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a b s t r a c t

Inertial transformation acoustics is a method for deriving a spatial pattern of material parameters for
use in the arbitrary regulation of acoustic trajectories. This work highlights the discussion on a general
metamaterial model with material properties that meet all the needs of the inertial transformation
parameters. The proposed solid metamaterials are described to possess broadband anisotropic density
and continuously tuned material axis while exhibiting fluid-like elasticity, namely, isotropic bulk
stiffness and sufficiently small shear resistance. In particular, the metamaterial structure embodies a
regular cell shape with an unaltered profile against the rotation of material axes, which facilitates the
assembly of functional devices. An underwater acoustic rotator is designed and numerically verified to
elucidate the wave dispersion and effective-medium characteristics of the metamaterial. A guideline
for constructing the transformation device from the basic cells is also provided herein. The presented
model can serve as a new material platform on the exploration of arbitrary acoustic-control via the
inertial transformation method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Transformation acoustics has shown great potential in ma-
nipulating acoustic propagation, which not only inspired novel
wave functionalities (e.g., acoustic cloaking) [1–5] but also ad-
vanced the development of new material and structure design [6–
8]. The transformation method was established on the basis of
the form invariance of classical wave equations under a coordi-
nate mapping. Maxwell’s equation, which governs electromag-
netic wave propagation, was found to maintain rigorously the
same form [9]. On the contrary, transformation acoustic materials
are not uniquely defined and, as such, there exist more flexibil-
ities to design sound devices. Recall that for a spatial mapping
from X to x′, acoustic Helmholtz equation, i.e., κ0∇

2p−ρ0p̈ = 0, is
transformed into the general pentamode-inertial expression, [10]

κS:∇
[
ρ−1

∇ · (Sp)
]
− p̈ = 0, (1)

where the pseudo-pressure p is related to the strain ε by p =

−κtr (Sε) with κ = κ0J . Accordingly, the mass density ρ and
stiffness C are given by,

ρ−1
= ρ−1

0 J−1S−1FF T S−1, C = κS ⊗ S, (2)
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where F = ∇Xx′ and J = det F . It is necessary that the
characteristic stress tensor S must be divergence-free and sym-
metric. Choosing the form of S = J−1F such that ∇ · S = 0 is
always satisfied leads to the pentamode transformation featuring
the anisotropic modulus and scalar density [11]. Because the
anisotropic stiffness of composites can be readily achieved in a
broad frequency range, the pentamode material has served as an
appropriate material platform to meet the needs of broadband
acoustic control applications [2,7]. Recently, Chen, et al. [2,5] have
experimentally designed and verified the pentamode cloaking
structure that could conceal objects to be undetectable from un-
derwater sounds. However, it is worth noting that the pentamode
transformation is suitable to the case where the transformation
deformation gradient F is symmetric or quasi-symmetric in order
to ensure the symmetry of S [12]. Thereby, for a general mapping
that particularly involves the local coordinate rotation, or rather,
the asymmetric transformation, it is usually difficult to select
a general form of a divergence-free and symmetric tensor S to
implement the pentamode transformation.

Such pursuit of arbitrary control over acoustic propagation
is dealt with herein with a focus on the inertial transformation
version wherein S in Eq. (1) is set as the identity tensor to avoid
the restriction on the form of coordinate mappings. Acoustic
parameters in Eq. (2) then become,

