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a b s t r a c t 

A new type of metamaterial element is proposed to possess time-dependent effective inertial mass, and 

proved to be valid for the design of the space-time lattice metamaterial that enables non-reciprocal wave 

propagation. The cell structure is a three-body dynamic system, consisting of a primary body plus two 

additional bodies that move along the circular orbit. The translational momentum contributed by the 

orbiting bodies varies periodically depending on their temporal phases, accounting for the time-driven 

inertial mass observed macroscopically, as verified by the rigorous theoretical derivation. Based on the 

time-varying mass element, we present the design of the lattice metamaterials with inertial mass that 

varies periodically in both space and time. Non-reciprocal wave phenomena due to the wave-like modu- 

lation of mass are demonstrated by use of the Bloch-based method and the effective-mass representation. 

The influence of the modulating frequency and amplitude on the asymmetric bandgap is analyzed. The 

proposed time-varying metamaterial with the non-reciprocal wave behavior is expected to open a new 

avenue towards unprecedented control over waves and vibrations. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Reciprocity of wave propagation is a fundamental principle in

lassical linear-wave systems. It states that the relationship be-

ween an oscillating source and the resulting response at a receiver

s unchanged if one interchanges the source and the receiver. Non-

eciprocal wave propagation, which means the breaking of this

orm of symmetry ( Fink et al., 20 0 0; Miniaci et al., 2017 ), is be-

oming desirable because it offers greater possibilities for unprece-

ented control over waves and vibrations, in applications such as

ne-way filters and isolation, full-duplex sound communication,

tc. ( Cummer et al., 2016; Fleury et al., 2015 ). The non-reciprocity

s also of theoretical significance in the context of the symmetry

reaking of physical laws under time reversal ( Fleury et al., 2015;

hu et al., 2014 ). A number of proposals for non-reciprocal wave

ransportation have been put forward recently. The breaking of

eciprocity has been observed in strongly nonlinear mediums with

he subharmonic wave generation ( Gliozzi et al., 2018; Liang et al.,

010; Liang et al., 2009; Popa and Cummer, 2014 ), as well as in a

air of gain and loss materials ( Gu et al., 2016 ). It has also been

ttained by applying the fluid flow to acoustic fields in a way that

imics the Zeeman effect in electromagnetism ( Fleury et al., 2014 ).
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nother important route to the wave non-reciprocity, which is the

nterest of this work, is one that relies on the modulated mediums

ith time-varying material properties. 

Composite materials or structures modulated in space are

haracterized by spatially inhomogeneous material properties. If

aterial parameters are shaped further depending on time, the

esulting space-time modulation may form a wave-like field pat-

ern, which behaves as a biasing load that breaks the time-reversal

ymmetry. In the last century, wave scattering by the space-time

odulation has been examined in the context of parametric

mplification ( Cassedy, 1967; Cassedy and Oliner, 1963; Slater,

958 ) and “dynamic materials” ( Lurie, 2007 ). Nowadays, intensive

tudies are being devoted to the unidirectional wave propagation

n spatiotemporal periodic structures ( Milton and Mattei, 2017;

assar et al., 2017a; Shui et al., 2015; Swinteck et al., 2015; Trainiti

nd Ruzzene, 2016; Vila et al., 2017 ). Asymmetric bandgaps can

e targeted, within which the wave can propagate in only one

irection, but would be prohibited in the opposite direction. The

odulated materials have also shown an explicit connection with

he Willis dynamic mediums ( Nassar et al., 2017b ); the latter

s critical to the control of elastic waves ( Milton et al., 2006;

orris and Shuvalov, 2011; Willis, 1981 ). The specific Willis terms

eaturing stress-velocity and momentum-strain couplings were 

ound to be relevant to the space-time modulation of material

arameters. Exotic wave phenomena, fascinating wave-controlling
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devices, and surprising correlations among different physical

phenomena can be highly expected from the modulated medi-

ums in future studies. Yet, there is another important issue that

needs and deserves great attention, which is the issue of the

technological realization of modulated mediums. Recently, rapid

developments have been made regarding this challenging problem.

The time-varying modulation is potentially feasible by means of

programmable piezoelectric components ( Casadei et al., 2012;

Chen et al., 2016; Chen et al., 2014; Kherraz et al., 2016 ), shock

waves in soft materials ( Reed et al., 2003 ), magneto-rheological

elastomers subject to a magnetic field ( Danas et al., 2012 ), the

photo-elastic effect ( Gum p et al., 2004 ), and so on. These models

are most likely responsible for the stiffness modulation. However,

it is less apparent how one might create a time-driven inertial

mass through these approaches. In this work, we intend to design

a completely new, comprehensive, and efficient strategy for the

design of time-varying inertial mass. 

Inertial mass measures the relationship between the momen-

tum and velocity. In natural materials, it is a positive constant,

and not varying over time. Emerging two decades ago, the meta-

material concept offers a new way for making wave functional-

ities not found in nature, e.g., “negative” mass and/or “negative”

modulus. The metamaterials are a special type of composite mate-

rials with artificial microstructures ( Craster and Guenneau, 2013 ).

From the mechanics point of view, they can be conceptually un-

derstood as being “composed of” a group of degrees of free-

dom (DOFs), in which some are observable, while others can be

seen as the hidden. The metamaterial concept is the way that

one defines the system dynamics via only the observable DOFs

( Bobrovnitskii, 2013; Zhou and Hu, 2009; Zhou et al., 2012 ). Ac-

cordingly, effective material parameters that are redefined in terms

of the seen DOFs can account entirely for the effect of the hid-

den DOFs. It means that, one could design purposely hidden mi-

crostructures to acquire targeted properties. For example, intro-

ducing the dipole resonance into cell structures has led to the

negative inertial mass ( Liu et al., 20 0 0 ). The negative sign of in-

ertial mass discloses the overwhelming effect of out-of-phase in-

ertial motion of the internal DOF ( Huang and Sun, 2009; Milton

and Willis, 2007; Yao et al., 2008 ). Metamaterials have also been

engineered to have anisotropic inertial density, or the inhomoge-

neous density in space in order to control the wave trajectory as

desired ( Christensen et al., 2015; Cummer et al., 2016; Ma and

Sheng, 2016; Miniaci et al., 2018; Mousavi et al., 2015 ). In the

present work, we attempt to extend the metamaterial concept to

the design of time-dependent inertial mass, which has rarely been

explored previously. Past time-invariant metamaterials dictate the

common fact that they are “static” without external loadings, so

that their effective parameters are irrelevant to the time change.

