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I. Introduction

T HE uncoupled and coupled thermal–structural analysis models
have been employed extensively to study thermally induced

vibrations of spacecraft appendages [1–5]. The uncoupled model
assumes that the absorbed solar flux for the structure surface is not
affected by thermally induced motions (i.e., neglecting the coupling
effect between structural deformations and incident heating);
however, the coupled model includes the effect [1]. Furthermore,
thermal flutter that is oscillations of increasing amplitude can be
demonstrated by the coupled model and the stability analysis [1,6],
and the unstable vibrations may cause spacecraft to experience such
large motions and be unable to complete the intended missions [1].
For thermal–structural analysis, the heat conduction equation in
thermal analysis is established based on the conservation of energy
with neglect of the work done by external forces and the kinetic
energy. According to the thermoelasticity theory, however, the strain
rate coupling term exists in the heat conduction equation because the
work should be included in the process of deriving the equation [7,8].
That is, the coupling effect between strain and temperature fields is
considered in the thermoelastic–structural analysis.
This Note focuses on the investigation of stability of thermally

induced vibrations and thermally induced dynamical behaviors of a
space thin-walled beam subjected to thermal shock from solar flux
using the thermoelastic–structural analysis. First, the heat conduction
equation with the coupling effects mentioned in the preceding
paragraph is derived by applying the principle of conservation of
energy, the second law of thermodynamics, and Fourier’s law in heat
transfer; and the equation ofmotionwith thermal effect is obtained by
using Hamilton’s principle and the approximating displacement
field. Thermoelastic–structural coupling equations are then solved by
an analytical approach similar to Ref. [1], which is to have a better

comparison between the presented analysis and the previous analysis
in Ref. [1]. Finally, numerical results are conducted to illustrate the
difference between thermoelastic–structural and thermal–structural
analyses.

II. Thermoelastic–Structural Analysis

Thermally induced vibrations of a cantilevered thin-walled beam
subjected to solar flux S0 for time t ≥ 0 (see Fig. 1) are studied by
thermoelastic–structural analysis. In thermoelastic and structural
analyses, the assumptions in Ref. [1] about thermal analysis and the
Euler–Bernoulli beam theory are employed, respectively.

A. Derivation to Thermoelastic–Structural Equations

According to the first law of thermodynamics, for the heating
elastic body per unit volume, the expression of conservation of
energy is given by

da� di � δq� δg (1)

where da and di are the increase of internal and kinetic energies, and
δq and δg are the energy obtained by heat transfer and the work done
by external forces, respectively. Based on the elasticity theory, Eq. (1)
can be rewritten as

da − δq � σxdεx (2)

where σx and εx are the normal stress and strain along the x axis,
respectively.
According to the definition of entropy in the second law of

thermodynamics [9], δq � Tde, Eq. (2) may then be expressed as

da � Tde� σxdεx (3)

where T is the absolute temperature, and e is the entropy per unit
volume. Defining the Helmholtz function f � a − Te as given in
thermodynamics [9], differentiating this function and then using
Eq. (3) yields

df � σxdεx − edT (4)

Furthermore, f as a state function can be defined as f � f�εx; T�.
Differentiating the state function, and comparing with Eq. (4), one
gets

∂f
∂εx

� σx (5)

∂f
∂T

� −e (6)

In the linear elastic case, Hooke’s law with temperature effect
states

σx � Eεx − EαT�T − T0� (7)

where E is Young’s modulus, αT is the coefficient of thermal
expansion, and T0 is the initial temperature as the reference value.
Substituting the stress expression into Eq. (5) and then integrating
this equation yields

f � 1

2
Eε2x − EαT�T − T0�εx � f0�T� (8)
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where f0 is the Helmholtz function that is independent of strain.