ρ−1
= ρ−1

0 FF T J−1, κ = κ0J. (3)
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Note that the anisotropic density required here is physically
permissible [13,14]. The broadband anisotropic inertia could be
realized by fluid–solid composite layers, which have the disad-
vantage of being potentially impractical due to the presence of
fluid phases and the limited density–anisotropy ratio [15]. There-
fore, purely solid structures with broadband anisotropic density
are desirable for underwater acoustic manipulation. Anisotropic
density in solid structures has been attained via the
local-resonance effect, but can only be held nearly constant in a
narrow frequency region [16,17]. Inspired by the sliding-interface
concept in fluid–solid composites for achieving a significant ex-
pansion of the working bandwidth, the authors have presented in
a previous study a new type of solid metamaterials with fluid-like
elasticity and anisotropic density that can be maintained nearly
constant in a wide frequency range [18]. Based on this model,
functional structures capable of underwater acoustic stretch-
ing, shifting, and carpet cloaking were designed, demonstrating
clearly the acoustic steering capability of inertial transformation
devices [6]. The present work is dedicated to the design of a more
general metamaterial model, for which the principal axis of the
anisotropic density can be continuously tuned by an arbitrary
coordinate mapping to meet the parameter requirement. Further,
the design of an underwater acoustic rotator is exemplified to
disclose the wave signature of the metamaterials with the men-
tioned property. Note that the major reason for choosing this
example is the fact that the acoustic-rotating device follows from
the asymmetric transformation, which is the scenario unsuitable
for the pentamode transformation method.

2. Models and methods

An acoustic rotator that occupies the cylindrical shell of radius
a < r < b has the ability to rotate acoustic fields inside the
inner cylinder (r < a) by a prescribed angle θ0 [19], as depicted
in Fig. 1(a). In polar coordinates (r , θ ), the mapping for this
acoustic device aims to keep r ′

= r in the entire space, and
set θ ′

= θ + θ0 for r < a, while let θ ′
= θ for r > b.

Assuming an arbitrary continuous function f (r), the transfor-
mation in the shell region of a < r < b can be expressed
as θ ′

= θ + θ0 [f (b) − f (r)] /[f (b) − f (a)]. The transformation
deformation gradient was found to be F = [(1, 0) , (−t, 1)] with
t = θ0rf ′ (r) /[f (b) − f (a)]. To remove the dependence of t
on r, the form function f (r) = ln r was adopted [20], giving
rise to the constant value of t = θ0/[f (b) − f (a)]. This ar-
rangement led to the spatially homogeneous anisotropic density,
which would facilitate the structure design of the rotator device.
According to Eq. (3), the inertial density could be written diago-
nally in the polar coordinate as ρ = diag

(
ρ⊥, ρ∥

)
with ρ⊥ =

2ρ0/

(
t2 − t

√
t2 + 4 + 2

)
and ρ∥ = 2ρ0/

(
t2 + t

√
t2 + 4 + 2

)
.

The angle between the principal direction and radial axis is given
by β =

1
2 arccos

(
t/

√
t2 + 4

)
, as noted in Fig. 1(b). The modulus,

namely, κ = κ0, was unchanged after the mapping because
of det F = 1. Moreover, the principal axis of the density was
found to continuously change along the angular direction, which
likewise implies that the material axis of the corresponding meta-
materials should vary continuously. On the contrary, effective
stiffness coefficients and principal densities should remain un-
changed with the rotation of material axes. Thus, metamaterials
possessing these properties would meet all needs of the inertial
transformation parameters.

The solid metamaterial developed previously [6] for under-
water acoustic manipulation consisted of a solid lattice structure
with a low shear resistance for mimicking fluid-like elasticity and
was embedded with a sharpened bar inclusion so as to attain
the broadband anisotropic density. As opposed to the previous

Fig. 1. (a) Coordinate lines of the field-rotating transformation. (b) Configuration
of transformation acoustic rotator in which the principal axis of the anisotropic
density is marked. (c) Cell structure of the proposed metamaterial with fluid-
like elasticity and continuously tuned material axis of the anisotropic density.
(d) Schematic profile of the field-rotating device assembled by the metamaterial
elements.