It is intuitively understood that the cell structure of modulated

metamaterials should not be at rest even without external load-

ings if we are to require their inertial mass to vary in time. Fol-

lowing this idea, we have designed a new type of metamaterial

element with “dynamic” cell structures, which will be illustrated

in Section 2 . Effective inertial mass of this new metamaterial will

be formulated, which is found to be relevant to the time, yet it

still follows the Newton’s second law of motion. Deeper physical

insight into the time-dependent inertial mass will be also pro-

vided. In Section 3 , the non-reciprocal wave phenomena will be

explored in modulated metamaterials composed of the “dynamic”

cells connected each other by springs of constant stiffness. Accord-

ing to the effective-mass representation, the Bloch-based method

will be adopted for the dispersion estimation of the space-time

lattice metamaterial. The condition for the emergence of asymmet-

ric bandgaps and the effect of modulating parameters will be an-

alyzed by numerical examples. Concluding remarks are outlined in

Section 4 . 
e  
. Elementary structures with time-varying inertial mass 

.1. Geometry of the model 

Consider a rigid body of mass m 0 , which is constrained to slide

n a one-dimensional motionless track, as shown in Fig. 1 . Ar-

anged symmetrically above and below the m 0 -body are two slid-

ng tracks, which rotate with a constant angular frequency ω r . The

pinning axis is perpendicular to the motionless track and across

he center of the body m 0 . The distance between the centers of ro-

ation of the top and bottom tracks is 2 d . Another two rigid bodies

f the same mass m 1 are placed on the rotating tracks; one is lo-

ated on the top and the other on the opposite side of the bottom.

hey are pin-connected to the primary body m 0 by rigid and mass-

ess bars of length l . Ensure that the direction of gravity coincides

ith the spinning axis, so that the gravitational force of all bodies

eed not be taken into account in our analysis. 

To describe the motion of the three rigid bodies, we introduce

wo coordinate systems: a fixed inertial system of coordinates [ X,

, Z ], and a moving system of plane coordinates ( x, y ). In the fixed

ystem, the X axis is set along the motionless track and the Z axis

oincides with the spinning axis. At time t , the m 0 -body, when

ubject to an external force F ( t ), is located at [ U 0 ( t ), 0, 0], where

 0 ( t ) is its displacement, satisfying U 0 ( t = 0) = 0. Unit vectors e x
nd e y for the moving system ( x, y ) are set along and perpendic-

larly to the rotating tracks respectively, and the center of rota-

ion is taken as the coordinate origin. Coordinates of the orbiting

asses can be expressed as ( r T , 0) and (- r B , 0) in the moving sys-

em, where r T and r B stand for their distances to the origin. With-

ut loss of generality, we assume that the x and y axes coincide

ith the X and Y axes at the initial time t = 0. In this scenario, the

oordinates of orbiting bodies in the fixed system can be expressed

s [ r T cos ( ω r t ), r T sin ( ω r t ), d ] and [ − r B cos ( ω r t ), −r B sin ( ω r t ), −d ]. 

.2. Definition of effective time-varying inertial mass 

Under an arbitrary external force F , the m 0 -body undergoes

he displacement U 0 , which is relevant to the complex interaction

mong bodies. Our strategy is to derive theoretically the explicit

elation between F and U 0 by considering orbiting bodies as the

idden microstructure. The analytic expression of effective mass

 eff( t ) can then be retrieved by casting the relation into the form

f Newton’s equation F = d[ m eff (t) ̇ U 0 ] / d t . Following this concept,

e begin with the equilibrium equation of the m 0 -body 

 − F T 
r T cos ( ω r t ) − U 0 

l 
− F B 

r B cos ( ω r t ) + U 0 

l 
= m 0 ̈U 0 , (1)

here F T and F B are the forces in the connecting bars. Eq. (1) in-

olves the observable fields F and U 0 , as well as the internal fields

 T , F B , r T , and r B . Next, effort s are made to eliminate the internal

elds, as described in detail in Appendix A . Eventually, under the

ssumption that the displacement U 0 is infinitely small in mag-

itude compared to r T and r B , the equilibrium Eq. (1) can be ex-

ressed via F and U 0 only, given by 

 = 

[
m 0 + 2 m 1 cos 2 ( ω r t ) 

]
Ü 0 − 4 m 1 

˙ U 0 ω r sin ( ω r t ) cos ( ω r t ) . (2)

t is interesting to find that this formula can be rearranged in ac-

ordance with the form of Newton’s equation 

 = d P t / d t, P t = m eff ( t ) ˙ U 0 , (3)

here P t denotes the system momentum responded to the force F ,

nd the effective mass m eff( t ) is given by 

 eff ( t ) = m 0 + 2 m 1 cos 2 ( ω r t ) . (4)

he above result means that the three-body dynamic system is

quivalent to a single body, whose inertial mass m ( t ) varies
eff



J. Huang and X. Zhou / International Journal of Solids and Structures 164 (2019) 25–36 27 

Fig. 1. Schematic diagram of the proposed metamaterial element that exhibits time-varying inertial mass. The element consists of a rigid body of mass m 0 and two additional 

bodies of mass m 1 , interconnected by rigid and massless bars of length l . The m 0 -body is constrained to slide on a motionless track, while the sliding tracks on which the 

m 1 -bodies reside rotate at a constant angular velocity ω r . At an initial time (a), the m 0 -body is located at the coordinate origin and the rotating track is directed parallel to 

the motionless one. After an arbitrary instant t (b), the top and bottom tracks have been rotated with an angle of ω r t , and the m 0 -body may have an offset U 0 to the origin 

when subject to an external force F . 

Fig. 2. Effective inertial mass m eff( t ) of the three-body “dynamic” element plotted against the phase angle φ = ω r t in one time period of modulation. Sketched above the 

curve is the schematic top view of the three-body structure in five specific phases ϕ = 0, π /4, π /2, 3 π /4, and π . 

p  

o  

a

m

w  

p  

p  

q

 

c  

a  

b  

θ

m

T  

m

2

 

p  

fi  

t  

g  

t  

i  

d  

w  

s  

(  

t  

e  

t  

m  

t  

a  

o  

l  
eriodically depending on time in order to take into account the

rbiting effect of the m 1 -body. The effective mass Eq. (4) can be

lso written as 

 eff ( t ) = M 0 + M m 

cos ( ω m 

t ) , (5) 

hich is the summation of a constant mass M 0 = ( m 0 + m 1 ) and a

eriodic modulation of magnitude M m 

= m 1 . The modulation am-

litude is αm 

= M m 

/ M 0 by definition. ω m 

is the modulation fre-

uency, which is twice the rotation frequency, i.e., ω m 

= 2 ω r . 