Substituting Eq. (8) into Eq. (6) leads to

e � EαTεx −
∂f0
∂T

(9)

Combining Eq. (9) and the definition of the specific heat at

constant volume cV [9], one obtains

cV � Tde

ρdT

����
εx�const

� −
T

ρ

∂2f0
∂T2

(10)

where ρ is themass density. Then, integrating Eq. (10) with respect to

T and substituting this equation into Eq. (9), one has

e � EαTεx � ρcV ln
T

T0

(11)

Thus,

δq

dt
� T

de

dt
� EαTT _εx � ρcV _T (12)

where _εx and _T are the rate of strain and temperature, respectively, and

the constant-volume specific heat cV can be replaced by the specific

heat c for solids [9].
For the very small segment of thin-walled beam (see Fig. 1c), the

energy per unit time obtained by heat transfer is

δq

dt
dV � Qφ −Qφ�dφ �Qs −Qr (13)

where dV is the volume of a small segment. According to Fourier’s

law, the energy transfer by heat conduction can be defined as

Qφ −Qφ�dφ � k

R2

∂2T
∂φ2

dV (14)

where k is the thermal conductivity. The absorbed solar flux Qs and

the radiant heat flux Qr are given by

(
Qs � δ�αsS sinφ��Rdφdx�
Qr � σTεTT

4�Rdφdx� (15)

where αs is the surface absorptivity, σT is the Stefan–Boltzmann
constant, εT is the surface emissivity, S is the projection of solar flux
S0 onto the line that is perpendicular to the beam axis (see Fig. 1a),
and the parameter δ is used to define whether the tube surface suffers
the solar flux (see Fig. 1b), that is,

δ �
(
1; 0 ≤ φ ≤ π

0; −π < φ < 0
(16)

Finally, the thermoelastic equation can be obtained by using
Eqs. (12–16), as

∂T
∂t

−
k

ρcR2

∂2T
∂φ2

� σTεT
ρch

T4 � EαT
ρc

T _εx �
αsS

ρch
δ sinφ (17)

in which the rate of strain can be calculated from the following
structural analysis. However, it is removed in thermal–structural
analysis [1,6] due to the fact that the terms di and δg are neglected
in Eq. (1).
For the structural analysis, the axial and bending deformations of

the cantilevered beam are described approximately by the shape

functions Na � x∕l and Nb � 0.5�3x2∕l2 − x3∕l3�, respectively.
The displacements of one point on the beam centerline can then be
written as

(
u�x; t� � Na�x�U�t�
w�x; t� � Nb�x�W�t� (18)

where U and W are the displacements at x � l, and l is the beam
length. Based on the displacement field and using Hamilton’s
principle, the structural equations of the thin-walled beam with tip
mass m are obtained as

(
Ma

�U� KaU � Fa�t�
Mb

�W � KbW � Fb�t�
(19)

where 8>><
>>:
Ma � ρA

R
l
0 N

2
a dx�m

Ka � EA
R
l
0 N

02
a dx

Fa � EαT
R
V N

0
a�T − T0� dV

(20)

and 8>><
>>:
Mb � ρA

R
l
0 N

2
b dx�m

Kb � EIy
R
l
0 N

0 02
b dx

Fb � −
R
l
0 N

0 0
b MT�x; t� dx

(21)

in which the superscript 0 refers to differentiation with respect
to x, Iy is the cross-section moment of inertia, andMT is the thermal

moment [1,6].
Thermoelastic–structural analysis of the space thin-walled beam

under solar flux can be performed by solving the coupling equations
between Eqs. (17) and (19).

B. Solution to Thermoelastic–Structural Equations

To solve Eq. (17), the temperature distribution along the circum-
ferential direction is approximated by means of a trigonometric
function [1,3]:

T�x;φ; t� � �T�x; t� � Tm�x; t� sinφ (22)

c) Heat flux of segment Rd

a) Cantilevered beam with tip mass

b) Cross-section A-A
Fig. 1 Space thin-walled beam subjected to solar flux.
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where �T is the average temperature, and Tm is the perturbation

temperature. And the term including δ in Eq. (17) is considered by

Fourier series with neglect of higher-order terms:

δ sinφ � 1

π
� 1

2
sinφ (23)

Substituting Eqs. (22) and (23) into Eq. (17), then decoupling this

equation by the weighted residual method, and using 1 and sin φ as

the weight functions, respectively, one obtains

8>>>><
>>>>:

