, it is found that the thermal loading has
a significant influence on the dynamic responses, and the amplitude and
frequency of dynamic response are respectively increased and decreased
with the deployment of boom. Thermal flutter is still shown for the large
130
solar incident angle by means of the coupled thermal-structural analysis
model. The beat phenomenon is obvious when the spinning spacecraft
subjected to thermal shock. In addition, there is a significant difference
between the nonrotating and spinning spacecraft for the dynamic re-
sponses after the deployment of boom.



Fig. 10. Average and perturbation temperatures history of the axially moving boom. (a)
β¼80º; (b) β¼0º; (c) β¼80º; (d) β¼0º.
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