model with hexagonal cell geometry, the aluminum ring-shaped
structure [21] designed herein was aimed at hosting the inclusion,
as shown in Fig. 1(c). Such improvement led to the possibility
of rotating the principal axis of the anisotropic density, which
is in line with the bar’s axial direction, at an arbitrary angle α.
The inclusion structure that shared a similarity with the previous
one was adopted, where the soft rubber [21] at the central part
plays a critical role of eliminating the influence of the inclusion
on the overall stiffness, and the thin connection at the two ends
of the central bar is designed for simulating the sliding-boundary
effect in fluid–solid composites and is essential to the realization
of the broadband anisotropic density. To achieve the fluid-like
elasticity for the improved model, the circular ring structures
were arranged into a triangular periodic lattice, and adjacent
rings were connected by beams with slender ends. The nearest
three beams, together with the circular ring in between them,
constituted the hexagon-like geometry, which would result in
low shear stiffness as verified later. To illustrate, consider the
rotation angle θ0 = −30◦, for inner and outer radii of a = 0.6 m
and b = 1.8 m. The required density components could be
computed as ρ⊥ = 0.624 ρ0 and ρ∥ = 1.604 ρ0 with the principal
angle of β = −38.3◦. The device was synthesized by allowing
the metamaterial cell to repeatedly and periodically occupy the
shell region of the rotator (i.e., a < r < b), whereas the angular
orientation of the inclusion in each cell was arranged following
α = θ + β . A schematic of the device architecture involving the
partial metamaterial elements is illustrated in Fig. 1(d). Notice
that the background medium was the water with modulus κ0 =

2.25 GPa and mass density ρ0 = 103 kg/m3.

3. Results and discussion

Wave features of the presented metamaterials were inves-
tigated through band-structure and effective-medium analyses.
First, let us examine the band diagram of the aluminum lat-
tice in Fig. 2(a), in two perpendicular directions (i.e., Γ X and
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Fig. 2. Geometric structures of the aluminum lattice (a) without and (e) with the attachment, and their respective (b, f) dispersion diagrams and mode shapes at
1 kHz, (c, g) effective inertial densities, and (d, h) effective stiffness parameters. The structural parameters are as follows: R = 23.4 mm, t = 3.6 mm, ha = 0.5 mm,
and la = 30 mm for the aluminum lattice; h = 32.8 mm, d = 24 mm, dt = 0.95 mm, hr = 7 mm, dl = 12 mm, and hl = 3.3 mm for the attachment. The lattice constant
of the cell is l = 60 mm.

Γ Y), as depicted in Fig. 2(b). Two pairs of weakly dispersive
and symmetric branches can be observed, corresponding to the
longitudinal (L) and transverse (T) polarizations that are easily
recognized from their mode shapes. Next, the effective-medium
representation was implemented in the framework of the general
anisotropy of both elasticity and inertia. The homogenization
medium of the structured metamaterial follows the constitu-
tive equation of

[
σxx, σyy

]T
= [(c11, c12) , (c21, c22)]

[
εxx, εyy

]T
and σxy = 2c44εxy, and the equation of motion of

[
Fx, Fy

]T
=(

−1/ω2S
) [

(ρx, 0) ,
(
0, ρy

)] [
ux, uy

]T , where σαβ and εαβ (α, β =

x or y) are the stress and strain fields; Fα and uα are the net force
and displacement, respectively, and S is the cell area. Based on
the band-structure results, all effective parameters pertaining to
the continuum medium can be retrieved [6,18], as illustrated in
Fig. 2(c, d). Specifically in Fig. 2(d), the aluminum lattice exhibited
a nearly fluid-like elasticity, where the bulk modulus c11(≈ c22)
was close to that of water at 2.25 GPa, and the shear stiffness c44
was up to one order of magnitude smaller than c11. Fig. 2(c) shows
the isotropic inertial density of the lattice, which arises from the
uniform displacement response, as verified by the mode shapes
of the L branch at 1 kHz in Fig. 2(b).