∂ �T
∂t

�σTεT
ρch

�T4�EαT
ρcl

�T _U−
EαTRN

00
b

2ρc
Tm

_W� αsS

πρch

∂Tm

∂t
�
�

k

ρcR2
�4σTεT �T3

ρch

�
Tm�

EαT
ρcl

Tm
_U−

EαTRN
00
b

ρc
�T _W� αsS

2ρch

(24)

To obtain the analytical solution for Eq. (24), we assume that the

temperatures in these terms including _U and _W in Eq. (24) are

constants [7,8], in which the perturbation temperature is the initial

value 0 K because it is far smaller than the average temperature, and

the average temperature is the steady-state value �Tss [1,6]. In

addition, the thermal characteristic time τ given in Ref. [1] is also

used. Then, for the coupled models, Eq. (24) is rewritten as

8>>><
>>>:
∂ �T
∂t

� σTεT
ρch

�T4 � EαT
ρcl

�Tss
_U � αsS0

πρch
cos�β� θ�

∂Tm

∂t
� 1

τ
Tm −

EαTRN
0 0
b

ρc
�Tss

_W � αsS0
2ρch

cos�β� θ�
(25)

Because the purpose of this Note is to compare z-displacement

responses with Ref. [1], in Eq. (25), one needs only to calculate

Tm, whereas �T is not considered. The perturbation temperature

equation, as a first-order linear differential equation, can be solved

to yield

Tm � e−�t∕τ�
Z

t

0

e�p∕τ�
�
EαTRN

0 0
b

ρc
�Tss

_W � αsS0
2ρch

cos�β� θ�
�
dp

(26)

where θ � −∂w∕∂x. Then, thermal moment in Eq. (21) can be

obtained as

MT � EIyαT
R

Tm (27)

With damping, the equation of motion of tip z displacement

becomes

�W � 2ζω0
_W � ω2

0W � Fb�t�
Mb

(28)

where ω0 �
����������������
Kb∕Mb

p
is the first-mode natural frequency, and ζ is

the damping ratio. The applied load induced by thermal moment

is expressed as

Fb�t� � e−�t∕τ�
�
C1

Z
t

0

e�p∕τ� dp� C2

Z
t

0

e�p∕τ�W dp

� C3

Z
t

0

e�p∕τ� _W dp

�
(29)

where

8>>>>>>>>><
>>>>>>>>>:

C1 � −
EIyαTαsS0 cos β

2ρchR

Z
l

0

N 0 0
b dx

C2 � −
EIyαTαsS0 sin β

2ρchR

Z
l

0

N 0
bN

0 0
b dx

C3 � −
E2α2TIy �Tss

ρc

Z
l

0

N 0 0
b
2 dx

(30)

After the Laplace transform for Eq. (28), one has

b�s�W�s� � 1

s

C1

Mb

(31)

where b�s� is the characteristic equation that is used to determine the

stability of the solution:

b�s� � s3 �
�
2ζω0 �

1

τ

�
s2 �

�
ω2
0 �

2ζω0

τ
−
C3

Mb

�
s�

�
ω2
0

τ
−
C2

Mb

�
(32)

A dimensionless b�s� is defined as

�b�s� � �s3 � �2ζ � κ��s2 � �1� 2ζκ � μ��s� �κ � κη� (33)

where

�s � s

ω0

; κ � 1

ω0τ
; η � −

C2

Kb

τ; μ � −
C3

Kb

(34)

Based on the Routh–Hurwitz stability criterion, the condition for a

stable response is

η <
2ζκ2 � 4ζ2κ � 2ζ � �2ζ� κ�μ

κ
(35)

By comparing with Ref. [1], it can be found that the term including

μ in Eq. (35) is added due to the thermoelasticity coupling effect. And

the tip z-displacement responses W�t� can be calculated by

numerically solving the equation obtained by means of the inversion

of the Laplace transform for W�s�.