Note that in Section 2.1 , it has been assumed that the x axis

oincides with the X axis. If the two axes are not parallel, forming

n angle ϕ0 instead, effective time-varying inertial mass can still

e defined, but Eq. (5) need be modified by adding a phase shift

0 = 2 ϕ0 to the time-varying part, and written ultimately as 

 eff ( t ) = M 0 [ 1 + αm 

cos ( ω m 

t + θ0 ) ] . (6) 

his equation acts as the general formula of time-varying inertial

ass of the three-body model. 
.3. Physical explanation of time-dependent inertial mass 

Fig. 2 shows effective inertial mass m eff( t ) plotted against the

hase angle ϕ = ω r t in one time period of modulation. Consider

ve different phases ϕ = 0, π /4, π /2, 3 π /4, and π . The schematic

op view of the three-body system illustrates the respective model

eometry. The result states that the temporal change of effec-

ive mass is linked to the change of the model geometry at var-

ous instants. To get a deeper physical insight into the time-

ependent mass, we consider a time-invariant three-body model,

herein the top and bottom tracks are "frozen" at those five in-

tants. In the case wherein the tracks are parallel to each other

 ϕ = 0), all bodies would move in exactly the same manner. Hence,

he total momentum is P t = ( m 0 + 2 m 1 ) ̇ U 0 , which results in the

ffective mass m eff = m 0 + 2 m 1 . This is also the case in which

he translational momentum of the system reaches the maxi-

um among all temporal phases. The other limiting case with

he minimum system momentum arrives when the two tracks

re oriented perpendicularly ( ϕ =π /2). Here, the contribution of

rbiting bodies vanishes and the total momentum is P t = m 0 
˙ U 0 ,

eading to the effective mass m eff = m 0 . In a general case of an
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Fig. 3. The instantaneous power input P total = P F + P M and P M in time domain, as 

well as the time rate of change of the total kinetic energy d( E total )/d t . 
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Fig. 4. The work done in time domain to maintain the constant rotation of the top 

and bottom tracks. 
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arbitrary angle ϕ, the X -component velocity of m 1 -bodies are

cos 2 (ϕ) ̇ U 0 , which can be readily derived considering their geomet-

ric relations. The total translational momentum is then obtained

as P t = [ m 0 + 2 m 1 cos 2 (ϕ) ] ̇ U 0 , which would lead to the same ef-

fective mass as in Eq. (4) . When ϕ = π /4 or ϕ = 3 π /4, we get

m eff = m 0 + m 1 . Now, it has become quite clear that effective inertial

mass of the dynamic system at some instant is the same as that

of the non-dynamic system with the corresponding model geome-

try at that instant. Effective inertial mass would change continually

and periodically over time if the top and bottom tracks are “un-

frozen” and rotated. One result of the rotation of the tracks is the

generation of Coriolis force and centripetal force acting on the m 1 -

body. However, the Coriolis force produces no effect on the trans-

lational momentum, as explained in Appendix A . In addition, the

influence of the centripetal force exerted from one body m 1 has

been entirely canceled out by the opposite forces from the other

body m 1 on the other rotating track. This explains why two oppo-

sitely arranged orbiting bodies are considered in the model. 

Next, let us analyze the energy that needs to be input to the

three-body system to achieve the time-varying mass. The energy

input to the system comprises two parts. The first part of the en-

ergy refers to the case without any external loadings. It is the work

done to the rotating tracks such that the m 1 -body initially at rest

acquires the kinetic energy to move circularly. The second part of

the energy input is for maintaining the constant angular frequency

ω r of the rotating tracks, when the m 0 -body is subject to the ex-

ternal excitation. To quantify this part of the energy, consider that

the main body undergoes the harmonic oscillation over time with

the displacement 

 0 ( t ) = 

ˆ U 0 sin ( ωt ) , (7)

where ˆ U 0 is the amplitude and ω is the oscillation frequency. Then,

the force F ( t ) applied to the main body and the moment of force

applied to the top and bottom tracks for maintaining the constant

rotation can be determined, as given in Appendix B . Let the rate of

work done by F ( t ) and the moment of force be denoted as P F and

P M 

, respectively. As an example, we choose the following param-

eters: d = 12 cm, l = 20 cm, m 0 = 30 g, m 1 = 15 g, ω r = 2 π rad/s, and

ω = 20 π rad/s. Fig. 3 shows the total instantaneous power input,

i.e., P total = P F + P M 

, as well as the time rate of change of the total

kinetic energy d( E total )/d t . Excellent agreement between P total and

d( E total )/d t can be found, which is indicative of energy conserva-

tion. The power input P needed to maintain the constant rotation
M 
f the top and bottom tracks is also plotted, which represents only

 small portion of the total energy. We further compute the net

ork done on the rotating tracks by integrating the power input

 M 

= 

∫ t 
0 P M 

dt , as presented in Fig. 4 . The result shows that the en-

rgy pumps in and is later taken out from the system. Notice that

here is no net work done on the rotating tracks, i.e., W M 

= 0, dur-

ng half of the rotation period. This means that it costs no energy

n total to maintain the constant rotation of the tracks. 

. Non-reciprocal wave phenomena induced by spatiotemporal 

odulation of inertial mass 

By proposing the three-body dynamic model, we have demon-

trated how to modulate the inertial mass in time. In this sec-

ion, we present the design of the lattice metamaterial whose in-

rtial mass is tailored to be periodically changed in both space and

ime. The Bloch-based method will be adopted for the computation

f dispersion diagrams of periodic metamaterials, allowing us to

dentify the non-reciprocal directional wave behavior, which occurs

hen the wave-like modulation is imposed. The effect of modu-

ating parameters on unidirectional bandgaps will be detailed by

umerical examples. 

.1. Configuration of space-time lattice metamaterials 

The space-time lattice metamaterial is assembled by infinite

hree-body elements, which are arranged in a straight line, and

rimary bodies in adjacent cells are separated with the distance a ,

nd connected by springs of the stiffness K , as schematically shown

n Fig. 5 . Every R elements are grouped into a super cell, acting as

he periodical unit of the modulated metamaterial. According to

he effective-mass representation, each cell structure behaves as a

igid body with the time-varying inertial mass. Based on the for-

ula (6) , we then denote the inertial mass m 

( r ) ( t ) of the r th ele-

ent in one super cell as 

 

( r ) ( t ) = M 0 

[
1 + αm 

cos 
(
ω m 

t + θ ( r ) 
0 

)]
, r = 1 , 2 , . . . , R, (8)

here the spatial modulation can be acquired due to the differ-

nt initial phase θ (r) 
0 

. Let the space and time period of modula-

ion be denoted by λm 

= Ra and T m 

= 2 π / ω m 

, respectively. They

ave constituted the “pump” wave with the velocity v m 

= λm 

/ T m 

,

hich is the core factor inducing the non-reciprocal wave phe-

omena ( Nassar et al., 2017a; Vila et al., 2017 ). In the following,
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Fig. 5. Schematic of the space-time lattice metamaterial composed of the time-varying mass and springs of constant stiffness K . Every R elements are grouped as a super 

cell, which is repeated in space with the periodicity Ra . Different initial biasing angles, assigned for different elements in the super cell, provide the spatial modulation of 

inertial mass, which together with the inherent time-varying property, constitute the space-time modulation that would lead to the non-reciprocal propagation of lattice 

waves. 