To acquire the anisotropic density with the desired values,
the sharpened bar inclusion was added to each lattice cell, and
the lead attachment [21] was deposited at the outer edge of the
aluminum ring, increasing the cell weight [Fig. 2(e)]. The band
structure of the metamaterial is depicted in Fig. 2(f). Here, the ad-
dition of inclusions led to a band gap near 0.5 kHz that interrupts
the L branch. Such gap was responsible for the transition from
the isotropic density of the pure lattice to the anisotropic one of
the metamaterial [6,18]. Moreover, the mode shapes manifested
that the inclusion has induced a significant contrast of inertial
motion in two perpendicular directions. As a consequence, the
anisotropic density can be achieved in the broad frequency range
of 1.0–1.6 kHz [Fig. 2(g)], which corresponds to the weakly dis-
persive regime of the L band above the gap. Notice that the
design of the inclusion’s geometry follows the guideline that the
density component ρx is determined by the host lattice, and that
ρy measures the total weight of the composite [6,18]. Fig. 2(h)
illustrates the effective modulus parameters, which are nearly
unchanged with the addition of both the inclusion and lead at-
tachment. To sum up, the geometric parameters of metamaterial

Fig. 3. (a) Effective stiffness and (b) principal values of effective inertial densities
for the metamaterial considered in Fig. 2(e) as a function of the rotation angle
of the inclusion calculated at a frequency of 1 kHz.

structures can be determined via the decoupling design strategy.
More specifically, the overall stiffness is decided by the aluminum
lattice only, and the anisotropic density is mostly relevant to
the inclusion, which has very little influence on the effective
modulus.

While the effective-medium results in Fig. 2 regard the meta-
material model with the orientation angle of α = 90◦, the
effective stiffness and principal densities for an arbitrary α at a
specific frequency of 1 kHz are presented in Fig. 3(a) and (b),
respectively. The fluid-like elasticity featuring c44 ≪ c11 ≈ c22
can be observed for all orientation angles of the inclusion. Besides,
the circular profile of the density spectrum was observed as well,
demonstrating the robustness of anisotropic densities against the
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Fig. 4. Simulated pressure field distributions of plane acoustic waves with a
frequency of (a) 1 kHz, (b) 1.3 kHz, and (c) 1.6 kHz, incident on acoustic
metamaterial rotator immersed in the water background.

rotation of material axes. Note that the principal densities (i.e., ρ⊥

and ρ∥) were retrieved from the dispersion diagrams in the band
directions in line with the inclusion’s orientation.

The field-rotating functionality of the device can be evaluated
through acoustic pressure distributions of the interior and exte-
rior regions of the rotator, exited by a plane wave propagating
rightwards with the frequency of 1.0, 1.3, and 1.6 kHz, are shown
in Fig. 4(a) to (c), respectively, with which numerical simulations
were performed using the software COMSOL Multiphysics. In the
internal region enclosed by the rotator, the wave front that still
remains nearly flat assumed a clockwise rotation and redirected
toward the prescribed angle of −30◦. Moreover, the field-rotating
effect could be observed in three different frequencies, which
verifies the broadband acoustic-control capability of the meta-
material. Unwanted external scatterings in the forward direction
were a result of a discrepancy of densities between the designed
and target values, and of the insufficiently small shear stiffness.
In future studies, the wave manipulation performance of these
metamaterials may be improved through optimization of the
microstructure to minimize the parameter gaps.

4. Conclusions

The wave dispersion and effective-medium analyses demon-
strated the ability of the proposed broadband metamaterial to
possess the continuously tuned material axes of anisotropic den-
sity and fluid-like elasticity, as well as the capability of assem-
bling the transformation device with an acoustic-rotating func-
tionality. In particular, even with the different angular orientation
of the material axes, the cell structures can still be easily con-
nected, owing to the cell’s regular profile and the decoupling
design strategy of the metamaterial [6]. Accordingly, transfor-
mation devices with the arbitrary acoustic-control capability

could be designed by using the proposed model. The presented
metamaterial consists of physically realizable materials; thereby,
the experimental realization of arbitrary acoustic manipulation in
an underwater environment could be anticipated.
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