Table 1 Four kinds of coupling analysis

models

Analysis model C1 C2 C3

Coupled thermoelastic–structural
p p p

Coupled thermal–structural
p p

–

Uncoupled thermoelastic–structural
p

–
p

Uncoupled thermal–structural
p

– –

Table 2 Parameters of the

thin-walled beam

Parameter Value

S0 1350 W∕m2

αs 0.5
l 7.5 m
R 9.53 × 10−3 m
h 2.03 × 10−4 m
EIy 84 N ⋅m2

αT 1.69 × 10−5 K−1

ρ 8026 kg∕m3

m 1.5 kg
c 502 J∕�kg ⋅ K�
k 16.6 W∕�m ⋅ K�
εT 0.13
σT 5.67 × 10−8 W∕�m2 ⋅ K4�
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III. Numerical Results

In the numerical simulations, thermally induced vibrations of the

thin-walled beam under solar flux are analyzed by four kinds of

models, as shown in Table 1, in which the coupled thermoelastic–

structural and thermal–structural models consider the coupling

effect between structural deformations and absorbed solar flux, and

the uncoupled models neglect the effect. In addition, the symbolsp
and – denote that the term including the constant C1, C2, or C3 in

Eq. (29) is retained and removed for the different coupling analysis
models, respectively.
Numerical results are first conducted to compare the difference in

the stability criterion between the coupled thermoelastic–structural
analysis and the coupled thermal–structural analysis. Based on the
results of stability analysis, the tip z-displacement responses of the
cantilevered beam at some certain solar incident angles β are then
calculated by different models. The data used in the numerical
calculations are listed in Table 2.

A. Stability Criterion

Using the stability criterion give in Eq. (35), it can be found that the
system is always stable if the uncoupled models are adopted due to
C2 � 0 (see Table 1). However, the system may be unstable if the
coupled models are employed and the design is above a stability
boundary, as shown in Fig. 2. The three curves for the
nondimensional parameter μ � 0 are the same as Ref. [1], that is,
the system is analyzed by the coupled thermal–structural model. The
other nine curves for μ ≠ 0, which are the stability boundaries of
coupled thermoelastic–structural analysis, in which μ with the
different solar incident angle β is calculated using Table 2 data, have a
significant difference with the coupled thermal–structural analysis
when the system has a low damping ratio ζ and large nondimensional
parameter κ. The results indicated that the thermoelasticity coupling
effect plays an important role in the dynamics analysis of space thin-
walled beam.

B. Dynamic Responses

Figure 3 presents the stable and unstable responses for two sets of ζ
and β parameters chosen based on the stability criterion in Fig. 2. It is

Fig. 2 Stability boundaries for the different ζ and μ.

Fig. 3 Comparison of the dynamic responses for the two coupled

models. Fig. 4 Dynamic responses of the four kinds of analysis models.
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clear that the dynamical characteristic of the thermally induced
vibrations predicted by the coupled thermoelastic–structural analysis
may be different from the coupled thermal–structural analysis. But
the difference for dynamic responses within a short time is not
significant.
To investigate the difference for the dynamic responses between

thermoelastic–structural and thermal–structural analyses, without
loss of generality, the responses of the two coupled models should
both be stable or unstable, as shown in Fig. 4. It is observed that there
is no significant difference in both uncoupled and coupled analyses
within 400 s. In fact, the responses are computed at 4000 s; however,
the differences for amplitude and phase become more obvious with
the increase of time.
Moreover, to illustrate the physics cause of thermal flutter, Fig. 5

shows the forceFb in Eq. (29) and the tip z displacementW together.
The parameters ζ � 0.0001 and β � 8 deg are selected because
thermal flutter can be observed only by the coupled thermal–
structural analysis, and the responses of the other three analyses are
all stable. As can be seen from Fig. 5, an obvious phase difference
exists only in the coupled thermal–structural analysis, which results
in the sum of work done by the thermal moment and damping force
being positive, and then the amplitude of the vibrationwould increase
continuously.

IV. Conclusions

Thermoelastic–structural analysis of a space thin-walled beam
under solar flux is developed to illustrate the differencewith thermal–
structural analysis. By comparing the results of the two analyses, it is
found that the difference for the stability boundaries may be
significant; however, the dynamic responses within a short time are
not obvious. Moreover, the physics cause of thermal flutter is the fact
that a phase difference exists between force and displacement
responses. The analytical method presented in this Note can obtain a
more accurate stability criterion of the thermally induced vibrations
of spacecraft appendages.
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