Fig. 6. Dispersion diagrams of the lattice system comprising two elements in each super cell with (a) and without (b) the temporal modulation. (c) The spatiotemporal field 

pattern of the modulated lattice. The modulating parameters αm = 0.15 and ω m = 0.2 ω 0 , and the initial phases θ (1) 
0 

= π and θ (2) 
0 

= 0 are used. 
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e will first introduce the method for the dispersion estimation

f the space-time lattice metamaterials, and then analyze the non-

eciprocal wave phenomena by numerical examples. 

The equation of motion generalized for the n th supercell can be

rouped as 

˙ 
 ( t ) ̇ u n + M ( t ) ̈u n + K 

( l ) u n −1 + K u n + K 

( r ) u n +1 = 0 , (9)

here u n = [ u (1) 
n , u (2) 

n , . . . , u (R ) 
n ] T is the set of displacements of pri-

ary bodies. M ( t ) is the corresponding mass matrix, and K, K 

( l ) ,

nd K 

( r ) are stiffness matrices associated to the supercell itself and

ts relationship to left and right neighboring cells, respectively. The

ispersion relation of the modulated superlattice can be estimated
y pursuing a plane wave solution 

 n ( t ) = a ( t ) e i ( ωt−nk λm ) , (10) 

here k is the wavenumber of the Bloch wave and a ( t ) is the mod-

lated amplitude, which is a periodic function of time, i.e., sat-

sfying a ( t ) = a ( t + T m 

). The function a ( t ) can be expanded as the

ourier series in the following form 

 ( t ) = 

∞ ∑ 

p= −∞ 

a p e 
ip ω m t , (11) 
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Fig. 7. The spatiotemporal field pattern and fundamental dispersion branch of the modulated metamaterial (with R = 3) for three different sets of initial phases: (a, b) 

θ (1) 
0 

= π/ 3 , θ (2) 
0 

= π , and θ (3) 
0 

= 5 π/ 3 ; (d, e) θ (1) 
0 

= π/ 8 , θ (2) 
0 

= π , and θ (3) 
0 

= 15 π/ 8 ; (g, h) θ (1) 
0 

= 0 , θ (2) 
0 

= π , and θ (3) 
0 

= 0 . (c, f, i) Dispersion curves of the corresponding 

non-modulated lattice metamaterial. 
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where a p is the coefficient of order p . It follows from Eq. (10) that

u n −1 ( t ) = e iμu n ( t ) , u n +1 ( t ) = e −iμu n ( t ) , (12)

where the normalized wavenumber μ= k λm 

has been defined.

Substituting Eq. (12) into (9) , and then following the procedure of

the Nassar and Vila’s studies ( Nassar et al., 2017a; Vila et al., 2017 ),

the quadratic eigenvalue equation can be obtained, the detailed

derivation of which is shown in Appendix C . The dispersion rela-

tions of the spatiotemporal superlattice can be attained by solv-

ing the eigenvalue problem for angular frequency ω in the given

wavenumber μ. 

3.2. Non-reciprocal wave phenomena in modulated metamaterials 

It is evident that the monatomic lattice ( R = 1) is a trivial model

of the non-reciprocity as the mass distribution in space is always
omogeneous. We begin our analysis with the diatomic model

 R = 2), in which each super cell contains two “dynamic” elements.

onsider the modulating parameters αm 

= 0.15 and ω m 

= 0.2 ω 0 for

ll elements and choose the set of initial phases as θ (1) 
0 

= π and
(2) 
0 

= 0 . Fig. 6 (a) shows the band diagrams plotted by the wave

umber μ as a function of the normalized frequency 	= ω / ω 0 ,

here ω 0 = 

√ 

K/ M 0 . The truncation order P = 1 is chosen in the

omputation. The filtering method proposed by Vila Vila et al.,

017 ) has been adopted to distinguish the fundamental mode

 p = 0) and the first-order branches ( p = −1, + 1), as marked in the

and diagram. The procedure to retrieve the fundamental branch

s exemplified here. By substituting (11) into (10) , we get the dis-

lacement field u n (t) = 

∑ ∞ 

p= −∞ 

a p e 
i [ ( ω+ p ω m 

) t−nμ] for the n th super-

ell. The fundamental branch has an amplitude that is related to

he leading term of p = 0. Hence, it can be identified by weight-

ng the magnitude of the zeroth-order eigenvector a 0 for each
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Fig. 8. The fundamental dispersion branch of the modulated metamaterial (with R = 3) having system parameters θ (1) 
0 

= π/ 3 , θ (2) 
0 

= π , θ (3) 
0 

= 5 π/ 3 , αm = 0.15 and three 

different modulating frequencies ω m / ω 0 = 0.1 (a), 0.15 (b), and 0.2 (c). 

Fig. 9. The fundamental dispersion branch of the modulated metamaterial (with R = 3) having system parameters θ (1) 
0 

= π/ 3 , θ (2) 
0 

= π , θ (3) 
0 

= 5 π/ 3 , ω m / ω 0 = 0.2 and three 

different modulating amplitudes αm = 0.1 (a), 0.15 (b), and 0.2 (c). 

b  

b  

t  

a  

p  

l  

t  

l  

m  

t  

i  

(  

s  

t  

p  

m  

w  

o  

w  

f  

e  

s  

s

 

t  

ω  

θ  

m  

t  

t  

f  

n  

fi  

s  

t  
ranch, and applying a filtering value to avoid plotting high-order

ranches. Other branches can be likewise retrieved using this fil-

ering method. Below, we focus mainly on the fundamental mode

s it usually stores a large portion of the system energy. As a com-

arison, Fig. 6 (b) shows the band structure of the non-modulated

attice ( ω m 

= 0), in which symmetric band gaps are opened due

o the spatial periodicity of inertial mass. When the time modu-

ation is added ( Fig. 6 (a)), they are split due to the time-driven

ode interaction. The upper gap results from the interaction of

he 0th order and the −1th order modes, while the lower one

s the result of the mode interaction of the 0th and + 1th orders

 Cassedy and Oliner, 1963 ). Nevertheless, the band structures are

till symmetric with respect to the forward and backward direc-

ions. To gain further insights, we illustrate the spatiotemporal field

attern of inertial mass in Fig. 6 (c). We can then understand sym-

etric dispersion branches from the overall standing-wave pattern,

hich is of the mirror symmetry if folded along the time axis. In

ther words, this kind of pattern impacts the forward and back-
 t  
ard waves equally as the standing wave is the superposition of

orward and backward travelling waves of equal amplitude. This

xample illustrates that more band gaps can be produced in the

pace-time diatomic lattice, yet they are still symmetric since the

ystem supports only the standing-wave modulation pattern. 

We continue to analyze wave dispersions of the lattice sys-

em with R = 3. Consider the modulating parameters αm 

= 0.15, and

 m 

= 0.2 ω 0 , and let the initial phases be θ (1) 
0 

= π/ 3 , θ (2) 
0 

= π and
(3) 
0 

= 5 π/ 3 . Fig. 7 (a)–(c) show the space-time field patterns of

ass and dispersion diagrams of the fundamental branch in both

he presence and absence of time modulation. Note that these ini-

ial phases have been chosen specifically so that the phase dif-

erence between any two adjacent elements remains the same,

amely 
θ0 = 2 π /3. Consequently, the field pattern shows the pro-

le of the backward traveling wave, which breaks the spatial inver-

ion symmetry, as shown in Fig. 7 (a). This has led to the bandgaps

hat can only be observed in the forward direction due to the

ime-driven mode interaction ( Fig. 7 (b)). It means that only the
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backward wave propagation is allowed at the gap frequencies.

Fig. 7 (d) shows the field pattern for a different set of initial phases

θ (1) 
0 

= π/ 8 , θ (2) 
0 

= π , and θ (3) 
0 

= 15 π/ 8 , which are designed in

such a way that the backward modulation wave is superimposed

by a weak modulation of the forward one. Accordingly, in addition

to the gap opened in the positive wave-vector space, a narrower

gap is created in the negative one ( Fig. 7 (e)). In another case where

any two initial phases are chosen as the same, e.g., θ (1) 
0 

= θ (3) 
0 

= 0 ,

and θ (2) 
0 

= π , the standing-wave field pattern will be recovered

( Fig. 7 (g)), resulting in symmetric dispersions as shown in Fig. 7 (h).

The observed reciprocal wave phenomenon is similar to what hap-

pens in the modulated diatomic lattice. In the above three cases,

the dispersion diagrams in the absence of time modulation look

very similar, as evidenced in Fig. 7 (c, f, and i). This highlights again

that the initial phase distribution, which determines the space-

time field pattern of mass, is a critical parameter for asymmetric

wave manipulation. 

We now evaluate the effect of modulating frequency and ampli-

tude, i.e., ω m 

and αm 

, on the wave non-reciprocity by choosing the

initial phases used in Fig. 7 (a), which would result in purely uni-

directional bandgaps. Fig. 8 (a)–(c) show the fundamental branches

of the modulated crystal with αm 

= 0.15, and three different mod-

ulating frequencies ω m 

/ ω 0 = 0.1, 0.15, and 0.2, respectively. It can

be found that asymmetric gaps are opened as long as ω m 

� = 0.

Moreover, as a result of the time modulation, the central-frequency

difference between the upper and lower gaps is exactly equal to

ω m 

/ ω 0 . The analogous phenomenon has also been observed pre-

viously in a space-time lattice composed of constant mass and

time-driven springs ( Vila et al., 2017 ). These results indicate that

the modulation frequency ω m 

plays a crucial role in tuning the

asymmetric gap frequency. Notice that the direction of asymmetric

bandgaps can be reversed if one changes the sign of ω m 

. To exam-

ine the effect of αm 

, we consider ω m 

/ ω 0 = 0.2 and three different

modulation amplitudes αm 

= 0.1, 0.15, and 0.2. The resulting fun-

damental branches are shown in Fig. 9 . It is observed that increas-

ing αm 

has an obvious effect on widening the bandwidth of the

asymmetric bandgap. It is also worth mentioning that the central-

frequency difference between the gaps remains invariant because

ω m 

/ ω 0 = 0.2 is unchanged among those three cases. 

Based on the above analysis, we have confirmed that non-

reciprocal wave propagation can be gained by the spatiotemporal

modulation of mass. It is found that the initial phase θ (r) 
0 

( r = 1,

2, . . . , R ), modulating frequency ω m 

, and amplitude αm 

are three

fundamental parameters controlling the opening of asymmetric

bandgap, the relevant frequency position, and the bandwidth, re-

spectively; in the three-body “dynamic” model, these three con-

trolling parameters correspond to the initial position of orbiting

bodies, the angular frequency of rotation, and the weight ratio be-

tween the orbiting and primary bodies, respectively. 

4. Conclusion 

The metamaterial concept, which has been employed in the

past to achieve time-invariant material properties, e.g., negative in-

ertial mass and/or negative modules, is extended here to include

the time-dependent inertial mass. The design for “dynamic” meta-

materials follows the principle that the microstructure need not be

at rest even without any external loadings. The proposed metama-

terial element is a three-body structure, wherein the primary body

is seen as the observable DOF, while the other two bodies that

move along a circular orbit are designed as the hidden DOFs. Rig-

orous theoretical analyses have shown that the translational mo-

mentum contributed by the moving bodies varies periodically de-

pending on their temporal phases. In the case of small oscillation,

an effective inertial mass that retains the meaning from Newton’s
econd law of motion can be defined, which is found to be a peri-

dic function of time. 

Based on the proposed “dynamic” cell, we have constructed

n infinite space-time lattice metamaterial by linking the time-

arying mass with springs of constant stiffness. The Bloch-based

ethod was developed for the estimation of dispersion diagrams

f the modulated metamaterial. It is found that the travelling-wave

eld pattern of mass is required for the opening of purely uni-

irectional bandgaps. The modulating frequency and amplitude of

ime-varying inertial mass determine the frequency position and

andwidth of non-reciprocal wave phenomena, respectively. They

re correlated directly to the angular frequency of rotation and the

eight ratio between orbiting and primary bodies in the three-

ody microstructure. The non-reciprocal wave behavior realized

y the spatiotemporal modulation of mass is expected to bring

ew technological concepts with broad engineering applications in

ave and vibration control. 
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ppendix A. Dynamic analysis of the three-body system 

The equilibrium equation of the m 0 -body is written as 

 − F T cos ( ϕ T ) − F B cos ( ϕ B ) = m 0 ̈U 0 , (A.1)

here F T and F B are the forces in the top and bottom connect-

ng bars, respectively. ϕ T ( = � DAC ) and ϕ B ( = � JAH ) are the in-

luded angles between connecting bars and the X axis, as shown

n Fig. A.1 , which follow the geometric relations 

os ϕ T = cos ∠ DAB · cos ∠ BAC, (A.2)

os ϕ B = cos ∠ JAI · cos ∠ IAH. (A.3)

he auxiliary angles appearing on the right-hand side of above

quations can be computed by 

os ∠ DAB = 

√ 

l 2 − d 2 

l 
, (A.4)

os ∠ BAC = 

−U 0 + r T cos ( ω r t ) √ 

l 2 − d 2 
, (A.5)

os ∠ JAI = 

√ 

l 2 − d 2 

l 
, (A.6)

os ∠ IAH = 

U 0 + r B cos ( ω r t ) √ 

l 2 − d 2 
. (A.7)

ubstituting Eqs. (A .2) –(A .7) into (A.1) , we obtain the equilibrium

q. (1) . 

Now analyze the kinematics of the rotating bodies. The absolute

elocity V T of the top m 1 -body is expressed in the moving coordi-

ate system as 

 T = 

˙ r T e x + ω r r T e y , (A.8)

here the first term denotes its velocity relative to the moving sys-

em. The second term describes the convected velocity arising from

he relative motion of the moving coordinate system with respect

o the fixed one. Remember that vectors e x and e y are functions

http://dx.doi.org/10.13039/501100001809
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Fig. A.1. A schematic view of geometric configuration of the three-body system. 
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f time, and are related to the angular frequency ω r of rotation.

y taking the total time derivative of the velocity V T , we get the

bsolute acceleration A T of the top m 1 -body 

 T = r̈ T e x − ω 

2 
r r T e x + 2 ω r ̇ r T e y . (A.9)

he first two terms denote again the relative and convected accel-

rations. The third term refers to the Coriolis acceleration, which

oints toward the y axis. The determination of F T concerns only

he equilibrium equation in the e x direction; hence, the Coriolis

cceleration force produces no effect. We then have 

 T cos ϕ 

′ 
T = m 1 

(
r̈ T − ω 

2 
r r T 

)
, (A.10) 

here ϕ′ 
T = � GDA is the angle between the bar and the top track,

nd can be calculated by 

os ϕ 

′ 
T = 

r T − U 0 cos ( ω r t ) 

l 
, (A.11) 

n which the following geometric equations have been used 

cos ϕ 

′ 
T = cos ∠ EDA · cos ∠ GDE, 

os ∠ EDA = 

√ 

l 2 − d 2 

l 
, cos ∠ GDE = 

r T − U 0 cos ( ω r t ) √ 

l 2 − d 2 
. 

ubstitution of Eqs. (A.11) into (A.10) yields the force-displacement

elationship pertaining to the top m 1 -body 

 T = 

m 1 l 
(
r̈ T − ω 

2 
r r T 

)
r T − U 0 cos ( ω r t ) 

. (A.12) 

imilarly, we can write the absolute velocity V B and acceleration

 B of the bottom m 1 -body as 

 B = − ˙ r B e x − ω r r B e y , (A.13) 

 B = −r̈ B e x + ω 

2 
r r B e x − 2 ω r ̇ r B e y . (A.14)

ts equilibrium equation reads 

 B cos ϕ 

′ 
B = m 1 

(
−r̈ B + ω 

2 
r r B 

)
, (A.15) 
here ϕ′ 
B = � PJA can be computed by 

os ϕ 

′ 
B = 

r B + U 0 cos ( ω r t ) 

l 
, (A.16) 

hich is obtained by using the following relations 

cos ϕ 

′ 
B = cos ∠ KJA · cos ∠ PJK, 

os ∠ KJA = 

√ 

l 2 − d 2 

l 
, cos ∠ PJK = 

r B + U 0 cos ( ω r t ) √ 

l 2 − d 2 
. 

y substituting Eqs. (A.16) into (A.15) , we find that 

 B = 

m 1 l 
(
ω 

2 
r r B − r̈ B 

)
r B + U 0 cos ( ω r t ) 

. (A.17) 

liminate F T and F B by substituting Eqs. (A.12) and (A.17) into (1) ,

eading to 

 − m 1 

(
r̈ T − ω 

2 
r r T 

) r T cos ( ω r t ) − U 0 

r T − U 0 cos ( ω r t ) 

+ m 1 

(
r̈ B − ω 

2 
r r B 

) r B cos ( ω r t ) + U 0 

r B + U 0 cos ( ω r t ) 
= m 0 ̈U 0 . (A.18) 

To further eliminate the internal fields r T and r B in Eq. (A.18) ,

et us examine the distance between the primary body and the two

rbiting bodies. It is easy to find the following geometric equation

 

2 = [ r T cos ( ω r t ) − U 0 ] 
2 + [ r T sin ( ω r t ) ] 

2 + d 2 , (A.19) 

 

2 = [ r B cos ( ω r t ) + U 0 ] 
2 + [ r B sin ( ω r t ) ] 

2 + d 2 . (A.20) 

or convenience, the above equations are rearranged as 

 

2 
0 + r 2 T − 2 r T U 0 cos ( ω r t ) = l 2 − d 2 , (A.21)

 

2 
0 + r 2 B + 2 r B U 0 cos ( ω r t ) = l 2 − d 2 . (A.22)

aking the time derivative of Eqs. (A.21) and (A.22) leads to 

 0 
˙ U 0 + r T ̇ r T −

(
˙ r T U 0 + r T ˙ U 0 

)
cos ( ω r t ) + r T U 0 ω r sin ( ω r t ) = 0 , 

(A.23) 

 0 
˙ U 0 + r B ̇ r B + 

(
˙ r B U 0 + r B ˙ U 0 

)
cos ( ω r t ) − r B U 0 ω r sin ( ω r t ) = 0 . 

(A.24) 

aking again the time derivative of above two equations, we have 

˙ 
 

2 
0 + U 0 ̈U 0 + 

˙ r 2 T + r T ̈r T −
(
r̈ T U 0 + 2 ̇

 r T ˙ U 0 + r T ̈U 0 − r T U 0 ω 

2 
r 

)
cos ( ω r t ) 

+ 2 ω r 

(
˙ r T U 0 + r T ˙ U 0 

)
sin ( ω r t ) = 0 , (A.25) 

˙ 
 

2 
0 + U 0 ̈U 0 + 

˙ r 2 B + r B ̈r B + 

(
r̈ B U 0 + 2 ̇

 r B ˙ U 0 + r B ̈U 0 − r B U 0 ω 

2 
r 

)
cos ( ω r t ) 

−2 ω r 

(
˙ r B U 0 + r B ˙ U 0 

)
sin ( ω r t ) = 0 . (A.26) 

ssume that the displacement U 0 is infinitely small in magnitude

ompared to r T and r B , i.e., U 0 / r T , U 0 / r B � 1, which is practically

ossible if the small-amplitude force F is applied, or if relatively

arge l and d are chosen. Under this assumption, it can be deduced

rom Eqs. (A.21) and (A.22) that 

 0 � r T ≈ r B . (A.27) 

owever, the result r T ≈ r B does not imply the equality of the

ime derivative and double time derivative of r T and r B . Simplifying

qs. (A.23) and (A.24) by use of (A.27) gives rise to 

˙ 
 T ≈ ˙ U 0 cos ( ω r t ) − U 0 ω r sin ( ω r t ) , (A.28) 

˙ 
 B ≈ − ˙ U 0 cos ( ω r t ) + U 0 ω r sin ( ω r t ) . (A.29) 
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Likewise, we can simplify Eqs. (A.25) and (A.26) by using (A.27) –

(A.29) to find that 

r̈ T ≈ −2 

˙ U 0 ω r sin ( ω r t ) −
(

˙ U 

2 
0 / r T 

)
sin 

2 
( ω r t ) 

+ 

(
Ü 0 − U 0 ω 

2 
r 

)
cos ( ω r t ) , (A.30)

r̈ B ≈ 2 

˙ U 0 ω r sin ( ω r t ) −
(

˙ U 

2 
0 / r B 

)
sin 

2 
( ω r t ) 

−
(
Ü 0 − U 0 ω 

2 
r 

)
cos ( ω r t ) . (A.31)

By substituting Eqs. (A.30) and (A.31) into (A.18) , and considering

the condition (A.27) , we acquire the final form of the equilibrium

equation of the m 0 -body, which is expressed in terms of F and U 0 

only, as shown by Eq. (2) . 

Appendix B. Energy analysis of the three-body system 

Calculation of the power input P F ( t ) . Given the displacement

U 0 ( t ), the force F ( t ) applied to the main body can be calculated

approximately from Eq. (3) , and is given by 

F ( t ) = m eff ( t ) ̈U 0 ( t ) + 

˙ m eff ( t ) ˙ U 0 ( t ) . (B.1)

Note that F ( t ) should be calculated from Eq. (A.18) in the general

case. Substitution of the Eq. (7) into (B.1) results in 

F ( t ) = −m 0 ω 

2 ˆ U 0 sin ( ωt ) − 2 m 1 ω 

2 ˆ U 0 cos 2 ( ω r t ) sin ( ωt ) 

− 2 m 1 ω r ω ̂

 U 0 sin ( 2 ω r t ) cos ( ωt ) . (B.2)

The instantaneous power input P F ( t ), i.e., the rate of work done by

F ( t ), can be calculated as 

P F ( t ) = F ( t ) d U 0 ( t ) / d t, (B.3)

or explicitly, 

P F ( t ) = −m 0 ω 

3 ˆ U 

2 
0 sin ( 2 ωt ) / 2 − m 1 ω 

3 ˆ U 

2 
0 cos 2 ( ω r t ) sin ( 2 ωt ) 

− 2 m 1 ω r ω 

2 ˆ U 

2 
0 sin ( 2 ω r t ) cos 2 ( ωt ) . (B.4)

Calculation of the power input P M 

( t ) . The moments of force ap-

plied to the top and bottom tracks to maintain the constant ro-

tation are denoted by M 

T ( t ) and M 

B ( t ), respectively, which can be

computed according to equilibrium equations 

M 

T ( t ) + F T N ( t ) r T = 0 , (B.5)

M 

B ( t ) − F B N ( t ) r B = 0 , (B.6)

where F T 
N 
(t) and F B 

N 
(t) are the inertial forces of the m 1 -body acting

on the rotating tracks, as shown in Fig. A.1 . Consider the equations

of motion of the top m 1 -body 

F T ( cos ∠ EDA · sin ∠ GDE ) − F T N = 2 m 1 ω r ̇ r T , (B.7)

F T ( cos ∠ EDA · cos ∠ GDE ) = m 1 

(
r̈ T − ω 

2 
r r T 

)
. (B.8)

Substitute Eq. (B.8) into (B.7) to obtain the force F T 
N 

, which is given

by 

F T N = m 1 

(
r̈ T − ω 

2 
r r T 

) U 0 sin ( ω r t ) 

r T − U 0 cos ( ω r t ) 
− 2 m 1 ω r ̇ r T . (B.9)

Then from Eq. (B.5) , one can get the expression of M 

T ( t ) 

M 

T ( t ) = −m 1 r T 
(
r̈ T − ω 

2 
r r T 

) U 0 sin ( ω r t ) 

r T − U 0 cos ( ω r t ) 
+ 2 m 1 ω r ̇ r T r T . (B.10)

The rate of work done by the moment of force M 

T ( t ) is calculated

as 

P T M 

( t ) = ω r M 

T ( t ) . (B.11)
Similarly, the moment of force M 

B ( t ) relevant to the bottom m 1 -

ody can be derived as 

 

B ( t ) =−m 1 r B 
(
−r̈ B +ω 

2 
r r B 

) U 0 sin ( ω r t ) 

r B + U 0 cos ( ω r t ) 
+2 m 1 ω r ̇ r B r B . (B.12)

he rate of work done by M 

B ( t ) is calculated as 

 

B 
M 

( t ) = ω r M 

B ( t ) . (B.13)

inally, the rate of the net work done by the moment of force is 

 M 

( t ) = P T M 

( t ) + P B M 

( t ) . (B.14)

Calculation of the time rate of change of the total kinetic energy

( E total )/d t . The kinetic energies of the main body, and the top and

ottom m 1 -bodies are 

 0 ( t ) = 

1 

2 

m 0 ω 

2 ˆ U 

2 
0 cos 2 ( ωt ) , (B.15)

 

T 
1 ( t ) = 

1 

2 

m 1 

(
˙ r 2 T + ω 

2 
r r 

2 
T 

)
, (B.16)

 

B 
1 ( t ) = 

1 

2 

m 1 

(
˙ r 2 B + ω 

2 
r r 

2 
B 

)
. (B.17)

he time rate of change of these kinetic energies are given by 

 ( E 0 ) / d t = −m 0 ω 

3 ˆ U 

2 
0 cos ( ωt ) sin ( ωt ) , (B.18)

 

(
E T 1 

)
/ d t = m 1 ̇ r T 

(
r̈ T + ω 

2 
r r T 

)
, (B.19)

 

(
E B 1 

)
/ d t = m 1 ̇ r B 

(
r̈ B + ω 

2 
r r B 

)
, (B.20)

here r T , r B , and their time derivatives can be computed from

qs. (A .19), (A .20) , and (A .23) –(A .26) . Finally, the time rate of

hange of the total kinetic energy is calculated as 

 ( E total ) / d t = d ( E 0 ) / d t + 

(
E T 1 

)
/ d t + 

(
E B 1 

)
/ d t. (B.21)

ppendix C. Method for dispersion estimation of modulated 

etamaterials 

Substitution of the Eq. (12) into (9) results in 

˙ 
 ( t ) ̇ u n ( t ) + M ( t ) ̈u n ( t ) + K ( μ) u n ( t ) = 0 (C.1)

ith 

 ( μ) = K 

( l ) e iμ + K + K 

( r ) e −iμ. (C.2)

ince the mass matrices M ( t ) are periodic functions of time, i.e.,

 ( t ) = M ( t + T m 

), they can be also expressed as the Fourier series

 ( t ) = 

∞ ∑ 

q = −∞ 

M q e 
iq ω m t . (C.3)

ombining Eqs. (11) and (C.3) , we can express the first two terms

f Eq. (C.1) as 

˙ 
 ( t ) ̇ u n ( t ) + M ( t ) ̈u n ( t ) = 

[ 

∞ ∑ 

q = −∞ 

( iq ω m 

) M q e 
iq ω m t 

] 

∞ ∑ 

p= −∞ 

i ( ω + pω m 

) a p e 
i [ −nμ+ ( ω+ pω m ) t ] 

−
( 

∞ ∑ 

q = −∞ 

M q e 
iq ω m t 

) 

∞ ∑ 

p= −∞ 

( ω + pω m 

) 
2 a p e 

i [ −nμ+ ( ω+ pω m ) t ] 

(C.4)
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ubstitution of (C.4) into (C.1) gives rise to 

∞ ∑ 

p= −∞ 

M 

′ 
p e 

i [ −nμ+ ( ω+ p ω m ) t ] + K ( μ) 

∞ ∑ 

p= −∞ 

a p e 
i [ −nμ+ ( ω+ p ω m ) t ] = 0 , 

(C.5) 

here the frequency-dependent matrix M 

′ 
p ( ω) has been intro-

uced, given by 

 

′ 
p ( ω ) = −

∞ ∑ 

q = −∞ 

( ω + p ω m 

) [ ω + ( p − q ) ω m 

] M q a p−q . (C.6) 

ow performing the harmonic balance in Eq. (C.5) , we get that 

∞ ∑ 

q = −∞ 

( ω + p ω m 

) [ ω + ( p − q ) ω m 

] M q a p−q + K ( μ) a p = 0 , 

p ∈ ( −∞ , + ∞ ) . (C.7) 

n dispersion calculations, the truncation order P needs to be set

or the running number p , such that a p = 0 for | p | > P ( Vila et al.,

017 ). This means that p ∈ [ − P , + P ] and q ∈ [ p − P, p + P ]. Conse-

uently, the expression (C.7) involves R × (2 P + 1) equations in to-

al, and can be cast in the form of a quadratic eigenvalue equation

ω 

2 L 2 ( μ) + ω L 1 ( μ) + L 0 ( μ) 
]
a total = 0 , (C.8) 

here a total contains all unknowns. L 0 ( μ), L 1 ( μ), and L 2 ( μ) are

nown matrices relevant to the wavenumber μ only. The disper-

ion relations of the modulated superlattice can be attained by

olving the eigenvalue problem in Eq. (C.8) for angular frequency

 in the given wavenumber μ. 

For example, if R = 3, the mass matrices M ( t ) in (C.1) are written

s 

 ( t ) = 

[ 

m 

( 1 ) ( t ) 0 0 

0 m 

( 2 ) ( t ) 0 

0 0 m 

( 3 ) ( t ) 

] 

. (C.9) 

ourier coefficients M q appearing in Eq. (C.7) are obtained by inte-

rating M ( t ) over one time period T m 

of modulation, given by 

 q = 

1 

T m 

∫ T m / 2 

−T m / 2 

M ( t ) e −iq ω m t dt . (C.10) 

uppose that the truncation order P = 1 is chosen. According to the

ormula (8) , the mass matrices M − 1 , M 0 , and M + 1 are derived as

 −1 = 

M 0 αm 

2 

diag 

[ 
e −iθ ( 1 ) 

0 , e −iθ ( 2 ) 
0 , e −iθ ( 3 ) 

0 

] 
, (C.11) 

 0 = M 0 diag [ 1 , 1 , 1 ] , (C.12) 

 +1 = 

M 0 αm 

2 

diag 

[ 
e iθ

( 1 ) 
0 , e iθ

( 2 ) 
0 , e iθ

( 3 ) 
0 

] 
. (C.13) 

he stiffness matrix K ( μ) becomes 

 (μ) = K 

[ 

2 −1 −e iμ

−1 2 −1 

−e −iμ −1 2 

] 

. (C.14)

he assembled system matrix L 0 , L 1 , and L 2 are derived as follows

 0 ( μ) = 

[ 

ω 

2 
m 

M 0 − K ( μ) 0 0 

0 −K ( μ) 0 

0 0 ω 

2 
m 

M 0 − K ( μ) 

] 

, (C.15) 

 1 ( μ) = 

[ −2 ω m 

M 0 −ω m 

M −1 0 

−ω m 

M +1 0 ω m 

M −1 

0 ω m 

M +1 2 ω m 

M 0 

] 

, (C.16) 
 2 ( μ) = 

[ 

M 0 M −1 0 

M +1 M 0 M −1 

0 M +1 M 0 

] 

. (C.17) 

he dispersion diagram of the modulated metamaterial can be

omputed according to the eigenvalue Eq. (C.8) , and the corre-

ponding eigenvectors are 

 total = 

[
a ( 

1 ) 
−1 

, a ( 
2 ) 

−1 
, a ( 

3 ) 
−1 

, a ( 
1 ) 

0 
, a ( 

2 ) 
0 

, a ( 
3 ) 

0 
, a ( 

1 ) 
1 

, a ( 
2 ) 

1 
, a ( 

3 ) 
1 

]T 
. (C.18) 
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